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The disease known as late-onset Alzheimer’s disease is a neurodegenerative condition
recognized as the single most commonform of senile dementia. The condition is
sporadic and has been attributed to neuronal damage and loss, both of which have
been linked to the accumulation of protein deposits in the brain. Significant progress
has been made over the past two decades regarding our overall understanding of
the apparently pathogenic entities that arise in the affected brain, both for early-
onset disease, which constitutes approximately 5% of all cases, as well as late-onset
disease, which constitutes the remainder of cases. Observable neuropathology includes:
neurofibrillary tangles, neuropil threads, neuritic senile plaques and often deposits of
amyloid around the cerebrovasculature. Although many studies have provided a relatively
detailed knowledge of these putatively pathogenic entities, understanding of the events
that initiate and support the biological processes generating them and the subsequent
observable neuropathology and neurodegeneration remain limited. This is especially true
in the case of late-onset disease. Although early-onset Alzheimer’s disease has been
shown conclusively to have genetic roots, the detailed etiologic initiation of late-onset
disease without such genetic origins has remained elusive. Over the last 15 years, current
and ongoing work has implicated infection in the etiology and pathogenesis of late-onset
dementia. Infectious agents reported to be associated with disease initiation are various,
including several viruses and pathogenic bacterial species. We have reported extensively
regarding an association between late-onset disease and infection with the intracellular
bacterial pathogen Chlamydia pneumoniae. In this article, we review previously published
data and recent results that support involvement of this unusual respiratory pathogen in
disease induction and development. We further suggest several areas for future research
that should elucidate details relating to those processes, and we argue for a change in
the designation of the disease based on increased understanding of its clinical attributes.

Keywords: late-onset dementia, Alzheimer’s disease, amyloid, APOE, Chlamydia pneumoniae, etiology, infection,
neuroinflammation

INTRODUCTION

A longstanding idea in the medical literature is that a wide variety of chronic diseases could
be caused or exacerbated by a microbial infection. For example, in the early 20th century
rheumatoid arthritis was considered to be an infectious disease, an explanation that was
more or less abandoned by mid-century but which has re-emerged (Lansbury, 1950; Ford, 1963;
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Albert, 2000; Carty et al., 2004). Multiple sclerosis long has
been attributed at least in part to involvement of an infectious
component, although the identity of the specific agent(s)
remain(s) to be firmly established (Swanborg et al., 2003). Similar
arguments have been made in regard to other chronic diseases
of an idiopathic nature, but in most cases, an infectious etiology
and/or involvement of microbes in disease exacerbation have
been difficult to establish. The pattern is paralleled in cancer
etiology, in which infectious causation of some cancers has been
demonstrated (for review see de Martel et al., 2012); however,
most cancers are not thought to have an infectious etiology.

Instead of viral, bacterial, or mycological involvement in
disease causation, alternative mechanisms that might explain
chronic disease genesis have been pursued. Among the most
prominent explanations has been the potential genetic basis of
chronic clinical entities, including what is termed late-onset
Alzheimer’s disease. Most of these studies have indicated that
development of disease is not easily attributable to one or even a
few mutations or gene polymorphisms. Rather, such studies have
indicated that disease genesis is multifactorial, resulting from as
yet unknown environmental and host genetic factors (Harney
and Wordsworth, 2002; O’Connor et al., 2006).

With regard to Alzheimer’s disease, the single idea that
has predominated for almost three decades in studies of
the neuropathology underlying this clinical entity is the
‘‘amyloid cascade’’ hypothesis. The hypothesis proposes that
the deposition of the amyloid-β (Aβ) peptide is the critical
event underlying neuronal degeneration, and thus cognitive
dysfunction (Schellenberg, 1995). This idea is appropriately
applicable to the early form of dementia, familial Alzheimer’s
disease, since it is well established that this type of dementia
is caused by genetic mutations resulting in an increase in
amyloid formation and deposition (Tanzi, 2012). However,
many studies have determined that causation of late-onset
disease is not attributable to a small number of identical,
similar, or other genetic defects leading to Aβ deposition,
thereby undermining the contention that Aβ is the universal
etiologic factor eliciting the dementia. Importantly, in both
familial Alzheimer’s disease and late-onset disease, the
neuropathology is essentially identical; this clearly indicates
that factors other than the genetic lesions which underlie familial
disease must exist to explain the neuropathology of late-onset
disease.

Late-onset dementia typically is observed in older age;
indeed, age is the primary risk factor for its development.
Other factors also may increase risk of late-onset disease.
These include: atherosclerosis (de la Torre, 2006), Type
2 diabetes (Revill et al., 2006), neurotrauma (Szczygielski
et al., 2005) and infection (Miklossy, 1993; Itzhaki et al.,
1997; Balin et al., 1998). Intriguingly, many of the same risk
factors could promote systemic inflammation that may also
influence disease pathogenesis. Furthermore, chronic, persistent,
or latent infections in the brain, all of which may be an
outcome following infection with a variety of organisms
(see Itzhaki et al., 2004), could reactivate to initiate and/or
exacerbate late-onset disease. These possibilities implicate both
systemic and neuroinflammation in late-onset dementia. Thus,

a likely scenario for development of late-onset dementia
centers on poorly understood interactions between genetic risk,
as exemplified in part by possession of the Apolipoprotein
E (APOEε)4 allele, and environmental factor(s), including
infection. For these and other reasons, we have argued that
late-onset disease is distinguishable from the genetically-based
early-onset disease. On that basis we suggested the designation
‘‘late-onset dementia of the Alzheimer’s type’’ for the late-onset
clinical entity, since it is more consistent with our current
knowledge of the clinical and neuropathological underpinnings
of the disease (Balin et al., 2017); in this article, we employ that
designation, or simply late-onset dementia, throughout.

Many attempts have been made to identify infectious agents
responsible for late-onset dementia of the Alzheimer’s type
(see e.g., Emery et al., 2017). However, none of the agents
studied has been unequivocally accepted to be either etiologic,
or indeed exacerbating, for dementia-related neuropathology.
These include many viral pathogens such as measles virus,
lentiviruses, adenovirus and others (Pogo et al., 1987; Friedland
et al., 1990). Importantly, studies of herpes simplex virus type 1
(HSV-1) infection in late-onset disease identified this virus
as a risk factor for people expressing APOEε4 (Itzhaki et al.,
1997, 2001). Further, bacterial pathogens, including Chlamydia
trachomatis, Coxiella burnettii and others have been investigated,
but no clear relationship with Alzheimer’s pathogenesis has
been demonstrated to date (Renvoize et al., 1987). In contrast,
we discovered an association between the genesis of late-onset
disease and infection with the intracellular respiratory bacterial
pathogen Chlamydia pneumoniae. (Balin et al., 1998; Gérard
et al., 2006). We summarize that work in this review, along
with recently published studies from our group and those of
others’ that implicate involvement of this unusual and ubiquitous
pathogen in the genesis of senile cognitive dysfunction reflective
of late-onset disease.

CHLAMYDIA PNEUMONIAE

C. pneumoniae, an obligate intracellular bacterium, is a
pathogen of the respiratory tract, infecting mucosal surfaces,
specifically the lung/pulmonary and nasal mucosa (Grayston
et al., 1990; Campbell and Kuo, 2002; Hahn et al., 2002).
It is ubiquitous in all societal cultures and geographic
regions studied to date (Leinonen, 1993). Many reports have
demonstrated that the organism is responsible for a significant
proportion of community-acquired pneumonia, and it has
been associated with numerous other pulmonary diseases
(Grayston et al., 1990; Clementsen et al., 2002). Interestingly,
C. pneumoniae infections also have been linked with an
array of non-respiratory diseases, including atherosclerosis,
inflammatory arthritis, multiple sclerosis and others (Sriram
et al., 1998; Schumacher et al., 1999; Wagner et al., 2000;
Belland et al., 2004). While some such associations are certainly
controversial, credence has been gained for the role of this
organism in atherogenesis during the last 20 years (Grayston,
2000; Rosenfeld et al., 2000; Belland et al., 2004).

Similar to other chlamydial species, C. pneumoniae displays
a biphasic developmental cycle. The first phase involves the
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infectious extracellular form of the organism, the elementary
body (EB). EB typically infect epithelial cells, but many cell
types can be infected, including cells in the nervous system
such as astroglia, microglia and neurons (Hatch, 1999; Dreses-
Werringloer et al., 2006; Gérard et al., 2006). Following
endocytosis into a cytoplasmic inclusion, EB reorganize into a
reticulate body (RB), which is the metabolically active form of the
organism. RB undergo multiple cycles of cell division followed
by a ‘‘dedevelopmental’’ process yielding the infectious EB form
again. These are released via eukaryotic cell lysis or exocytosis,
which spreads the infection (Hatch, 1999).

Systemic dissemination of the organism from the respiratory
tract has been well-documented (Gieffers et al., 2004), and
several studies have indicated that this occurs via monocytes
(Moazed et al., 1998). Importantly, C. pneumoniae, like other
chlamydial species, undergoes long-term infection in a biological
state termed ‘‘persistence’’ (Hogan et al., 2004). In persistence,
the organism, as with other chlamydial species, is viable
and metabolically active but does not complete its normal
developmental cycle. Further, persistent chlamydial infections
have been shown to be refractory to antibiotic treatment
(e.g., Deniset and Pierce, 2010; Phillips-Campbell et al., 2014).

INITIAL STUDIES OF C. PNEUMONIAE
AND LATE-ONSET DISEASE

Our initial studies of possible involvement of C. pneumoniae
in late-onset disease identified DNA of the organism in
90% of postmortem brain samples from patients diagnosed
with late-onset dementia of the Alzheimer’s type; this study
employed highly specific polymerase chain reaction (PCR) assays
(Balin et al., 1998; Schumacher et al., 1999). Only 5% of
control non-demented brain samples contained C. pneumoniae
DNA. Positive DNA results were obtained from brain tissues
from areas that normally display characteristic neuropathology
(e.g., hippocampus) and from those less often demonstrating
characteristic pathology (e.g., cerebellum). In nearly 90% of
affected brain samples, positive PCR signals were obtained
from at least one area showing neuropathology, and from the
cerebellum in four cases. In these four cases, neuropathology
existed within the cerebella as well as other areas. In contrast,
the two relevant affected brain samples that failed to give a
positive PCR signal for C. pneumoniae DNA exhibited only mild
pathology (Balin et al., 1998). We further analyzed frozen brain
samples for intact bacterial RNA using reverse transcriptase-PCR
(RT-PCR). mRNA species encoding the KDO transferase and a
∼376 kDa protein specific to C. pneumoniae were successfully
targeted.

In these initial studies, immunohistochemistry and electron
microscopy also were used to analyze samples from PCR-positive
brains. Samples from individuals with clear late-onset disease
contained C. pneumoniae antigens, specifically in cortical regions
such as the temporal, parietal and pre-frontal cortices as well as
the hippocampus. In these regions, organism immuno-positivity
was observed in various cell types including perivascular
macrophages, microglia and astroglia. Ultrastructural analysis

of the positive brain samples revealed chlamydial inclusions
containing both EB and RB. Immuno-electron microscopy using
a gold-conjugated monoclonal antibody specific to an outer
membrane protein demonstrated gold particles labeling the
organism (Balin et al., 1998; Arking et al., 1999). Immuno-
electron microscopy was negative in comparable PCR-negative
control brain sections.

PCR and RT-PCR positive sample homogenates were
prepared and incubated with human THP-1 monocytes in
culture. Viable bacteria were successfully recovered from two
brains positive for the organism. Culture of homogenates from
two control brains prepared in a similar fashion generated
negative results (Balin et al., 1998). Thus, DNA and antigens of
C. pneumoniae were found in areas of neuropathology in brain
samples from late-onset disease individuals, and samples from
frozen brain tissues from these subjects yielded viable organisms.
Genetic analyses revealed that 11 of the 17 PCR-positive samples
had at least one allele for the APOEε4 isoform (64%), consistent
with that allele type being a risk factor for development of
late-onset dementia (Roses, 1996). Importantly, in a separate
study, it was shown that in patients with reactive arthritis who
had DNA from C. pneumoniae in synovial tissues, 2/3 had
one or more copies of the APOEε4 allele (Gérard et al., 1999).
Together, these and other observations discussed below clearly
implicate a relationship between theAPOEε4 allelic genotype and
infection by C. pneumoniae; they suggest that both factors confer
an increased risk for chronic disease genesis (Balin et al., 1998;
Gérard et al., 1999).

Not surprisingly, these initial studies and their implications
suggesting that an infection with a common bacterium is
involved in the origin of late-onset dementia instigated several
other groups to attempt confirmation of the organism in brain
tissues from other affected and control patient cases. Those
studies yielded mixed results, with some reports providing
positive identification (e.g., Mahony et al., 2000; Ossewaarde
et al., 2000; Di Pietro et al., 2013a), and others failing to
find DNA or antigens from the organism in relevant samples
(e.g., Nochlin et al., 1999; Gieffers et al., 2000; Ring and
Lyons, 2000; Taylor et al., 2002). Importantly and as reviewed
by us previously in detail, numerous and various different
techniques were used in the confirmation studies, with none
utilizing methodology identical to our own. For example, one
study failed to find C. pneumoniae in paraffin-embedded brain
tissues from confirmed late-onset dementia patients via PCR
or immunohistochemical (IHC) analyses (Nochlin et al., 1999);
similarly, the organism was not found in several relevant
paraffin-embedded brain samples using either PCR or IHC
(Gieffers et al., 2000). The recovery of reasonable quality template
for PCR from paraffin-embedded tissue can be unreliable,
which might explain some negative results. We used exclusively
frozen brain-tissue samples were in our studies. One report
indicated success in identifying C. pneumoniae by in situ
hybridization in many relevant brain samples (Ossewaarde
et al., 2000); controls were negative, including those from
individuals with other neurological diseases. In our studies,
in negative IHC studies, and in the positive study, the same
mAb targeting the C. pneumoniaeMOMP or lipopolysaccharide
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(LPS) were employed, suggesting differences in technique in
obtaining positive results. Another report explains the positive
and negative PCR data from some studies (Mahony et al.,
2000). This study employed replicate PCR assays and probit
regression analyses to show that DNA from most frozen
brain samples analyzed from relevant patients was PCR-positive
for C. pneumoniae if enough replicates were performed;
multiple assayed controls were always PCR-negative. Clearly,
discrepancies in analytical methods used among the different
laboratories severely constrain the results obtained (Campbell
and Kuo, 2004).

Confirmatory Studies
In subsequent research to confirm and extend our initial studies,
we analyzed new tissue samples from late-onset dementia and
control brains (Gérard et al., 2006). PCR analyses targeting
two C. pneumoniae genes showed that samples from 20/25
late-onset brains, but only 3/27 control brains, were PCR-positive
(Gérard et al., 2006). Viable organisms were cultured from the
former brain samples, and metabolic activity of the cultured
bacteria was demonstrated via identification of several intact
chlamydial transcripts. Immunohistochemistry of relevant brain
samples identified that astroglia, microglia and ∼1/5 of neurons
were infected with C. pneumoniae. As in our initial study,
infected cells were located in the brain in proximity to both
senile plaques and nerve cells containing neurofibrillary tangles
(Balin et al., 1998). Together, these observations suggested that
C. pneumoniae infection had a direct effect on neuronal cell
injury/death. Further, the potential for the organism to act as
initiator of granulovacuolar degeneration, another previously
acknowledged pathology in late-onset disease, was suggested
(Funk et al., 2011).

Continued analyses demonstrated that immunolabeling was
positive for C. pneumoniae in the entorhinal and frontal
cortices, and in the hippocampal formation of all relevant
affected brains (Hammond et al., 2010). These areas exhibited
both amyloid deposition and Chlamydia immunoreactivity in
apposition to one another when stained with Thioflavin S
and labeled with anti-C. pneumoniae antibodies on the same
sections, thus revealing fibrillary amyloid and chlamydial
immunoreactivity, respectively. Two extracellular patterns of
chlamydial immunoreactivity were observed: a punctate pattern
and a pattern with amorphous foci. These may represent
extrusion of whole organism (punctate) or secreted chlamydial
products, e.g., LPS (amorphous foci), into the tissues (Stuart
et al., 1994; Hybiske and Stephens, 2007). Amyloid is known
to have anti-microbial properties, perhaps allowing it to
act as an anionic defensin (Bishop and Robinson, 2004;
Kammerman et al., 2006; Soscia et al., 2010; Kumar et al.,
2016). As reflected by the deposition of amyloid in the
same region as C. pneumoniae, tropism of this organism
to the central nervous system (CNS) may be a precursor
or trigger for development of damage (Hammond et al.,
2010).

The entorhinal cortex and the hippocampal formation, both
olfactory structures, are known to be regions demonstrating
the earliest damage in the late-onset brain (Mann et al., 1988;

Christen-Zaech et al., 2003). Relevant to this, C. pneumoniae has
been identified in both human and animal olfactory bulbs in
experimental systems (Balin et al., 1998; Little et al., 2004, 2005,
2014). In animals, the organism appeared to spread centrifugally
from the olfactory bulbs into the brain proper (Itzhaki et al., 2004;
Little et al., 2004, 2005, 2014). Thus, these and other observations
outlined below support the idea that infection by this pathogen
is an early event in the triggering of neuropathogenesis and not
a consequence of prior damage providing access of infection to
the CNS.

As indicated, C. pneumoniae is a respiratory pathogen, and
both olfactory and lung routes for infection of the CNS are
supported by DNA sequencing studies in which the organism
isolated from a late-onset brain sample was shown to be more
closely related to respiratory than to atherosclerotic strains
(Roulis et al., 2015). We prepared two cultures of C. pneumoniae
from infected brain tissues and evaluated genetic and cell
biological features for both. As with most respiratory isolates,
both of these isolates were genetically diverse (i.e., not clonal),
and single nucleotide polymorphism (SNP) analysis indicated a
number of differences even from standard respiratory isolates
and strains (Dreses-Werringloer et al., 2009). However, we could
not identify any genetic attributes that would indicate neuro-
tropism. The recent full genome sequencing of one of the brain
isolates in another laboratory confirmed this initial observation
(Roulis et al., 2015). Cell biological studies of both isolates
demonstrated that they showed standard inclusion morphology
and typical chlamydial morphology upon culture in human
epithelial cells (HEp-2), astrocytes (U-87 MG) and microglial
cells (CHME-5), as in a prior publication (Dreses-Werringloer
et al., 2006).

C. PNEUMONIAE AND APOEε4

apoE was initially identified as a protein component of
very low density lipoprotein (VLDL) complexes (Shore and
Shore, 1973). The gene encoding APOE is found on human
chromosome 19 and is extensively expressed in many tissues.
This locus has five allele types: ε2, ε3 and ε4 alleles are
the most common in most groups studied, and some data
indicate that the ε4 allele type is ancestral. Many studies have
demonstrated that apoE is involved in cholesterol homeostasis
and metabolism through the direction of the metabolic handling
of triglycerides and cholesterol (Mahley and Rall, 2000). The
ε4 allele product, apoEε4, is associated with increased risk for
several diseases, including Alzheimer’s disease, atherosclerosis
and others (e.g., Swanborg et al., 2003; Yu et al., 2014).

Importantly, in situ hybridization analyses targeting
apoE showed that brain regions of ε4-bearing individuals
with late-onset dementia contained a higher number of
C. pneumoniae-infected cells as compared to congruent brain
regions from individuals lacking the allele (Gérard et al., 2005).
Real time PCR analyses of brain tissues targeting DNA sequences
from the organism showed that although the bacterial load in
samples lacking the ε4 allele varied, the samples from ε4-bearing
individuals had higher loads than did comparable samples from
those lacking the allele (Gérard et al., 2005). These observations

Frontiers in Aging Neuroscience | www.frontiersin.org 4 October 2018 | Volume 10 | Article 302

https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/aging-neuroscience#articles


Balin et al. C. pneumoniae and Dementia

are consistent with a role for the ε4 gene product in enhancement
of dissemination of the organism from the pulmonary system,
although we are unaware of studies specifically targeting this
issue; this seems an area of interest for future research. Unlike
apoE2 and apoE3, apoE4 appears to enhance attachment of
C. pneumoniae EB to astroglia and microglia by several-fold over
levels observed in the absence of that allelic product (Gérard
et al., 2008). When adherent to the chlamydial EB, apoE4 retains
its ability to attach to its receptor, the LDL receptor and other
members of this receptor family, on the surface of host eukaryotic
cells. Thus, while much remains to be elucidated regarding the
relationship between apoE4 and enhanced C. pneumoniae
uptake into individuals with this phenotype, the link between
infection, apoE4, and diseases associated with both, including
late-onset dementia of the Alzheimer’s type, is strengthened by
our observations.

NEUROINFLAMMATION

Infection with all chlamydial species promotes secretion of
proinflammatory cytokines in response to outer membrane
proteins, heat shock proteins, and the chlamydial LPS, all of
which engender prominent inflammatory responses (Rasmussen
et al., 1997). Indeed, LPS alone may account for several
aspects of relevant neuropathology in late-onset dementia of
the Alzheimer’s type. For example, E. coli LPS injected at low
dose into the brains of rats elicits an inflammatory response
characterized by increased production of cytokines as well as
activation ofmicroglial cells (Hauss-Wegrzyniak et al., 1998); this
inflammation is comparable to that currently attributed to Aβ

deposition in the late-onset brain (Lue et al., 1996). Interestingly,
trials investigating the effects of NSAID treatment implicate
inflammation as a pathologic factor in the disease, although
they did not demonstrate NSAID treatment to be an effective
therapeutic approach following disease onset (Breitner, 1996).
Importantly, for a number of reasons it was long thought that
chlamydiae did not produce peptididoglycan, although genome
analyses have demonstrated genes encoding it, and recent studies
from several groups have shown that it is, in fact, produced
(e.g., Liechti et al., 2014). Clearly this molecule can and probably
does act to induce inflammation in the nervous system and
elsewhere.

In the late-onset brain, both activated astrocytes andmicroglia
have been identified around amyloid plaques (Wood, 1998). In
our studies, we found infected microglia, astroglia, perivascular
macrophages and neurons in areas of amyloid deposition.
Identification of C. pneumoniae infection in microglia and
astroglia in late-onset disease suggests that inflammation
initiated by infection might be involved in neuropathogenesis
(Balin et al., 1998; Gérard et al., 2006). Both of these cell
types respond to insult by producing proinflammatory cytokines
and reactive oxygen species. Further activation of microglia
and astroglia in response to infected, activated monocytes
entering the brain also likely would result in increased
production of a variety of cytokines and chemokines (Simpson
et al., 1998; Hu and Van Eldik, 1999). Proinflammatory
molecules also have been shown to be significantly elevated

in supernatant fluids of murine microglial cells infected
with C. pneumoniae compared with controls, and infected
murine astrocytes also showed elevated levels of cytokines, in
particular MCP-1 and IL-6, when compared to controls (Boelen
et al., 2007b). Conditioned supernatants from infected murine
microglial cells increased neuronal cell death when compared
to mock-infected supernatants; upon addition of neutralizing
antibodies to IL-6 and TNFα to the conditioned supernatant,
neuronal cell death was reduced by ∼50% (Boelen et al.,
2007b).

Observations from our cell culture studies indicate that
although transcription of genes encoding inflammatory
mediators in C. pneumoniae-infected monocytes changes
by 48 h post-infection, infected cells maintain pro-inflammatory
cytokine secretion of IL-1β, IL-6 and IL-8 over 5 days (Lim et al.,
2014). Others have found similar proinflammatory cytokines
secreted by monocytes in late-onset disease (Fiala et al., 2005,
2007; Feng et al., 2011; Lim et al., 2014; Saresella et al., 2014).
High levels of IL-1β are correlated with neuroinflammation in
the late-onset brain (Griffin et al., 1994; Sheng et al., 1996; Serou
et al., 1999; Mrak and Griffin, 2001). This cytokine activates
nitric oxide synthase, which has been implicated in hippocampal
neuronal cell death (Cacabelos et al., 1991; Blum-Degen et al.,
1995). Additional evidence has implicated IL-1 cytokines in
promotion of the neuronal synthesis of the β-amyloid precursor
protein (Griffin et al., 1994). These observations provide a
rationale for triggering events by which Aβ production would be
a result of neuropathogenesis, rather than an initializing event.

TRANSCRIPTION STUDIES

Our ongoing studies are investigating infection of human
astrocytes with C. pneumoniae strain AR39 and its affects on
the expression of numerous genes related to APP processing,
including ADAM10, BACE1, PSEN1 and the associated subunits
of the γ-secretase complex. Transcriptional changes for these
genes have been observed in late-onset brains in conjunction
with inflammation (reviewed in Agostinho et al., 2015). In
this regard, we suggest that C. pneumoniae infection could
serve as a pro-inflammatory stimulus to initiate and promote
relevant amyloid neuropathogenesis. Interestingly, previous
studies demonstrated an interrelationship of C. pneumoniae
infection and the altered expression of genes for lipid-
homeostasis (APOE, ABCA1, LPL, LRP1), as well as for
cytoskeletal organization (MAPT; Alvesalo et al., 2008; Di Pietro
et al., 2013b; El Yazouli et al., 2017). These gene changes assure
that the pathogen receives sufficient host-derived lipids for the
energy-demanding processes of growth and replication. In the
process of commandeering the expression of these and other
related genes, including those for APP processing,C. pneumoniae
infection promotes pathogenesis through amyloid generating
pathways (Little et al., 2004, 2014). Because astrocytes are
known to propagate a pro-inflammatory state in the late-onset
brain (Zhao et al., 2011), we suspect that the transcriptional
changes observed following infection with C. pneumoniae will
support the role of infection in promoting a pro-inflammatory
response.
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Related Studies
We have begun to investigate whether a direct link exists
between this respiratory pathogen and the chronic, pathologic
neurodegenerative pathology characteristic of late-onset disease.
Utilizing an in vitro glial model of C. pneumoniae infection, we
are asking whether a specific mechanism for the production of
relevant neuropathogenesis is identifiable. Additional studies will
be required to address whether in vitro results can be replicated
in an in vivo setting.

The seminal studies from our group investigating
C. pneumoniae’s presence in the late-onset brain demonstrated
the involvement of microglial and neuronal cells in addition
to astrocytes, indicating that the coordinated response of each
cell type may contribute cooperatively to the development of
pathology. This coordinated response is especially important
to define within the framework of neuroinflammation, since
microglial cells and neurons may interact differently through
recognition and release of pro-inflammatory molecules based on
their heterogenous expression of Nod-like receptors, scavenger
receptors, toll-like receptors and complement receptors (Shastri
et al., 2013).

Downstream of neuroinflammation, the interdependance of
microglia, neurons and astrocytes in producing neuropathology
may also manifest from the paracrine signaling of post-cleavage
APP byproducts. For example, in recently published studies from
others, sAPPα released post-ADAM10 ectodomain shedding of
APP was shown to serve neuroprotective roles in other cell types
by inhibiting tau phosphorylation by GSK3β (Deng et al., 2015)
and BACE1 activation (Peters-Libeu et al., 2015). Such diverse
interactions between cell types may complicate an isolated
glial cell model of C. pneumoniae-induced neuropathology,
but this elucidation is essential for full understanding of the
pathophysiology of C. pneumoniae infection in the CNS.

Expression of Other Relevant Gene
Transcripts Resulting From C. pneumoniae
Infection
In our study of monocyte infection, a number of genes encoding
host defense products against bacteria were significantly
up-regulated 48 h after C. pneumoniae infection (Lim et al.,
2014). One of these genes, DEFB4, encodes a defensin
protein with anti-microbial activity linking the innate and
adaptive immune responses (Hollox et al., 2003). A second
transcript, from DMBT1, is typically up-regulated in response
to bacterial activation of NOD2, the intracellular pattern
recognition molecule, which activates the NFκB transcription
factor (Rosenstiel et al., 2007). The gene product of DMBT1 acts
to hinder bacterial invasion and the LPS—induced activation of
the toll-like receptor 4 on the surface of cells.

The transcript encoding MCP1/CCL2, a key chemokine for
recruiting monocytes and macrophages (Ubogu et al., 2006), was
increased up to 1,000-fold following infection of monocytes with
C. pneumoniae (Lim et al., 2014). This gene product appears
to be an important contributor to the neuroinflammatory
process observed in the late-onset brain and is increased in
both cerebrospinal fluid and plasma from patients with mild

cognitive impairment and dementia compared with controls
(Fiala et al., 1998; Galimberti et al., 2006). CCL2 may alter
the blood brain barrier to allow increased monocyte migration
into brain tissues, as well as affecting production and clearance
of Aβ from the brain, and possibly allowing Aβ found in the
blood access to the brain (Fiala et al., 1998; Yamamoto et al.,
2005; Galimberti et al., 2006). Thus, our studies demonstrating
increased CCL2 production during C. pneumoniae infection
of monocytes has implications for late-onset disease since
C. pneumoniae has been found in cells resident in the brain
as well as in perivascular monocytes and macrophages found
around the blood vessels in late-onset disease (Balin et al., 1998;
MacIntyre et al., 2003; Gérard et al., 2006; Hammond et al., 2010).

Another set of gene product comprise the inflammasome
complex that is associated with toll-like receptors and which
mediate the response to both extracellular and intracellular
pathogens (Schroder and Tschopp, 2010). We determined
that the NLRC4 inflammasome transcript was significantly
up-regulated following infection. Others have shown previously
that activation of this particular inflammasome is responsible
for activating caspase-1 and IL-1β secretion in response
to bacterial infection (Franchi et al., 2009; Pereira et al.,
2011). Intriguingly, this same inflammasome complex can
be activated by type III secretion systems characteristic
of C. pneumoniae and other gram-negative bacteria (Miao
and Warren, 2010). This secretion system acts to transfer
effector proteins from bacteria into the cytosol of the host
cell, resulting in the generation of reactive oxygen species.
These latter are thought to be involved in assemblage of
another inflammasome complex, NLRP3 (Abdul-Sater et al.,
2009a,b), which coincidentally has also been shown to be
activated by chlamydial infections (Abdul-Sater et al., 2010;
He et al., 2010). Further, we observed up-regulation of
the AIM2 inflammasome transcript, which would result in
activation of an additional inflammasome complex as a result
of detecting double-stranded DNA from the bacteria in the
cytoplasm (Fernandes-Alnemri et al., 2009; Hornung et al.,
2009).

ANTIBIOTIC TREATMENT

As C. pneumoniae may be involved in induction of late-onset
dementia, antimicrobial treatment might constitute a therapeutic
approach to eliminate the organism from the brain. One
clinical trial used a combination approach with doxycycline and
rifampin for such treatment and evaluated the change in the
Standardized Alzheimer’s Disease Assessment Scale cognitive
subscale (SADAScog) at 6 months as the primary outcome
(Loeb et al., 2004); changes in that score at 12 months was
a secondary outcome measure. Overall, results indicated less
decline in SADAScog score at 6 months in the antibiotic
group compared with those receiving placebo, although the 12-
month score for both groups was not significantly different.
Importantly, less dysfunctional behavior was observed in the
antibiotic group at 3 months, and for that group reduced decline
in mini-mental status scores was observed at 12 months. No
correlations were made to changes in C. pneumoniae infection
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as determined by serum antibody titer analysis and following
PCR of blood samples. Interestingly, doxycycline has been found
to be correlated with the lowering of neuroinflammation in
APP/PS1 transgenic mice, suggesting that it may be acting as
an anti-inflammatory agent as well as having antibiotic effects
(Balducci et al., 2018). This anti-inflammatory activity well
could be responsible for the attenuated decline in mini-mental
status scores observed at 12 months in the Loeb et al. (2004)
trial. However, similar to antibiotic trials assessing efficacy in
obviating atherogenesis and cardiovascular disease in which
C. pneumoniae has been implicated (Campbell and Rosenfeld,
2014), no meaningful efficacy in amelioration of relevant
pathogenesis was demonstrated as an outcome of the late-
onset-related antibiotic trial. These failures clearly suggest that
an antibiotic treatment regimen for complex disease entities
once manifested is not a viable strategy. As with NSAIDS
following onset of late-onset dementia (Breitner, 1996), use
of antibiotics following disease diagnosis probably is too
late to provide meaningful efficacy. Individuals demonstrating
evidence of C. pneumoniae infection prior to disease onset,
or at the mild cognitive impairment stage, may respond
differently, and perhaps better, to antibiotic therapy. However,
this approach has yet to be tried in a controlled clinical trial
setting.

Approaches other than, or in addition to, antibiotic therapy
may be helpful in treating late-onset disease. C. pneumoniae
is well known to persist in various contexts, and a persistent
form is implicated in chronic diseases. One possible approach to
therapy is to manipulate an immune response that can eliminate
intracellular infections. To address this issue, we used a synthetic
peptide, acALY18 derived from an 18-mer sequence of the
transient receptor channel protein 1 (TRPC1; Thacker et al.,
2009). This peptide activates, in part, the NLRP3 inflammasome
to combat C. pneumoniae infections of monocytes in vitro
(Thacker et al., 2012). Using a low dose of acALY18, only 12%
of the cells remained infected at 24 h post-treatment, compared
to 90% of cells left untreated (Thacker et al., 2012). At 48 h post-
infection, analysis of the infected cells revealed that 26 innate
and adaptive immune gene transcripts were up regulated in
the treated cells compared to infected/untreated cells. These
transcripts occurred in four functional groups: (1) cytokines,
chemokines, receptors and signaling molecules; (2) host defense;
(3) anti-bacterial response; and (4) modulators of the tissue
response to inflammation. These specific up-regulations appear
to be effective in clearing infection from a large percentage
of C. pneumoniae-infected monocytes. Future studies will
address more specific transcript up-regulation and specific
protein expression leading to eradication of C. pneumoniae
infection.

ANIMAL MODELS FOR C. PNEUMONIAE
INFECTION OF THE CNS

The typical animal models of late-onset disease have utilized
humanized transgenic mice that over-express mutants of
presenilin and the Aβ precursor protein (Guénette and Tanzi,
1999). In these models, the over-expression of amyloid leads to

the development of amyloid plaques in the brain, thus paralleling
the pathology typically observed in familial Alzheimer’s disease.
Interestingly, recent studies have demonstrated that infecting
two different models of humanized transgenic animals separately
with different organisms (Bordetella pertussis, McManus et al.,
2014) and (Helicobacter pylori, Wang et al., 2014) both result in
increased Aβ-amyloid, although through dissimilar mechanisms.
What these models do not address, however, are the initiating or
triggering events of late-onset disease wherein mutations of the
Aβ precursor protein and presenilin proteins are not evident.

We developed non-transgenic animal models to study the
means by which infection might impact the pathogenesis of
late-onset disease, independent of predisposing genetic factors
(Little et al., 2004, 2005). We utilized the C. pneumoniae isolate
from a late-onset brain (see above) to infect naïve BALB/c
mice to assess if infection would promote brain damage similar
to that identified in human disease. BALB/c mice previously
had been found to be susceptible to respiratory infection
with C. pneumoniae (strain AR-39), which would produce a
persistent infection (Laitinen et al., 1996). Thus, we tested
the hypothesis that C. pneumoniae infection by a natural
route of inoculation in BALB/c mice might trigger processes
resulting in development of relevant brain neuropathology
(Little et al., 2004). Following intranasal infection, identification
of C. pneumoniae in the olfactory neuroepithelia (chlamydial
antigens) and the olfactory bulbs (chlamydial antigens and
chlamydial bodies) was confirmed by both light and electron
microscopy (Little et al., 2004). Analysis of the brain revealed
pathological Aβ1–42 deposits that reflected amyloid plaques seen
in human disease. Activated astrocytes in addition to reactive
astrocytes co-localized with amyloid deposits, suggesting that a
cellular inflammatory response had been initiated. This response
may be due to C. pneumoniae and/or be directed against
amyloid deposits or soluble amyloid induced by C. pneumoniae
infection. These observations suggest that the infectious insult
results in Aβ generation and lend support to the hypothesis
that Aβ can act as a ‘‘bioflocculant’’ (Robinson and Bishop,
2002). Induction of amyloid deposits in the non-transgenic
BALB/c mouse brain supports the hypothesis thatC. pneumoniae
infection can accelerate or induce relevant neuropathology, and
that it can trigger late-onset disease pathogenesis without the
early-onset genetic mutations.

Studies evaluating treatment following intranasal infection
used antibiotics to determine if this approach could limit
the pathology induced by infection in the CNS (Hammond
et al., 2006). Following intranasal infection with C. pneumoniae
(strain AR-39), mice were treated with Avelox (moxifloxacin
hydrochloride) for 7–21, 28–42, 56–70, or 84–98 days post-
infection; sacrifice was at 6 months post-infection, with brains
analyzed for C. pneumoniae, Aβ1–42 deposition (plaques) and
astrocyte (GFAP) cellular reactivity. Immunohistochemistry
revealed that the organism (or its antigens) was still present
at 6 months post-infection in olfactory tissues and in the
brain. At 7–21 days post antibiotic treatment, the number of
Aβ1–42-reactive amyloid plaques were equal to the level seen
in uninfected mice. In infected mice given antibiotic treatment
delayed until 56 days post-infection, the amyloid plaque number
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was 8–9-fold higher than baseline, comparable to the plaque load
in the brains of infected animals that received no antibiotics.
These data validate the need for early antibiotic intervention
prior to disease manifestation, and they support our contention
that antibiotic treatment of late-onset diseasemay not be effective
following disease diagnosis. Further, they suggest that early
antibiotic intervention post-infection is effective in limiting the
amyloid plaque formation that arises because of infection, even
though complete eradication of the organism or antigens arising
there from may not be achieved.

Additional Animal Model Studies
Our latest animal studies employed the AR-39 laboratory strain
for infection rather than C. pneumoniae isolates from the human
brain. Brains were analyzed at 1–4 months post-infection by
immunohistochemistry using Chlamydia-specific antibodies and
antibodies specific for Aβ1–42 (Little et al., 2014). As in our
previous report using our human brain isolate of C. pneumoniae,
no substantial amyloid deposits were found at 1 month post-
infection, and only limited relevant amyloid pathology was
apparent at 2 months post-infection. In contrast to the original
study, however, at 4 months post-infection amyloid pathology
was diminished; brains resembled those from mock-infected
mice, suggesting that pathology actually had decreased during the
2–4 months post-infection. Interestingly, our analysis indicated
that peak chlamydial burden preceded peak amyloid deposition
by 1 month, suggesting that C. pneumoniae infection can
serve as a primary stimulus for the production of Aβ-amyloid
and subsequent deposition in animal brain tissues. These
observations strongly suggest that the human brain isolates elicit
a level of neuropathology that is different from the standard
AR-39 respiratory strain of C. pneumoniae (see below).

Precedents for infection in the exacerbation of relevant
amyloid pathology have been reported for other pathogens in
other relevant animal models (McManus et al., 2014; Wang
et al., 2014). Once the infection is brought under control
though, levels of soluble amyloid apparently decrease, resulting
in fewer deposits at 3–4 months post-infection (Hawkes et al.,
2012). In mice infected with the brain isolate in our earlier
study, amyloid deposits were found as early as 2 months post-
infection, with the greatest number identified at 3 months
post-infection (Little et al., 2004). Relevant neuropathology
developed progressively as both the size and number of amyloid
deposits increased from 1–3 months post-infection. Animal
models that reflect late-onset disease, however, have been
hampered by lack of understanding of the initial factors that
promote the early deposition of Aβ-amyloid. Models utilizing
direct injection of microbial products have shown induction
of transient amyloid production and deposition, suggesting
that bacterial products can induce this production (Erickson
et al., 2012; Krstic et al., 2012). Interestingly, one previous
study did not identify substantial neuropathology in the mouse
brain following infection with a respiratory isolate/laboratory
strain of C. pneumoniae (Boelen et al., 2007a). The authors
of that report noted that discrepancies could have been the
result of use of the laboratory strain of C. pneumoniae,
suggesting a difference in virulence properties than that of the

human brain isolate used in our previous study. Given that
our findings with laboratory isolate AR-39 of C. pneumoniae
also resulted in less pathology than when using a human
brain isolate, we concur with the interpretation of differences
in virulence properties between these strains (Little et al.,
2014).

Our observations further indicate that C. pneumoniae
infections differ in their ability to establish persistence and
promote progressive neuropathology as a function of age and
dosing. A critical issue in development of late-onset disease
is age, and by extension, the age at which C. pneumoniae
infection occurs. An earlier study from our group suggested
that brain infection in older animals is readily established
following exposure to C. pneumoniae (Little et al., 2005).
In other studies, aged C57BL/6 mice as compared to young
counterparts had a greater propensity to develop chronic and/or
progressive respiratory infections following intranasal infection
with C. pneumoniae (Eddens et al., 2012). A heptavalent CTL
epitope minigene vaccine conferred equal protection in the lungs
of both young and older mice. However, although the vaccine
partially protected against infection spread to the cardiovascular
system of young animals, it failed to provide protection in aged
animals (Eddens et al., 2012). These data suggest that vaccine
strategies targeting the C. pneumoniae-specific CTL response
are protective for respiratory infection in both young and old
animals; however, the vaccine used was ineffective in preventing
dissemination to the cardiovascular system in aged mice, or in
controlling replication of organism in these tissues (Eddens et al.,
2012).

In a new study, we will address the issue of whether induction
of Alzheimers-like neuropathology is a feature exclusive to
infection with C. pneumoniae, or whether this pathology can
be induced following exposure to other chlamydial species.
Non-transgenic BALB/c mice will be inoculated intranasally with
Chlamydia muridarum, a mouse-adapted respiratory isolate of
Chlamydia trachomatis. Mouse brain tissues will be examined
for Chlamydia-specific labeling and amyloid pathology. Based

FIGURE 1 | Infection relationship to late-onset dementia. This schematic
illustration demonstrates the interactions between infection, amyloid plaques,
tau tangles and inflammation with the processes of aging, dementia and
Alzheimer’s disease. The interplay of an infection and resultant inflammation
can lead to the formation of amyloid plaques and tau tangles which following
their accumulation, may promote even more inflammation. These interactions
as related to aging may eventually result in a final imbalance that may lead to
recognized late-onset dementia of the Alzheimer’s type.
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on data collected from the previous mouse model with
C. pneumoniae, we hypothesize that intranasal infection with
C. muridarum can also induce relevant pathology in the
brains of BALB/c mice. Thus, these experiments will address
whether or not this organism will actually enter the brain
and promote Alzheimers-like pathology as readily as previously
observed following infections with C. pneumoniae. Additional
considerations will include the sex of the animals in our studies.
To date we, like most others, have used only female animals in
our work, partly because human females appear to be at higher
risk for the development of late-onset dementia compared to
males (Barron and Pike, 2012). Female transgenic mice also have
been shown to accumulate more amyloid as compared to males,
and they have significant spatial memory deficits (Gallagher
et al., 2013; Sierksma et al., 2013). Whether C. pneumoniae
infections differ with regard to pathology generated in the brains
of non-transgenic female mice compared to those of males
remains to be determined.

CONCLUSION

Clearly, much remains to be elucidated regarding the
fundamental biochemical, cellular and molecular genetic
underpinnings supporting the initiation and development of
neuropathology of late-onset dementia of the Alzheimer’s
type, and the possible involvement of C. pneumoniae in
those processes (see Figure 1. Infection relationship to
late-onset dementia). We suggest that the difference between
progressive and non-progressive neuropathology may be due
to uncharacterized differences between/among C. pneumoniae
strains and host genetic backgrounds. This implies that different
virulence factors exist, including those specifying tissue tropism
among C. pneumoniae isolates and strains. Thus, the ability
of the organism to enter and persist in the CNS, and to
potentiate a chronic inflammatory response, is crucial to its
role in the initiation and maintenance of neuropathogenesis.
We emphasize that, as developed in detail in an earlier article,
disease definitions should be reconsidered in light of new
observations from our group and many other sources. The most
obvious neuropathologic aspects, and the disease phenotype,
of late-onset dementia are similar to, indeed are functionally
identical to, those of early-onset disease. However, all studies
to date consistently demonstrate that late-onset disease does
not result from lesions in any of the three genes associated with
the latter, and extensive research from many groups over the
last 30 years has failed to identify any convincing mechanism
by which the plaques and tangles are produced specifically in
late-onset patients.

Thus, we reiterate here that in our view the age-related
dementia referred to as late-onset Alzheimer’s disease should
be redefined as late-onset dementia of the Alzheimer’s type. It

is functionally unrelated to the familial early-onset, genetically-
determined form of dementia properly designated (familial)
Alzheimer’s disease.We contend that the etiologies of early-onset
dementia and late-onset dementia of the Alzheimer’s type are
fundamentally different. Progress in prevention and treatment
of increasingly prevalent late-onset disease will be promoted by
observing and acting upon this distinction.

Importantly, we suggest that, in concert with other articles
in this issue, pathogens in addition to C. pneumoniae well may
be involved in elicitation of the age-related neuropathology
that underlies late-onset disease. As argued in previous
publications from this group, complex and largely idiopathic
diseases of many types, including rheumatoid arthritis and
multiple sclerosis, may be the result of complex and yet
poorly understood interactions between various aspects of host
genetic background and infectious or other environmental
agent(s) (Swanborg et al., 2003; Stanich et al., 2009; Balin
et al., 2017). Such complex and multi-faceted interactions will
be difficult to elucidate in detail. Indeed, details of those
interactions may not be fully congruent among/between the
diseases. However, it is abundantly clear at this point that
many important diseases under intense current study do not
conform to the simplicity of Koch’s postulates, and thus they
must be scrutinized with non-traditional modern investigational
approaches.
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