17,361 research outputs found
ALSEP termination report
The Apollo Lunar Surface Experiments Package (ALSEP) final report was prepared when support operations were terminated September 30, 1977, and NASA discontinued the receiving and processing of scientific data transmitted from equipment deployed on the lunar surface. The ALSEP experiments (Apollo 11 to Apollo 17) are described and pertinent operational history is given for each experiment. The ALSEP data processing and distribution are described together with an extensive discussion on archiving. Engineering closeout tests and results are given, and the status and configuration of the experiments at termination are documented. Significant science findings are summarized by selected investigators. Significant operational data and recommendations are also included
Finite to infinite steady state solutions, bifurcations of an integro-differential equation
We consider a bistable integral equation which governs the stationary
solutions of a convolution model of solid--solid phase transitions on a circle.
We study the bifurcations of the set of the stationary solutions as the
diffusion coefficient is varied to examine the transition from an infinite
number of steady states to three for the continuum limit of the
semi--discretised system. We show how the symmetry of the problem is
responsible for the generation and stabilisation of equilibria and comment on
the puzzling connection between continuity and stability that exists in this
problem
Emergence of steady and oscillatory localized structures in a phytoplankton-nutrient model
Co-limitation of marine phytoplankton growth by light and nutrient, both of
which are essential for phytoplankton, leads to complex dynamic behavior and a
wide array of coherent patterns. The building blocks of this array can be
considered to be deep chlorophyll maxima, or DCMs, which are structures
localized in a finite depth interior to the water column. From an ecological
point of view, DCMs are evocative of a balance between the inflow of light from
the water surface and of nutrients from the sediment. From a (linear)
bifurcational point of view, they appear through a transcritical bifurcation in
which the trivial, no-plankton steady state is destabilized. This article is
devoted to the analytic investigation of the weakly nonlinear dynamics of these
DCM patterns, and it has two overarching themes. The first of these concerns
the fate of the destabilizing stationary DCM mode beyond the center manifold
regime. Exploiting the natural singularly perturbed nature of the model, we
derive an explicit reduced model of asymptotically high dimension which fully
captures these dynamics. Our subsequent and fully detailed study of this model
- which involves a subtle asymptotic analysis necessarily transgressing the
boundaries of a local center manifold reduction - establishes that a stable DCM
pattern indeed appears from a transcritical bifurcation. However, we also
deduce that asymptotically close to the original destabilization, the DCM
looses its stability in a secondary bifurcation of Hopf type. This is in
agreement with indications from numerical simulations available in the
literature. Employing the same methods, we also identify a much larger DCM
pattern. The development of the method underpinning this work - which, we
expect, shall prove useful for a larger class of models - forms the second
theme of this article
Effects of cycloheximide at low concentrations
Effects of cycloheximide at low concentration
Ethylene glycol treatment of conidia
Ethylene glycol treatment of conidi
A rapid extraction method for mycelial organelles
A rapid extraction method for mycelial organelle
Longtime behavior of nonlocal Cahn-Hilliard equations
Here we consider the nonlocal Cahn-Hilliard equation with constant mobility
in a bounded domain. We prove that the associated dynamical system has an
exponential attractor, provided that the potential is regular. In order to do
that a crucial step is showing the eventual boundedness of the order parameter
uniformly with respect to the initial datum. This is obtained through an
Alikakos-Moser type argument. We establish a similar result for the viscous
nonlocal Cahn-Hilliard equation with singular (e.g., logarithmic) potential. In
this case the validity of the so-called separation property is crucial. We also
discuss the convergence of a solution to a single stationary state. The
separation property in the nonviscous case is known to hold when the mobility
degenerates at the pure phases in a proper way and the potential is of
logarithmic type. Thus, the existence of an exponential attractor can be proven
in this case as well
- ā¦