Explicitly correlated CCSD(T)-F12b calculations have been carried out with systematic sequences of correlation consistent basis sets to determine accurate near-equilibrium potential energy surfaces for the X<sup>2</sup>∏ and a<sup>4</sup>Σ<sup>−</sup> electronic states of the CCN radical. After including contributions due to core correlation, scalar relativity, and higher order electron correlation effects, the latter utilizing large-scale multireference configuration interaction calculations, the resulting surfaces were employed in variational calculations of the ro-vibronic spectra. These calculations also included the use of accurate spin-orbit and dipole moment matrix elements. The resulting ro-vibronic transition energies, including the Renner-Teller sub-bands involving the bending mode, agree with the available experimental data to within 3 cm<sup>−1</sup> in all cases. Full sets of spectroscopic constants are reported using the usual second-order perturbation theory expressions. Integrated absorption intensities are given for a number of selected vibronic band origins. A computational procedure similar to that used in the determination of the potential energy functions was also utilized to predict the formation enthalpy of CCN, ΔH<sub>f</sub>(0K) = 161.7 ± 0.5 kcal/mol