81 research outputs found

    A high efficiency, low background detector for measuring pair-decay branches in nuclear decay

    Get PDF
    We describe a high efficiency detector for measuring electron-positron pair transitions in nuclei. The device was built to be insensitive to gamma rays and to accommodate high overall event rates. The design was optimized for total pair kinetic energies up to about 7 MeV.Comment: Accepted for publication by Nucl. Inst. & Meth. in Phys. Res. A (NIM A

    Time-of-flight mass measurements of neutron-rich chromium isotopes up to N = 40 and implications for the accreted neutron star crust

    Full text link
    We present the mass excesses of 59-64Cr, obtained from recent time-of-flight nuclear mass measurements at the National Superconducting Cyclotron Laboratory at Michigan State University. The mass of 64Cr is determined for the first time, with an atomic mass excess of -33.48(44) MeV. We find a significantly different two-neutron separation energy S2n trend for neutron-rich isotopes of chromium, removing the previously observed enhancement in binding at N=38. Additionally, we extend the S2n trend for chromium to N=40, revealing behavior consistent with the previously identified island of inversion in this region. We compare our results to state-of-the-art shell-model calculations performed with a modified Lenzi-Nowacki-Poves-Sieja interaction in the fp shell, including the g9/2 and d5/2 orbits for the neutron valence space. We employ our result for the mass of 64Cr in accreted neutron star crust network calculations and find a reduction in the strength and depth of electron-capture heating from the A=64 isobaric chain, resulting in a cooler than expected accreted neutron star crust. This reduced heating is found to be due to the >1-MeV reduction in binding for 64Cr with respect to values from commonly used global mass models.Comment: Accepted to Physical Review

    The 150^{150}Nd(3^3He,tt) and 150^{150}Sm(tt,3^3He) reactions with applications to ββ\beta\beta decay of 150^{150}Nd

    Full text link
    The 150^{150}Nd(3^3He,tt) reaction at 140 MeV/u and 150^{150}Sm(tt,3^3He) reaction at 115 MeV/u were measured, populating excited states in 150^{150}Pm. The transitions studied populate intermediate states of importance for the (neutrinoless) ββ\beta\beta decay of 150^{150}Nd to 150^{150}Sm. Monopole and dipole contributions to the measured excitation-energy spectra were extracted by using multipole decomposition analyses. The experimental results were compared with theoretical calculations obtained within the framework of Quasiparticle Random-Phase Approximation (QRPA), which is one of the main methods employed for estimating the half-life of the neutrinoless ββ\beta\beta decay (0νββ0\nu\beta\beta) of 150^{150}Nd. The present results thus provide useful information on the neutrino responses for evaluating the 0νββ0\nu\beta\beta and 2νββ2\nu\beta\beta matrix elements. The 2νββ2\nu\beta\beta matrix element calculated from the Gamow-Teller transitions through the lowest 1+1^{+} state in the intermediate nucleus is maximally about half of that deduced from the half-life measured in 2νββ2\nu\beta\beta direct counting experiments and at least several transitions through 1+1^{+} intermediate states in 150^{150}Pm are required to explain the 2νββ2\nu\beta\beta half-life. Because Gamow-Teller transitions in the 150^{150}Sm(tt,3^3He) experiment are strongly Pauli-blocked, the extraction of Gamow-Teller strengths was complicated by the excitation of the 2ω2\hbar\omega, ΔL=0\Delta L=0, ΔS=1\Delta S=1 isovector spin-flip giant monopole resonance (IVSGMR). However, the near absence of Gamow-Teller transition strength made it possible to cleanly identify this resonance, and the strength observed is consistent with the full exhaustion of the non-energy-weighted sum rule for the IVSGMR.Comment: 18 pages, 13 figures, 2 table
    corecore