82 research outputs found

    High Ice Water Content at Low Radar Reflectivity near Deep Convection: Part II. Evaluation of Microphysical Pathways in Updraft Parcel Simulations

    Get PDF
    The aeronautics industry has established that a threat to aircraft is posed by atmospheric conditions of substantial ice water content (IWC) where equivalent radar reflectivity (Ze) does not exceed 20-30 dBZ and supercooled water is not present; these conditions are encountered almost exclusively in the vicinity of deep convection. Part 1 (Fridlind et al., 2015) of this two-part study presents in situ measurements of such conditions sampled by Airbus in three tropical regions, commonly near 11 km and -43 C, and concludes that the measured ice particle size distributions are broadly consistent with past literature with profiling radar measurements of Z(sub e) and mean Doppler velocity obtained within monsoonal deep convection in one of the regions sampled. In all three regions, the Airbus measurements generally indicate variable IWC that often exceeds 2 gm (exp -3) with relatively uniform mass median area-equivalent diameter (MMD(sub eq) of 200-300 micrometers. Here we use a parcel model with size-resolved microphysics to investigate microphysical pathways that could lead to such conditions. Our simulations indicate that homogeneous freezing of water drops produces a much smaller ice MMD(sub eq) than observed, and occurs only in the absence of hydrometeor gravitational collection for the conditions considered. Development of a mass mode of ice aloft that overlaps with the measurements requires a substantial source of small ice particles at temperatures of about -10 C or warmer, which subsequently grow from water vapor. One conceivable source in our simulation framework is Hallett-Mossop ice production; another is abundant concentrations of heterogeneous ice freezing nuclei acting together with copious shattering of water drops upon freezing. Regardless of the production mechanism, the dominant mass modal diameter of vapor-grown ice is reduced as the ice-multiplication source strength increases and as competition for water vapor increases. Both mass and modal diameter are reduced by entrainment and by increasing aerosol concentrations. Weaker updrafts lead to greater mass and larger modal diameters of vapor-grown ice, the opposite of expectations regarding lofting of larger ice particles in stronger updrafts. While stronger updrafts do loft more dense ice particles produced primarily by raindrop freezing, we find that weaker updrafts allow the warm rain process to reduce competition for diffusional growth of the less dense ice expected to persist in convective outflow

    High Ice Water Content at Low Radar Reflectivity near Deep Convection

    Get PDF
    Occurrences of jet engine power loss and damage have been associated with flight through fully glaciated deep convection at -10 to -50 degrees Centigrade. Power loss events commonly occur during flight through radar reflectivity (Zeta (sub e)) less than 20-30 decibels relative to Zeta (dBZ - radar returns) and no more than moderate turbulence, often overlying moderate to heavy rain near the surface. During 2010-2012, Airbus carried out flight tests seeking to characterize the highest ice water content (IWC) in such low-radar-reflectivity regions of large, cold-topped storm systems in the vicinity of Cayenne, Darwin, and Santiago. Within the highest IWC regions encountered, at typical sampling elevations (circa 11 kilometers), the measured ice size distributions exhibit a notably narrow concentration of mass over area-equivalent diameters of 100-500 micrometers. Given substantial and poorly quantified measurement uncertainties, here we evaluate the consistency of the Airbus in situ measurements with ground-based profiling radar observations obtained under quasi-steady, heavy stratiform rain conditions in one of the Airbus-sampled locations. We find that profiler-observed radar reflectivities and mean Doppler velocities at Airbus sampling temperatures are generally consistent with those calculated from in situ size-distribution measurements. We also find that column simulations using the in situ size distributions as an upper boundary condition are generally consistent with observed profiles of radar reflectivity (Ze), mean Doppler velocity (MDV), and retrieved rain rate. The results of these consistency checks motivate an examination of the microphysical pathways that could be responsible for the observed size-distribution features in Ackerman et al. (2015)

    A Thermal Analysis of a Hot-Wire Probe for Icing Applications

    Get PDF
    This paper presents a steady-state thermal model of a hot-wire instrument applicable to atmospheric measurement of water content in clouds. In this application, the power required to maintain the wire at a given temperature is used to deduce the water content of the cloud. The model considers electrical resistive heating, axial conduction, convection to the flow, radiation to the surroundings, as well as energy loss due to the heating, melting, and evaporation of impinging liquid and or ice. All of these parameters can be varied axially along the wire. The model further introduces a parameter called the evaporation potential which locally gauges the maximum fraction of incoming water that evaporates. The primary outputs of the model are the steady-state power required to maintain a spatially-average constant temperature as well as the variation of that temperature and other parameters along the wire. The model is used to understand the sensitivity of the hot-wire performance to various flow and boundary conditions including a detailed comparison of dry air and wet (i.e. cloud-on) conditions. The steady-state power values are compared to experimental results from a Science Engineering Associates (SEA) Multi-Element probe, a commonly used water-content measurement instrument. The model results show good agreement with experiment for both dry and cloud-on conditions with liquid water content. For ice, the experimental measurements under read the actual water content due to incomplete evaporation and splashing. Model results, which account for incomplete evaporation, are still higher than experimental results where the discrepancy is attributed to splashing mass-loss which is not accounted in the model

    Evaporator design for an isokinetic total water content probe in a naturally aspirating configuration

    Get PDF
    A number of recent aircraft turbofan power failure events have been linked to ice accretion in the initial compressor stages while the aircraft is traversing the anvil region of storm clouds. The water content in such cloud regions is not well known and the accuracy of most existing water content probes is likely to be poor under such conditions. A new cloud water content probe is being developed for airborne characterisation of such clouds and a critical feature of the probe is the evaporator. In this work we develop some analytical expressions to assist in the design and characterisation of the evaporator. In particular, we consider the issue of convective heat transfer to the ice and water particles moving with the air flow through the evaporator. For the particular evaporator design we are considering, it is shown that ice particles larger than 100 μm are unlikely to have sufficient residence time to evaporate if they remain suspended in the heated air. Although these larger ice particles are likely to impact on the evaporator walls so there is also an opportunity for direct conduction heating, the present analysis indicates that particles larger than 100 μm may not adhere to the walls. However, there are many uncertainties in the present analysis and experiments are needed to determine the actual performance of the evaporator
    corecore