43 research outputs found

    Folic Acid Functionalized Nanoparticles for Enhanced Oral Drug Delivery

    Get PDF
    The oral absorption of drugs that have poor bioavailability can be enhanced by encapsulation in polymeric nanoparticles. Transcellular transport of nanoparticle-encapsulated drug, possibly through transcytosis, is likely the major mechanism through which nanoparticles improve drug absorption. We hypothesized that the cellular uptake and transport of nanoparticles can be further increased by targeting the folate receptors expressed on the intestinal epithelial cells. The objective of this research was to study the effect of folic acid functionalization on transcellular transport of nanoparticle-encapsulated paclitaxel, a chemotherapeutic with poor oral bioavailability. Surface-functionalized poly(D,L-lactide-co-glycolide) (PLGA) nanoparticles loaded with paclitaxel were prepared by the interfacial activity assisted surface functionalization technique. Transport of paclitaxel-loaded nanoparticles was investigated using Caco-2 cell monolayers as an in vitro model. Caco-2 cells were found to express folate receptor and the drug efflux protein, p-glycoprotein, to high levels. Encapsulation of paclitaxel in PLGA nanoparticles resulted in a 5-fold increase in apparent permeability (P(app)) across Caco-2 cells. Functionalization of nanoparticles with folic acid further increased the transport (8-fold higher transport compared to free paclitaxel). Confocal microscopic studies showed that folic acid-functionalized nanoparticles were internalized by the cells and that nanoparticles did not have any gross effects on tight junction integrity. In conclusion, our studies indicate that folic acid functionalized nanoparticles have the potential to enhance the oral absorption of drugs with poor oral bioavailability

    Chlamydia pneumoniae: An Etiologic Agent for Late-Onset Dementia

    Get PDF
    The disease known as late-onset Alzheimer\u27s disease is a neurodegenerative condition recognized as the single most common form of senile dementia. The condition is sporadic and has been attributed to neuronal damage and loss, both of which have been linked to the accumulation of protein deposits in the brain. Significant progress has been made over the past two decades regarding our overall understanding of the apparently pathogenic entities that arise in the affected brain, both for early-onset disease, which constitutes approximately 5% of all cases, as well as late-onset disease, which constitutes the remainder of cases. Observable neuropathology includes: neurofibrillary tangles, neuropil threads, neuritic senile plaques and often deposits of amyloid around the cerebrovasculature. Although many studies have provided a relatively detailed knowledge of these putatively pathogenic entities, understanding of the events that initiate and support the biological processes generating them and the subsequent observable neuropathology and neurodegeneration remain limited. This is especially true in the case of late-onset disease. Although early-onset Alzheimer\u27s disease has been shown conclusively to have genetic roots, the detailed etiologic initiation of late-onset disease without such genetic origins has remained elusive. Over the last 15 years, current and ongoing work has implicated infection in the etiology and pathogenesis of late-onset dementia. Infectious agents reported to be associated with disease initiation are various, including several viruses and pathogenic bacterial species. We have reported extensively regarding an association between late-onset disease and infection with the intracellular bacterial pathoge

    Can oral infection be a risk factor for Alzheimer’s disease?

    Get PDF
    Alzheimer’s disease (AD) is a scourge of longevity that will drain enormous resources from public health budgets in the future. Currently, there is no diagnostic biomarker and/or treatment for this most common form of dementia in humans. AD can be of early familial-onset or sporadic with a late-onset. Apart from the two main hallmarks, amyloid-beta and neurofibrillary tangles, inflammation is a characteristic feature of AD neuropathology. Inflammation may be caused by a local central nervous system insult and/or by peripheral infections. Numerous microorganisms are suspected in AD brains ranging from bacteria (mainly oral and non-oral Treponema species), viruses (Herpes simplex type I) and yeasts (Candida species). A causal relationship between periodontal pathogens/non-oral Treponema species of bacteria has been proposed via the amyloid-beta and inflammatory links. Periodontitis constitutes a peripheral oral infection that can provide the brain with intact bacteria and virulence factors and inflammatory mediators due to daily, transient bacteraemias. If and when genetic risk factors meet environmental risk factors in the brain, disease is expressed, in which neurocognition may be impacted, leading to the development of dementia. To achieve the goal of finding a diagnostic biomarker and possible prophylactic treatment for AD, there is an initial need to solve the etiological puzzle contributing to its pathogenesis. This review therefore addresses oral infection as the plausible aetiology of late onset AD (LOAD)

    Role of Secreted Conjunctival Mucosal Cytokine and Chemokine Proteins in Different Stages of Trachomatous Disease

    Get PDF
    Trachoma, a disease of antiquity dating back to the 16th century B.C.E., predominates among developing countries, where it remains the primary cause of preventable blindness worldwide. In trachoma, recurrent Chlamydia trachomatis bacterial infections during childhood are thought to result in inflammation and subsequent conjunctival scarring that can progress to trichiasis (TT; chronic trachoma; inversion of ≥1 eyelash that touches the globe of the eye). The trachomatous follicular grade (TF; active disease) is a self-limiting disease, suggesting the coexistence of protective inflammatory proteins. The trachomatous inflammatory grade (TI; active disease) is more likely to progress to trachomatous scarring (TS; chronic trachoma). To date, there are only a handful of studies that have examined the immune response in trachoma, and these were primarily based on gene expression. Characterizing quantified conjunctival mucosal immune differences for secreted proteins among individuals with no, active, and chronic trachoma may identify protein biomarkers associated with protection versus disease, which would greatly aid our understanding of the immunopathogenesis of trachoma. In this study, we characterized 25 cytokine and chemokine proteins for all trachoma grades. We identified eight cytokines and chemokines as risk factors for chronic trachoma and four as protective. Together, these findings further characterize the immunopathologic responses involved during trachoma, which will likely aid in the design of a vaccine and immunomodulating therapeutics for trachoma

    Synovial Chlamydia trachomatis up regulates expression of a panel of genes similar to that transcribed by Mycobacterium tuberculosis during persistent infection

    No full text
    BACKGROUND: Synovial tissues in patients with Chlamydia associated arthritis are persistently infected by C trachomatis, an organism for which genetic manipulation is not possible. M tuberculosis also engages in persistent infection, and because this bacterium is genetically tractable many groups have been able to define transcriptional characteristics of mycobacterial growth and persistence. OBJECTIVE: To investigate whether the pattern of gene expression underlying chlamydial persistence is similar to that underlying mycobacterial persistence. METHODS: 194 genes in M tuberculosis that are transcriptionally up regulated to support in vivo growth and persistence of that organism have previously been identified. Each of those genes was compared with the C trachomatis genome to identify orthologues. Expression of selected chlamydial orthologues so identified was assessed by real time RT‐PCR in an in vitro model of chlamydial persistence and synovial tissues from patients who were PCR positive for C trachomatis at that site. RESULTS: 67 C trachomatis genes were identified as being orthologous to mycobacterial persistence related genes, representing 35% of the genes tested. The chlamydial orthologues fell into similar metabolic and other categories as those in M tuberculosis. Expression of a majority of selected chlamydial orthologues was strongly up regulated in an in vitro model of chlamydial persistence and in synovial tissues of relevant patients, compared with their expression during active infection. CONCLUSIONS: These observations provide new insight into the molecular genetic basis underlying chlamydial persistence, and indicate that this information can be obtained, in some instances, by extrapolating observations made in other biological systems and/or organisms

    Optimised sample DNA preparation for detection of Chlamydia trachomatis in synovial tissue by polymerase chain reaction and ligase chain reaction

    No full text
    OBJECTIVE—Molecular biology techniques such as polymerase chain reaction (PCR) and ligase chain reaction (LCR) are routinely used in research for detection of C trachomatis DNA in synovial samples, and these methods are now in use in some clinical laboratories. This study aimed at determining the method best suited to molecular diagnosis of C trachomatis by examining four standard DNA preparation methods using chlamydia spiked synovial tissue and chlamydia infected monocytes.
METHODS—Synovial tissue from a chlamydia negative patient with rheumatoid arthritis was spiked with defined numbers of C trachomatis elementary bodies (EB). Purified human peripheral monocytes from normal donors were infected with the organism at a multiplicity of infection 1:1 in vitro and harvested after four days. DNA was prepared from all samples by four methods: (1) QIAmp tissue kit; (2) homogenisation in 65°C phenol; (3) incubation at 97°C; (4) proteinase K digestion at 97°C. DNA from methods 1 and 2 was subjected to PCR using two different primer sets, each targeting the C trachomatis omp1 gene. LCR was done on DNA prepared by each method.
RESULTS—In synovial tissue samples spiked with EB, and in monocytes persistently infected with the organism, preparation of template using the QIAmp tissue kit (method 1) and the hot phenol extraction technique (method 2) allowed sensitive detection of C trachomatis DNA. These methods also produced template from both sample types for LCR. DNA prepared by heat denaturation (method 3) allowed only low sensitivity chlamydia detection in LCR and did not work at all for PCR. Proteinase K digestion plus heat denaturation (method 4) gave template that did not allow amplification in either PCR or LCR assays.
CONCLUSIONS—The sensitivity of detection for C trachomatis DNA in synovial tissue by PCR and LCR depends strongly on the method used for preparation of the amplification template. LCR targeting the multicopy chlamydial plasmid and two nested PCR assay systems targeting the single copy omp1 gene showed roughly equivalent sensitivity. Importantly, template preparation method and the specific PCR primer system used for screening must be optimised in relation to one another for highest sensitivity.


    Vascular endothelial growth factor (VEGF), transforming growth factor-β (TGFβ), and interleukin-6 (IL-6) in experimental herpesvirus retinopathy: association with inflammation and viral infection

    Get PDF
    Experimental herpesvirus retinopathy presents a unique model of a transient inflammatory response in the virus-injected eye and subsequent acute retinal necrosis and chronic inflammation in the contralateral eye. For 6 days after infection, VEGF, TGFβ, and TGFβ2 were associated only with inflammatory cells in the injected eye. By 6 days (after viral antigens were no longer detected), VEGF and TGFβ2 were upregulated in retinas of injected eyes until 8-10 days. In contralateral eyes, VEGF was first demonstrated in the retina at 6-7 days (prior to the appearance of viral antigens) and TGFβ2 at 7-8 days. Staining for these factors was also evident around areas of necrosis. The VEGF receptor, flt- l, was associated with ganglion cells and the inner nuclear layer of normal and experimental mice and it was also demonstrated around areas of necrosis. Another VEGF receptor, flk-l, was localized to Miiller cell processes and the outer plexiform layer in normal and experimental mice. Coincident with VEGF upregulation in the retinas of herpesvirus-l injected mice, there was increased flk-l in ganglion cells and the inner and outer nuclear layers. IL- 6 was associated with Miiller cell endfeet in normal mice. Following unilateral intraocular inoculation, 1L-6 spread along the Miiller cell processes and some astrocytes demonstrated IL-6 in both eyes at 6-8 days. The present study demonstrates that intraocular inoculation of herpesvirus is sufficient to induce VEGF, flk-l, TGFβ2, and IL-6 in the retinas of injected and contralateral eyes. Further investigation of common signaling pathways for these factors during responses to viral infection and the development of acute retinal necrosis could provide information useful for therapeutic intervention in human herpesvirus retinopathy

    Chlamydophila pneumoniae and the Etiology of Late-Onset Alzheimer\u27s Disease

    No full text
    Sporadic, late-onset Alzheimer\u27s disease (LOAD) is a non-familial, progressive neurodegenerative disease that is now the most common and severe form of dementia in the elderly. That dementia is a direct result of neuronal damage and loss associated with accumulations of abnormal protein deposits in the brain. Great strides have been made in the past 20 years with regard to understanding the pathological entities that arise in the AD brain, both for familial AD ( approximately 5% of all cases) and LOAD ( approximately 95% of all cases). The neuropathology observed includes: neuritic senile plaques (NSPs), neurofibrillary tangles (NFTs), neuropil threads (NPs), and often deposits of cerebrovascular amyloid. Genetic, biochemical, and immunological analyses have provided a relatively detailed knowledge of these entities, but our understanding of the trigger events leading to the many cascades resulting in this pathology and neurodegeneration is still quite limited. For this reason, the etiology of AD, in particular LOAD, has remained elusive. However, a number of recent and ongoing studies have implicated infection in the etiology and pathogenesis of LOAD. This review focuses specifically on infection with Chlamydophila (Chlamydia) pneumoniae in LOAD and how this infection may function as a trigger or initiator in the pathogenesis of this disease
    corecore