15,979 research outputs found

    Higgs self coupling measurement in e+e- collisions at center-of-mass energy of 500 GeV

    Get PDF
    Feasibility of the measurement of the trilinear self-couplings of the Higgs boson is studied. Such a measurement would experimentally determine the structure of the Higgs potential. Full hadronic and semi-leptonic final states of the double-Higgs strahlung have been investigated.Comment: 10 pages, 5 tables, 8 figure

    On the filamentary environment of galaxies

    Full text link
    The correlation between the large-scale distribution of galaxies and their spectroscopic properties at z=1.5 is investigated using the Horizon MareNostrum cosmological run. We have extracted a large sample of 10^5 galaxies from this large hydrodynamical simulation featuring standard galaxy formation physics. Spectral synthesis is applied to these single stellar populations to generate spectra and colours for all galaxies. We use the skeleton as a tracer of the cosmic web and study how our galaxy catalogue depends on the distance to the skeleton. We show that galaxies closer to the skeleton tend to be redder, but that the effect is mostly due to the proximity of large haloes at the nodes of the skeleton, rather than the filaments themselves. This effects translate into a bimodality in the colour distribution of our sample. The origin of this bimodality is investigated and seems to follow from the ram pressure stripping of satellite galaxies within the more massive clusters of the simulation. The virtual catalogues (spectroscopical properties of the MareNostrum galaxies at various redshifts) are available online at http://www.iap.fr/users/pichon/MareNostrum/cataloguesComment: 18 pages, 27 figures, accepted for publication in MNRA

    A variational principle for fluid sloshing with vorticity, dynamically coupled to vessel motion

    Get PDF
    A variational principle is derived for two-dimensional incompressible rotational fluid flow with a free surface in a moving vessel when both the vessel and fluid motion are to be determined. The fluid is represented by a stream function and the vessel motion is represented by a path in the planar Euclidean group. Novelties in the formulation include how the pressure boundary condition is treated, the introduction of a stream function into the Euler-Poincar\'e variations, the derivation of free surface variations, and how the equations for the vessel path in the Euclidean group, coupled to the fluid motion, are generated automatically.Comment: 19 pages, 3 figure

    Criterion for purely elastic Taylor-Couette instability in the flows of shear-banding fluids

    Get PDF
    In the past twenty years, shear-banding flows have been probed by various techniques, such as rheometry, velocimetry and flow birefringence. In micellar solutions, many of the data collected exhibit unexplained spatio-temporal fluctuations. Recently, it has been suggested that those fluctuations originate from a purely elastic instability of the flow. In cylindrical Couette geometry, the instability is reminiscent of the Taylor-like instability observed in viscoelastic polymer solutions. In this letter, we describe how the criterion for purely elastic Taylor-Couette instability should be adapted to shear-banding flows. We derive three categories of shear-banding flows with curved streamlines, depending on their stability.Comment: 6 pages, 3 figure

    Potential "ways of thinking" about the shear-banding phenomenon

    Get PDF
    Shear-banding is a curious but ubiquitous phenomenon occurring in soft matter. The phenomenological similarities between the shear-banding transition and phase transitions has pushed some researchers to adopt a 'thermodynamical' approach, in opposition to the more classical 'mechanical' approach to fluid flows. In this heuristic review, we describe why the apparent dichotomy between those approaches has slowly faded away over the years. To support our discussion, we give an overview of different interpretations of a single equation, the diffusive Johnson-Segalman (dJS) equation, in the context of shear-banding. We restrict ourselves to dJS, but we show that the equation can be written in various equivalent forms usually associated with opposite approaches. We first review briefly the origin of the dJS model and its initial rheological interpretation in the context of shear-banding. Then we describe the analogy between dJS and reaction-diffusion equations. In the case of anisotropic diffusion, we show how the dJS governing equations for steady shear flow are analogous to the equations of the dynamics of a particle in a quartic potential. Going beyond the existing literature, we then draw on the Lagrangian formalism to describe how the boundary conditions can have a key impact on the banding state. Finally, we reinterpret the dJS equation again and we show that a rigorous effective free energy can be constructed, in the spirit of early thermodynamic interpretations or in terms of more recent approaches exploiting the language of irreversible thermodynamics.Comment: 14 pages, 6 figures, tutorial revie

    Cavitation-induced force transition in confined viscous liquids under traction

    Full text link
    We perform traction experiments on simple liquids highly confined between parallel plates. At small separation rates, we observe a simple response corresponding to a convergent Poiseuille flow. Dramatic changes in the force response occur at high separation rates, with the appearance of a force plateau followed by an abrupt drop. By direct observation in the course of the experiment, we show that cavitation accounts for these features which are reminiscent of the utmost complex behavior of adhesive films under traction. Surprisingly enough, this is observed here in purely viscous fluids.Comment: Submitted to Physical Review Letters on May 31, 2002. Related informations on http://www.crpp.u-bordeaux.fr/tack.htm

    Gluon propagator in diffractive scattering

    Full text link
    In this work, we perform a comparison of the employ of distinct gluon propagators with the experimental data in diffractive processes, pppp elastic scattering and light meson photo-production. The gluon propagators are calculated through non-perturbative methods, being justified their use in this class of events, due to the smallness of the momentum transfer. Our results are not able to select the best choice for the modified gluon propagator among the analyzed ones, showing that the application of this procedure in this class of high energy processes, although giving a reasonable fit to the experimental data, should be taken with same caution.Comment: 14 pages, 4 figures, accepted for publication in Int. J. Mod. Phys. A (uses ws-ijmpa.cls). Authors correcte

    Non Gaussian extrema counts for CMB maps

    Full text link
    In the context of the geometrical analysis of weakly non Gaussian CMB maps, the 2D differential extrema counts as functions of the excursion set threshold is derived from the full moments expansion of the joint probability distribution of an isotropic random field, its gradient and invariants of the Hessian. Analytic expressions for these counts are given to second order in the non Gaussian correction, while a Monte Carlo method to compute them to arbitrary order is presented. Matching count statistics to these estimators is illustrated on fiducial non-Gaussian "Planck" data.Comment: 4 pages, 1 figur
    corecore