25,533 research outputs found
Eigenstructure Assignment Based Controllers Applied to Flexible Spacecraft
The objective of this paper is to evaluate the behaviour of a controller designed using a parametric Eigenstructure Assignment method and to evaluate its suitability for use in flexible spacecraft. The challenge of this objective lies in obtaining a suitable controller that is specifically designated to alleviate the deflections and vibrations suffered by external appendages in flexible spacecraft while performing attitude manoeuvres. One of the main problems in these vehicles is the mechanical cross-coupling that exists between the rigid and flexible parts of the spacecraft. Spacecraft with fine attitude pointing requirements need precise control of the mechanical coupling to avoid undesired attitude misalignment. In designing an attitude controller, it is necessary to consider the possible vibration of the solar panels and how it may influence the performance of the rest of the vehicle. The nonlinear mathematical model of a flexible spacecraft is considered a close approximation to the real system. During the process of controller evaluation, the design process has also been taken into account as a factor in assessing the robustness of the system
Integration of paper spray ionization highâfield asymmetric waveform ion mobility spectrometry for forensic applications
Rationale: Paper spray ionization (PSI) is an attractive ambient ionization source for mass spectrometry (MS) since it allows the combination of surface sampling and ionization. The minimal sample preparation inherent in this approach greatly reduces the time needed for analysis. However, the ions generated from interfering compounds in the sample and the paper substrate may interfere with the analyte ions. Therefore, the integration of PSI with highâfield asymmetric ion mobility spectrometry (FAIMS) is of significant interest since it should reduce the background ions entering the mass analyzer without complicating the analysis or increasing analysis time. Here we demonstrate the integration of PSI with FAIMS/MS and its potential for analysis of samples of forensic interest.
Methods: In this work, the parameters that can influence the integration, including sampling and ionization by paper spray, the FAIMS separation of analytes from each other and background interferences, and the length of time that a usable signal can be observed for explosives on paper, were evaluated with the integrated system.
Results: In the negative ion analysis of 2,4,6âtrinitrotoluene (TNT), pentaerythritol tetranitrate (PETN), octahydroâ1,3,5,7âtetranitroâ1,3,5,7âtetrazocine (HMX), and 1,3,5âtrinitroperhydroâ1,3,5â triazine (RDX), amounts as low as 1 ng on paper were readily observed. The successful positive ion separation of a set of illicit drugs including heroin, methamphetamine, and cocaine was also achieved. In addition, the positive ion analysis of the chemical warfare agent simulants dimethyl methylphosphonate (DMMP) and diisopropyl methylphosphonate (DIMP) was evaluated.
Conclusions: The integration of PSIâFAIMS/MS was demonstrated for the analyses of explosives in negative ion mode and for illicit drugs and CW simulants in positive mode. Paper background ions that could interfere with these analyses were separated by FAIMS. The compensation voltage of an ion obtained by FAIMS provided an additional identification parameter to be combined with the mass spectrum for each analyte
An easy-to-use diagnostic system development shell
The Diagnostic System Development Shell (DSDS), an expert system development shell for diagnostic systems, is described. The major objective of building the DSDS is to create a very easy to use and friendly environment for knowledge engineers and end-users. The DSDS is written in OPS5 and CommonLisp. It runs on a VAX/VMS system. A set of domain independent, generalized rules is built in the DSDS, so the users need not be concerned about building the rules. The facts are explicitly represented in a unified format. A powerful check facility which helps the user to check the errors in the created knowledge bases is provided. A judgement facility and other useful facilities are also available. A diagnostic system based on the DSDS system is question driven and can call or be called by other knowledge based systems written in OPS5 and CommonLisp. A prototype diagnostic system for diagnosing a Philips constant potential X-ray system has been built using the DSDS
Estimating the central charge from the R\'enyi entanglement entropy
We calculate the von Neumann and R\'enyi bipartite entanglement entropy of
the model with a chemical potential on a 1+1 dimensional Euclidean
lattice with open and periodic boundary conditions. We show that the
Calabrese-Cardy conformal field theory predictions for the leading logarithmic
scaling with the spatial size of these entropies are consistent with a central
charge . This scaling survives the time continuum limit and truncations of
the microscopic degrees of freedom, modifications which allow us to connect the
Lagrangian formulation to quantum Hamiltonians. At half-filling, the forms of
the subleading corrections imposed by conformal field theory allow the
determination of the central charge with an accuracy better than two percent
for moderately sized lattices. We briefly discuss the possibility of estimating
the central charge using quantum simulators.Comment: 10 pages, 8 figures, 3 table
Self-energy corrections to anisotropic Fermi surfaces
The electron-electron interactions affect the low-energy excitations of an
electronic system and induce deformations of the Fermi surface. These effects
are especially important in anisotropic materials with strong correlations,
such as copper oxides superconductors or ruthenates. Here we analyze the
deformations produced by electronic correlations in the Fermi surface of
anisotropic two-dimensional systems, treating the regular and singular regions
of the Fermi surface on the same footing. Simple analytical expressions are
obtained for the corrections, based on local features of the Fermi surface. It
is shown that, even for weak local interactions, the behavior of the
self-energy is non trivial, showing a momentum dependence and a self-consistent
interplay with the Fermi surface topology. Results are compared to experimental
observations and to other theoretical results.Comment: 13 pages, 10 figure
Unconventional Spin Density Waves in Dipolar Fermi Gases
The conventional spin density wave (SDW) phase (Overhauser, 1962), as found
in antiferromagnetic metal for example (Fawcett 1988), can be described as a
condensate of particle-hole pairs with zero angular momentum, ,
analogous to a condensate of particle-particle pairs in conventional
superconductors. While many unconventional superconductors with Cooper pairs of
finite have been discovered, their counterparts, density waves with
non-zero angular momenta, have only been hypothesized in two-dimensional
electron systems (Nayak, 2000). Using an unbiased functional renormalization
group analysis, we here show that spin-triplet particle-hole condensates with
emerge generically in dipolar Fermi gases of atoms (Lu, Burdick, and
Lev, 2012) or molecules (Ospelkaus et al., 2008; Wu et al.) on optical lattice.
The order parameter of these exotic SDWs is a vector quantity in spin space,
and, moreover, is defined on lattice bonds rather than on lattice sites. We
determine the rich quantum phase diagram of dipolar fermions at half-filling as
a function of the dipolar orientation, and discuss how these SDWs arise amidst
competition with superfluid and charge density wave phases.Comment: 5 pages, 3 figure
On the Validity of the Tomonaga Luttinger Liquid Relations for the One-dimensional Holstein Model
For the one-dimensional Holstein model, we show that the relations among the
scaling exponents of various correlation functions of the Tomonaga Luttinger
liquid (LL), while valid in the thermodynamic limit, are significantly modified
by finite size corrections. We obtain analytical expressions for these
corrections and find that they decrease very slowly with increasing system
size. The interpretation of numerical data on finite size lattices in terms of
LL theory must therefore take these corrections into account. As an important
example, we re-examine the proposed metallic phase of the zero-temperature,
half-filled one-dimensional Holstein model without employing the LL relations.
In particular, using quantum Monte Carlo calculations, we study the competition
between the singlet pairing and charge ordering. Our results do not support the
existence of a dominant singlet pairing state.Comment: 7 page
Desilting Efficiency Due to Empty Flushing of Agongdian Reservoir
Source: ICHE Conference Archive - https://mdi-de.baw.de/icheArchive
Spin Relaxation Times of Single-Wall Carbon Nanotubes
We have measured temperature ()- and power-dependent electron spin
resonance in bulk single-wall carbon nanotubes to determine both the
spin-lattice and spin-spin relaxation times, and . We observe that
increases linearly with from 4 to 100 K, whereas {\em
decreases} by over a factor of two when is increased from 3 to 300 K. We
interpret the trend as spin-lattice relaxation via
interaction with conduction electrons (Korringa law) and the decreasing
dependence of as motional narrowing. By analyzing the latter, we
find the spin hopping frequency to be 285 GHz. Last, we show that the Dysonian
lineshape asymmetry follows a three-dimensional variable-range hopping behavior
from 3 to 20 K; from this scaling relation, we extract a localization length of
the hopping spins to be 100 nm.Comment: 6 pages, 3 figure
Broken time-reversal symmetry in Josephson junction involving two-band superconductors
A novel time-reversal symmetry breaking state is found theoretically in the
Josephson junction between the two-gap superconductor and the conventional
s-wave superconductor. This occurs due to the frustration between the three
order parameters analogous to the two antiferromagnetically coupled XY-spins
put under a magnetic field. This leads to the interface states with the
energies inside the superconducting gap. Possible experimental observations of
this state with broken time-reversal symmetry are discussed.Comment: 9 pages, 1 figur
- âŠ