843 research outputs found

    Compression properties of polymeric syntactic foam composites under cyclic loading

    Full text link
    Syntactic foams are composite materials frequently used in applications requiring the properties of low density and high damage tolerance. In the present work, polymer-based syntactic foams were studied under cyclic compression in order to investigate their compressibility, recoverability, energy dissipation and damage tolerance. These syntactic foams were manufactured by adding hollow polymer microspheres of various sizes and wall thicknesses into a polyurethane matrix. The associated loading and unloading curves during cyclic testing were recorded, revealing the viscoelastic nature of the materials. SEM images of the samples were obtained in order to study potential damage mechanisms during compression. It was observed that these syntactic foams exhibit high elastic recovery and energy dissipation over a wide range of compressional strains and the addition of polymer microspheres mitigate the damage under compressional loading.Comment: 25 pages, 13 figure

    DOMestic Energy Systems and Technologies InCubator (DOMESTIC) and indoor air quality of the built environment

    Get PDF
    Oral presentation at RMetS Students and Early Career Scientists Conference 2020 on research project DOMESTIC (DOMestic Energy Systems and Technologies InCubator), which aims to build a facility for the demonstration of domestic technologies and design methodologies (i.e. air quality, energy efficiency)

    Accurate <i>ab initio</i> ro-vibronic spectroscopy of the X<sup>2</sup>&#8719; CCN radical using explicitly correlated methods

    Get PDF
    Explicitly correlated CCSD(T)-F12b calculations have been carried out with systematic sequences of correlation consistent basis sets to determine accurate near-equilibrium potential energy surfaces for the X&lt;sup&gt;2&lt;/sup&gt;&#8719; and a&lt;sup&gt;4&lt;/sup&gt;&#931;&lt;sup&gt;−&lt;/sup&gt; electronic states of the CCN radical. After including contributions due to core correlation, scalar relativity, and higher order electron correlation effects, the latter utilizing large-scale multireference configuration interaction calculations, the resulting surfaces were employed in variational calculations of the ro-vibronic spectra. These calculations also included the use of accurate spin-orbit and dipole moment matrix elements. The resulting ro-vibronic transition energies, including the Renner-Teller sub-bands involving the bending mode, agree with the available experimental data to within 3 cm&lt;sup&gt;−1&lt;/sup&gt; in all cases. Full sets of spectroscopic constants are reported using the usual second-order perturbation theory expressions. Integrated absorption intensities are given for a number of selected vibronic band origins. A computational procedure similar to that used in the determination of the potential energy functions was also utilized to predict the formation enthalpy of CCN, &#916;H&lt;sub&gt;f&lt;/sub&gt;(0K) = 161.7 &#177; 0.5 kcal/mol

    Chandra X-ray Observatory Arcsecond Imaging of the Young, Oxygen-rich Supernova Remnant 1E0102.2-7219

    Get PDF
    We present observations of the young, Oxygen-rich supernova remnant 1E0102.2-7219 taken by the Chandra X-ray Observatory during Chandra's Orbital Activation and Checkout phase. The boundary of the blast wave shock is clearly seen for the first time, allowing the diameter of the remnant and the mean blast wave velocity to be determined accurately. The prominent X-ray bright ring of material may be the result of the reverse shock encountering ejecta; the radial variation of O VII vs. O VIII emission indicates an ionizing shock propagating inwards, possibly through a strong density gradient in the ejecta. We compare the X-ray emission to Australia Telescope Compact Array 6 cm radio observations (Amy and Ball) and to archival Hubble Space Telescope [O III] observations. The ring of radio emission is predominantly inward of the outer blast wave, consistent with an interpretation as synchrotron radiation originating behind the blast wave, but outward of the bright X-ray ring of emission. Many (but not all) of the prominent optical filaments are seen to correspond to X-ray bright regions. We obtain an upper limit of ~9e33 erg/s (3 sigma) on any potential pulsar X-ray emission from the central region.Comment: Accepted for pulication in Ap. J. Letters. 4 pages, 6 figures (one color figure). Formatted with emulateapj5. Revised to incorporate copyediting changes. High-resolution postscript (3.02MB) and tiff versions of the color figure are available from http://chandra.harvard.edu/photo/cycle1/0015multi/index.htm

    Deeper Chandra Follow-up of Cygnus TeV Source Perpetuates Mystery

    Get PDF
    A 50 ksec Chandra observation of the unidentified TeV source in Cygnus reported by the HEGRA collaboration reveals no obvious diffuse X-ray counterpart. However, 240 Pointlike X-ray sources are detected within or nearby the extended TeV J2032+4130 source region, of which at least 36 are massive stars and 2 may be radio emitters. That the HEGRA source is a composite, having as counterpart the multiple point-like X-ray sources we observe, cannot be ruled out. Indeed, the distribution of point-like X-ray sources appears non-uniform and concentrated broadly within the extent of the TeV source region. We offer a hypothesis for the origin of the very high energy gamma-ray emission in Cyg OB2 based on the local acceleration of TeV range cosmic rays and the differential distribution of OB vs. less massive stars in this association.Comment: Substantially revised version; incorporates referee suggestions & expanded discussio

    Jet-Induced Nucleosynthesis in Misaligned Microquasars

    Get PDF
    The jet axes and the orbital planes of microquasar systems are usually assumed to be approximately perpendicular, eventhough this is not currently an observational requirement. On the contrary, in one of the few systems where the relative orientations are well-constrained, V4641Sgr, the jet axis is known to lie not more than ~36 degrees from the binary plane. Such a jet, lying close to the binary plane, and traveling at a significant fraction of the speed of light may periodically impact the secondary star initiating nuclear reactions on its surface. The integrated yield of such nuclear reactions over the age of the binary system (less the radiative mass loss) will detectably alter the elemental abundances of the companion star. This scenario may explain the anomalously high Li enhancements (roughly ~20-200 times the sun's photospheric value; or, equivalently, 0.1-1 times the average solar system value) seen in the companions of some black-hole X-ray binary systems. (Such enhancements are puzzling since Li nuclei are exceedingly fragile - being easily destroyed in the interiors of stars - and Li would be expected to be depleted rather than enhanced there.) Gamma-ray line signatures of the proposed process could include the 2.22 MeV neutron capture line as well as the 0.478 MeV 7Li* de-excitation line, both of which may be discernable with the INTEGRAL satellite if produced in an optically thin region during a large outburst. For very energetic jets, a relatively narrow neutral pion gamma-decay signature at 67.5 MeV could also be measurable with the GLAST satellite. We argue that about 10-20% of all microquasar systems ought to be sufficiently misaligned as to be undergoing the proposed jet-secondary impacts.Comment: ApJ, accepted. Includes referee's suggestions and some minor clarifications over previous versio

    Studies on wound healing activity of some Euphorbia species on experimental rats

    Get PDF
    Background: Plants of Euphorbiaceae are used in folkloric medicines in variety of ailments and well known for chemical diversity of their isoprenoid constituents. This study was carried out to explore the preliminary wound healing potential of four Euphorbia species (E. consorbina 1, E. consorbina 2, E. inarticulata, E. balsamifera and E. schimperi).Materials and Methods: Excision wound surface of the animals were topically treated with ethyl acetate and methanol extracts of plants at a dose of 400 mg/kg body weight for twenty days. Povidone-iodine ointment was used as a reference drug. Wound contraction measurement and period of epithelialization were used to assess the effect of plants extracts on wound repairing.Results: The groups treated with methanol extracts of E. balsamifera and E. schimperi showed profound effects, high rate of wound contraction (100%) and decrease in epithelization period 19.00±0.40 and 18.50±0.64 respectively, followed by methanol extracts of E. consorbina 2, ethyl acetate extract of E. inarticulata and ethyl acetate extracts of E. consorbina 2 which showed significant (P &lt;0.001) wound contraction and decrease in epithelization period. Conversely ethyl acetate extract of E. consorbina 1, E. balsamifera and E. schimperi and methanol extract of E. Consorbina 1 and E. Inarticulata treated groups was not showing significant wound healing. Methanol extracts of E. balsamifera and E. schimperi were also tested for their safety margin and found safe up to dose of 2000mg/kg body weight.Conclusion: Topical application of methanol extracts of E. balsamifera and E. schimperi have potential wound healing activity which is identical with standard drug Povidone-iodine.Keywords: Wound healing, excision wounds, Euphorbia, extract
    corecore