295 research outputs found

    Application of RHIZON samplers to obtain high-resolution pore-fluid records during geochemical investigations of gas hydrate systems

    Get PDF

    Radio-Frequency Spectroscopy

    Get PDF
    Contains reports on three research projects

    Radiocarbon age-offsets in an arctic lake reveal the long-term response of permafrost carbon to climate change

    Get PDF
    Author Posting. © American Geophysical Union, 2014. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Biogeosciences 119 (2014): 1630–1651, doi:10.1002/2014JG002688.Continued warming of the Arctic may cause permafrost to thaw and speed the decomposition of large stores of soil organic carbon (OC), thereby accentuating global warming. However, it is unclear if recent warming has raised the current rates of permafrost OC release to anomalous levels or to what extent soil carbon release is sensitive to climate forcing. Here we use a time series of radiocarbon age-offsets (14C) between the bulk lake sediment and plant macrofossils deposited in an arctic lake as an archive for soil and permafrost OC release over the last 14,500 years. The lake traps and archives OC imported from the watershed and allows us to test whether prior warming events stimulated old carbon release and heightened age-offsets. Today, the age-offset (2 ka; thousand of calibrated years before A.D. 1950) and the depositional rate of ancient OC from the watershed into the lake are relatively low and similar to those during the Younger Dryas cold interval (occurring 12.9–11.7 ka). In contrast, age-offsets were higher (3.0–5.0 ka) when summer air temperatures were warmer than present during the Holocene Thermal Maximum (11.7–9.0 ka) and Bølling-Allerød periods (14.5–12.9 ka). During these warm times, permafrost thaw contributed to ancient OC depositional rates that were ~10 times greater than today. Although permafrost OC was vulnerable to climate warming in the past, we suggest surface soil organic horizons and peat are presently limiting summer thaw and carbon release. As a result, the temperature threshold to trigger widespread permafrost OC release is higher than during previous warming events.National Science Foundation. Grant Number: ARC-09021692015-02-2

    Modeling sulfate reduction in methane hydrate-bearing continental margin sediments : does a sulfate-methane transition require anaerobic oxidation of methane?

    Get PDF
    Author Posting. © American Geophysical Union, 2011. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry Geophysics Geosystems 12 (2011): Q07006, doi:10.1029/2011GC003501.The sulfate-methane transition (SMT), a biogeochemical zone where sulfate and methane are metabolized, is commonly observed at shallow depths (1–30 mbsf) in methane-bearing marine sediments. Two processes consume sulfate at and above the SMT, anaerobic oxidation of methane (AOM) and organoclastic sulfate reduction (OSR). Differentiating the relative contribution of each process is critical to estimate methane flux into the SMT, which, in turn, is necessary to predict deeper occurrences of gas hydrates in continental margin sediments. To evaluate the relative importance of these two sulfate reduction pathways, we developed a diagenetic model to compute the pore water concentrations of sulfate, methane, and dissolved inorganic carbon (DIC). By separately tracking DIC containing 12C and 13C, the model also computes δ13C-DIC values. The model reproduces common observations from methane-rich sediments: a well-defined SMT with no methane above and no sulfate below and a δ13C-DIC minimum at the SMT. The model also highlights the role of upward diffusing 13C-enriched DIC in contributing to the carbon isotope mass balance of DIC. A combination of OSR and AOM, each consuming similar amounts of sulfate, matches observations from Site U1325 (Integrated Ocean Drilling Program Expedition 311, northern Cascadia margin). Without AOM, methane diffuses above the SMT, which contradicts existing field data. The modeling results are generalized with a dimensional analysis to the range of SMT depths and sedimentation rates typical of continental margins. The modeling shows that AOM must be active to establish an SMT wherein methane is quantitatively consumed and the δ13C-DIC minimum occurs. The presence of an SMT generally requires active AOM

    Mass fractionation of noble gases in synthetic methane hydrate : implications for naturally occurring gas hydrate dissociation

    Get PDF
    This paper is not subject to U.S. copyright. The definitive version was published in Chemical Geology 339 (2013): 242-250, doi:10.1016/j.chemgeo.2012.09.033.As a consequence of contemporary or longer term (since 15 ka) climate warming, gas hydrates in some settings may presently be dissociating and releasing methane and other gases to the ocean–atmosphere system. A key challenge in assessing the impact of dissociating gas hydrates on global atmospheric methane is the lack of a technique able to distinguish between methane recently released from gas hydrates and methane emitted from leaky thermogenic reservoirs, shallow sediments (some newly thawed), coal beds, and other sources. Carbon and deuterium stable isotopic fractionation during methane formation provides a first-order constraint on the processes (microbial or thermogenic) of methane generation. However, because gas hydrate formation and dissociation do not cause significant isotopic fractionation, a stable isotope-based hydrate-source determination is not possible. Here, we investigate patterns of mass-dependent noble gas fractionation within the gas hydrate lattice to fingerprint methane released from gas hydrates. Starting with synthetic gas hydrate formed under laboratory conditions, we document complex noble gas fractionation patterns in the gases liberated during dissociation and explore the effects of aging and storage (e.g., in liquid nitrogen), as well as sampling and preservation procedures. The laboratory results confirm a unique noble gas fractionation pattern for gas hydrates, one that shows promise in evaluating modern natural gas seeps for a signature associated with gas hydrate dissociation.Partial support for this research was provided by Interagency Agreements DE-FE0002911 and DE-NT0006147 between the U.S. Geological Survey Gas Hydrates Project and the U.S. Department of Energy's Methane Hydrates Research and Development Program

    Focused Fluid Flow along the Nootka Fault Zone and Continental slope, Explorer‐Juan de Fuca Plate Boundary

    Get PDF
    Key Points: - Fluid flow is focused along Nootka Fault traces resulting in shallow bright spots - Two seafloor mounds are the result of basaltic intrusions in the Nootka Fault zone - Gas hydrates occur at the Nootka Slope and are imaged seismically as bottom- simulating reflectors suggesting a regional heat-flow of ~80 mW/m2 along the slope Abstract Geophysical and geochemical data indicate there is abundant fluid expulsion in the Nootka fault zone (NFZ) between the Juan de Fuca and Explorer plates and the Nootka continental slope. Here we combine observations from > 20 years of investigations to demonstrate the nature of fluid‐flow along the NFZ, which is the seismically most active region off Vancouver Island. Seismicity reaching down to the upper mantle is linked to near‐seafloor manifestation of fluid flow through a network of faults. Along the two main fault traces, seismic reflection data imaged bright spots 100 – 300 m below seafloor that lie above changes in basement topography. The bright spots are conformable to sediment layering, show opposite‐to‐seafloor reflection polarity, and are associated with frequency‐reduction and velocity push‐down indicating the presence of gas in the sediments. Two seafloor mounds ~15 km seaward of the Nootka slope are underlain by deep, non‐conformable high amplitude reflective zones. Measurements in the water column above one mound revealed a plume of warm water, and bottom‐video observations imaged hydrothermal vent system biota. Pore fluids from a core at this mound contain predominately microbial methane (C1) with a high proportion of ethane (C2) yielding C1/C2 ratios < 500 indicating a possible slight contribution from a deep source. We infer the reflective zones beneath the two mounds are basaltic intrusions that create hydrothermal circulation within the overlying sediments. Across the Nootka continental slope, gas hydrate related bottom‐simulating reflectors are widespread and occur at depths indicating heat‐flow values of 80 – 90 mW/m2

    Diversity and biogeochemical structuring of bacterial communities across the Porangahau ridge accretionary prism, New Zealand

    Get PDF
    Author Posting. © The Author(s), 2011. This is the author's version of the work. It is posted here by permission of John Wiley & Sons for personal use, not for redistribution. The definitive version was published in FEMS Microbiology Ecology 77 (2011): 518-532, doi:10.1111/j.1574-6941.2011.01133.x.Sediments from the Porangahau ridge, located off the northeastern coast of New Zealand, were studied to describe bacterial community structure in conjunction with differing biogeochemical regimes across the ridge. Low diversity was observed in sediments from an eroded basin seaward of the ridge and the community was dominated by uncultured members of the Burkholderiales. Chloroflexi/GNS and Deltaproteobacteria were abundant in sediments from a methane seep located landward of the ridge. Gas-charged and organic rich sediments further landward had the highest overall diversity. Surface sediments, with the exception of those from the basin, were dominated by Rhodobacterales sequences associated with organic matter deposition. Taxa related to the Desulfosarcina/Desulfococcus and the JS1 candidates were highly abundant at the sulfate-methane transition zone (SMTZ) at three sites. To determine how community structure was influenced by terrestrial, pelagic, and in situ substrates, sequence data were was statistically analyzed against geochemical data (e.g., sulfate, chloride, nitrogen, phosphorous, methane, bulk inorganic and organic carbon pools) using the Biota-Environmental matching procedure. Landward of the ridge, sulfate was among the most significant structuring factors. Seaward of the ridge, silica and ammonium were important structuring factors. Regardless of the transect location, methane was the principal structuring factor on SMTZ communities.This work was supported by the Naval Research Laboratory Chemistry Division Young Investigator Program and the Office of Naval Research platform support program.2012-05-1

    Nonequilibrium clumped isotope signals in microbial methane

    Get PDF
    Methane is a key component in the global carbon cycle with a wide range of anthropogenic and natural sources. Although isotopic compositions of methane have traditionally aided source identification, the abundance of its multiply-substituted “clumped” isotopologues, e.g., 13CH3D, has recently emerged as a proxy for determining methane-formation temperatures; however, the impact of biological processes on methane’s clumped isotopologue signature is poorly constrained. We show that methanogenesis proceeding at relatively high rates in cattle, surface environments, and laboratory cultures exerts kinetic control on 13CH3D abundances and results in anomalously elevated formation temperature estimates. We demonstrate quantitatively that H2 availability accounts for this effect. Clumped methane thermometry can therefore provide constraints on the generation of methane in diverse settings, including continental serpentinization sites and ancient, deep groundwaters.National Science Foundation (U.S.) (EAR-1250394)National Science Foundation (U.S.) (EAR-1322805)Deep Carbon Observatory (Program)Natural Sciences and Engineering Research Council of CanadaDeutsche Forschungsgemeinschaft (Gottfried Wilhelm Leibniz Program)United States. Dept. of Defense (National Defense Science and Engineering Graduate Fellowship)Neil & Anna Rasmussen FoundationGrayce B. Kerr Fund, Inc. (Fellowship)MIT Energy Initiative (Shell-MITEI Graduate Fellowship)Shell International Exploration and Production B.V. (N. Braunsdorf and D. Smit of Shell PTI/EG grant
    corecore