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Abstract. Co-limitation of marine phytoplankton growth by light and nutrient, both

of which are essential for phytoplankton, leads to complex dynamic behavior and a wide

array of coherent patterns. The building blocks of this array can be considered to be

deep chlorophyll maxima, or DCMs, which are structures localized in a finite depth

interior to the water column. From an ecological point of view, DCMs are evocative

of a balance between the inflow of light from the water surface and of nutrients from

the sediment. From a (linear) bifurcational point of view, they appear through a

transcritical bifurcation in which the trivial, no-plankton steady state is destabilized.

This article is devoted to the analytic investigation of the weakly nonlinear dynamics

of these DCM patterns, and it has two overarching themes. The first of these

concerns the fate of the destabilizing stationary DCM mode beyond the center manifold

regime. Exploiting the natural singularly perturbed nature of the model, we derive

an explicit reduced model of asymptotically high dimension which fully captures these

dynamics. Our subsequent and fully detailed study of this model—which involves a

subtle asymptotic analysis necessarily transgressing the boundaries of a local center

manifold reduction—establishes that a stable DCM pattern indeed appears from a

transcritical bifurcation. However, we also deduce that asymptotically close to the

original destabilization, the DCM looses its stability in a secondary bifurcation of

Hopf type. This is in agreement with indications from numerical simulations available

in the literature. Employing the same methods, we also identify a much larger DCM

pattern. The development of the method underpinning this work—which, we expect,

shall prove useful for a larger class of models—forms the second theme of this article.

AMS classification scheme numbers: 35K57, 35B36, 35B25, 34B10, 35B35, 92D40

Submitted to: Nonlinearity

1. Introduction

Phytoplanktonic photosynthesis provides the major biological component of the

transport mechanism carrying atmospheric carbon dioxide into the deep ocean.

Concurrently, plankton forms the basis of the aquatic food chain. As a consequence,

phytoplankton growth and decay plays a crucial role in understanding climate dynamics

[10] and forms an integral part of oceanographic research. Conversely, climate changes—

such as global temperature variations—have a direct impact on the aquatic ecosystem

and thus also on phytoplankton [3, 22]: there is a subtle and under-explored interplay

between the dynamics of phytoplankton concentrations and climate variability. At

the same time, phytoplankton concentrations exhibit surprisingly rich spatio-temporal

dynamics. The character of those dynamics is determined in an intricate fashion by

(changes in) the external conditions, see [15] and the references therein. The building

blocks for the observed complex patterns are deep chlorophyll maxima (DCMs) or

phytoplankton blooms, in which the phytoplankton concentration exhibits a maximum

at a certain, well-defined depth of the basin. These patterns are the manifestation of a

fundamental balance between the supply of light from the surface and of nutrients from

the depths of the basin. For the simplest models, in which spatiotemporal fluctuations



Emergence of localized structures in a phytoplankton–nutrient model 3

in the nutrient concentration are omitted (eutrophic environment), it has been shown

that there can only be a stationary global attractor [17]. In particular, if the trivial state

(no phytoplankton) is unstable, then there can only be a stationary globally attracting

phytoplankton bloom with its maximum either at the surface (a surface layer), at the

bottom (a benthic layer, BL), or in between (a DCM) [9, 12, 13, 17]. This is no longer the

case in coupled phytoplankton–nutrient systems (oligotrophic environment), although

DCMs do tend to appear in those systems, also, for certain parameter combinations

[6, 7, 11, 13, 16, 18]. The detailed numerical studies reported in [15], however, show

that the appearance of a DCM only triggers a complex sequence of bifurcations: as

parameters vary, a DCM may be time-periodic, undergo a sequence of period doubling

bifurcations, and eventually behave chaotically.

In this paper, we focus on the effect that varying environmental conditions, and

in particular nutrient levels at the ocean bed, have on the dynamics generated by

the one-dimensional model for phytoplankton (W )–nutrient (N) interactions originally

introduced in [15],
{

Wt = DWzz − V Wz + [µP (L,N) − l]W,

Nt = DNzz − Y −1 µP (L,N)W.
(1.1)

In this model, the vertical coordinate z measures the depth in a water column spanned

by [0, zB], while W (z, t) and N(z, t) are the phytoplankton and nutrient concentrations,

respectively, at depth z and time t. As in [15, 25], the system is assumed to be in

the turbulent mixing regime [9, 13], so that the diffusion coefficient D is identically the

same for phytoplankton and nutrient. The phytoplankton is characterized by its sinking

speed V , its (species-specific) loss rate l, its maximum specific production rate µ, and

its yield Y on light and nutrient. The model is equipped with natural no-flux boundary

conditions at the surface for both phytoplankton and nutrients; the bottom is a source

of nutrients but impenetrable for phytoplankton,

DWz − V W |z=0,zB = 0, Nz|z=0 = 0, and N |z=zB = NB. (1.2)

The constant nutrient concentration NB will act as the primary bifurcation parameter

in this work. The nonlinear expression P (L,N) models phytoplankton growth due to

light and nutrient,

P (L,N) =
LN

(L+ LH)(N +NH)
, (1.3)

in which LH and NH are the half-saturation constants of light and nutrient, respectively.

(See [25] for a short discussion on the nature and specificity of P (L,N).) The light

intensity L at depth z and time t is determined by the total amount of planktonic and

non-planktonic components in the column [0, z],

L(z, t) = LI e−Kbgz−R
R z
0
W (s,t)ds. (1.4)

Hence, the system is non-local—a typical feature of most realistic phytoplankton models.

The light intensity term introduces an extra three parameters: LI , the intensity of the
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incident light at the water surface; Kbg, the light absorption coefficient due to non-

planktonic, background components and hence a measure of turbidity ; and R, the light

absorption coefficient due to plankton (self-shading). The first two of these parameters,

together with zB, D, Y , and NB quantify the effect that the environment has on the

planktonic population. It is by varying these parameters that we examine the effect of

changing environmental conditions on plankton.

It is shown in [25] that the system (1.1) has a natural singularly perturbed nature.

This can be seen by rescaling time and space via τ = µ t and x = z/zB and the

phytoplankton concentration W , nutrient concentration N , and light intensity L via

ω+(x, τ) =
lz2
B

DYNB

W (z, t), η(x, τ) = 1 − N(z, t)

NB

, and j(x, τ) =
L(z, t)

LI
.

Substitution into (1.1) then yields,

ω+
τ = εω+

xx − 2
√
εvω+

x + (p(ω+, η, x) − ℓ)ω+,

ητ = ε (ηxx + ℓ−1p(ω+, η, x)ω+) ,
(1.5)

with boundary conditions,

(ω+
x − 2

√

v/ε ω+)(0) = (ω+
x − 2

√

v/ε ω+)(1) = 0 and ηx(0) = η(1) = 0. (1.6)

For realistic choices of the original parameters of (1.1),

ε =
D

µz2
B

≈ 10−5,

cf. [15, 25]. Effectively, ε1/4 characterizes the extent of the zone where DCMs appear

relative to the depth of the ocean. In this paper, we follow [25] and treat the parameter

ε as an asymptotically small parameter, i.e., we assume that 0 < ε ≪ 1 so that (1.5)

has, indeed, a singularly perturbed character. The nonlinearity p in (1.5) is given by

p(ω+, η, x) =
1 − η

(ηH + 1 − η) (1 + jH/j(ω+, x))
, (1.7)

with rescaled light intensity

j(ω+, x) = exp

(

−κx− r

∫ x

0

ω+(s, τ)ds

)

. (1.8)

The remaining six rescaled parameters of (1.5),

v =
V 2

4µD
, ℓ =

l

µ
, jH =

LH
LI

, ηH =
NH

NB
, κ = KbgzB, and r =

RDYNB

lzB
, (1.9)

are all considered to be O(1) with respect to ε in the forthcoming analysis (cf. [25]).

Our attempt to comprehend the mechanism underpinning the appearance of

phytoplankton patterns, as well as the character of such patterns, begins with the

determination of the spectral stability of the trivial steady state u+ = (0, 0)T. At

that state, and in terms of the original system (1.1), there is no phytoplankton—

W (z, t) ≡ 0—and the nutrient concentration remains constant throughout the column—

N(z, t) ≡ NB, the value at the bottom of the basin (1.2). The system (1.5) may be

written compactly in the form

u+
τ = T +(u+) =

(

ε ω+
xx − 2

√
εvω+

x + (p(ω+, η, x) − ℓ)ω+

ε ηxx + ε ℓ−1 p(ω+, η, x)ω+

)

, (1.10)
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where

u+ =

(

ω+

η

)

.

Here, the nonlinear operator T + is densely defined in L2(0, 1)×L2(0, 1). The associated

spectral problem has been investigated in full asymptotic detail in [25], where we worked

with the linearization of (1.10) around u+ = (0, 0)T,

DT + =

(

ε ∂xx − 2
√
εv ∂x + f − ℓ 0

ε ℓ−1 f ε ∂xx

)

, (1.11)

in which

f(x) =
ν

1 + jHeκx
and ν =

1

1 + ηH
∈ (0, 1). (1.12)

The spectrum σ(DT +) = {νn}n≥0 ∪ {λn}n≥0 of the operator DT + consists of two

distinct, real parts associated with the two diagonal blocks of DT +, cf. (1.11). Here,

the eigenvalues νn = −ε (n + 1/2)2 π2 are negative, independent of all parameters, and

associated with the lower block. These eigenvalues, together with the corresponding

sinusoidal eigenfunctions (0, cos((n + 1/2)πx))T, describe nutrient diffusion in the

complete absence of phytoplankton. It follows that the spectral stability of the trivial

state is governed solely by {λn}n≥0, the set of eigenvalues associated with the upper

block. In [25], we identified two different linear destabilization mechanisms. In the

regime v < f(0) − f(1), corresponding to reduced oceanic diffusivity or increased

turbidity (cf. (1.9) and (1.12)), the planktonic component ω+
0 of the eigenfunction

w+
0 associated with the critical eigenvalue λ0 has the character of a DCM: ω+

0 is

localized in an O(ε1/4) region centered around a certain depth x∗ at which it attains its

maximal value, see Figure 1. This depth can be determined explicitly: to leading order,

f(x∗) = f(0) − v [25]. Hence, x∗ increases monotonically from x∗ = 0 to x∗ = 1 as v

increases from v = 0 to the transitional value v = f(0)−f(1). In the complementary case

v > f(0) − f(1), corresponding to increased oceanic diffusivity or decreased turbidity,

the planktonic component of the critical eigenfunction destabilizing the trivial state has

the character of a BL: that is, it increases monotonically with depth and essentially all

phytoplankton is concentrated in an O(ε1/2) region over the bottom, see again Figure 1.

In this article, we focus exclusively on the regime in which DCMs may appear, i.e.,

we assume throughout the article that v < f(0) − f(1). In that regime, we investigate

the nature of the bifurcation associated with the destabilization mechanism of DCM

type. We know from [25] that, in this case,

λn = λ∗ − ε1/3σ
2/3
0 |An+1| + O(ε1/2), (1.13)

with

λ∗ = f(0) − ℓ− v =
ν

1 + jH
− ℓ− v (1.14)

and where

σ0 = F ′(0) = −f ′(0) =
κ ν jH

(1 + jH)2
, with F (x) = f(0) − f(x). (1.15)
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Here, An < 0 is the n−th root of Ai, the Airy function of the first kind. The bifurcation

occurs as λ0 crosses zero, yielding the bifurcation diagram in the left panel of Figure 2.

More specifically, we focus on the (weakly nonlinear) dynamics generated by (1.10) for

parameter choices such that

λ0 =
ν

1 + jH
− ℓ− v − ε1/3σ

2/3
0 |A1| + O(ε1/2) = ερΛ0, (1.16)

where ρ > 0 is fixed and Λ0 is allowed to be at most logarithmically large with respect

to ε. Note that one can tune the appearance of a destabilization of DCM type (i.e.,

of the simplest phytoplankton pattern) by choosing appropriately the parameters in

(1.10); also, that λ0 depends on all parameters with the exception of r, the rescaled

self-shading coefficient, see the definitions of f and σ0 in (1.12) and (1.15). We remark,

further, that the parameter v depends on the diffusion coefficient D (cf. (1.9)), the main

parameter varied in [15] and the one that most strongly depends on varying external

conditions such as global temperature [22]. Finally, Λ0 is an increasing function of our

bifurcation parameter NB through its dependence on ν, see (1.13)–(1.14) together with

the definitions of ν in (1.12) and of ηH in (1.9). Based on this final observation, we will

often treat Λ0 as our bifurcation parameter.

The first step in analyzing the dynamics generated by a linear destabilization

mechanism is to perform a center manifold analysis to determine the local character

of the bifurcation associated with the destabilization (see, for instance, [1, 4]). This is

a well-established procedure. In the setting of (1.16), this amounts to assuming that

λ0 is (asymptotically) smaller than all other eigenvalues, and it corresponds to the case

ρ > 1 and Λ0 = O(1). In this regime, the remaining eigenvalues {νn}n≥0 ∪ {λn}n≥1 are

negative and asymptotically larger than λ0, so that the local flow near the trivial pattern

(0, 0)T is determined by the flow on the one-dimensional center manifold. The tangent

space of this manifold at the trivial steady state is spanned by the critical eigenfunction

w+
0 associated with λ0. Hence, this flow can be determined by expanding u+ as

u+(x, τ) = ερ−1/6 Ω0(τ)w
+
0 (x) + R(x, t), with Ω0 being an unknown, time-dependent

amplitude and the higher order remainder R encapsulating the component of u+ along

directions associated with the stable eigenvalues—the additional 1/6 in the exponent of

ε follows from the projection analysis by which the equation for Ω0 is determined (see

below and Section 3). An ODE for the unknown amplitude Ω0 is obtained through a

projection procedure which is straightforward but can nevertheless be highly technical,

especially in a PDE setting. In the case at hand, this equation reads

Ω̇0 = Λ0 Ω0 − a000(0) Ω2
0, (1.17)

to leading order. Thus, the procedure reveals the existence of a nontrivial fixed point

which is stabilized through a standard, co-dimension one transcritical bifurcation. This

fixed point corresponds to an asymptotically small DCM pattern, the amplitude of which

grows linearly with Λ0,

ω+(x) ∼ ερ−1/6 Ω∗
0 ω

+
0 (x), with Ω∗

0 =
Λ0

a000(0)
. (1.18)
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In general, one cannot expect to be able to compute the coefficient a000(0) explicitly.

Here, we exploit the singularly perturbed nature of (1.10) and the localized character

of the eigenfunction w+
0 to do exactly that; in particular, it follows from the analysis to

be presented in this article that

a000(0) = (1 − ν)(1 − x∗)
σ

1/3
0 f(0) exp(|A1|3/2)

(

|f ′(x∗)|
∫∞
A1

Ai2(s) ds
)1/2

> 0, (1.19)

see Section 3. In addition to yielding an explicit, leading order formula for the amplitude

of the emerging (stable) DCM, this first result also implies that this DCM is ecologically

relevant since the planktonic component of the primary eigenfunction is positive, ω+
0 > 0,

and hence also ω+ > 0 by (1.18)–(1.19).

The main aim of this paper is to develop an analytic approach through which

one can go beyond the direct, finite-dimensional center manifold reduction outlined

above. The original ideas underlying this approach—namely, the method of weakly

nonlinear stability analysis—qualify as classical [23]. However, this particular method

does not always provide more insight than the rigorously established center manifold

reduction method: for instance, it also reduces the flow to a one-dimensional ODE

of the form (1.17). The situation is strikingly different here, as we can exploit the

singularly perturbed nature of (1.10), in conjunction with the asymptotic information on

the eigenfunctions of DT + obtained in [25], to study in full analytic detail the case λ0 =

O(ε)—see Section 4—and even extend our analysis to the regime λ0 = O(ε log2 ε)—see

Section 4.5. This way, we can analytically trace the fate of the bifurcating DCM pattern

well into the regime where the pattern undergoes secondary and, possibly, even tertiary

bifurcations.

For clarity of presentation, we divide the rest of the material in this Introduction

into two parts. The first one focuses on the bifurcations undergone by the DCM patterns

and on the ecological interpretation of our findings, while the second one focuses on the

specifics of the asymptotic method developed in this work.

1.1. The bifurcations of the DCM patterns

The outcome of our asymptotic analysis is summarized in the right panel of Figure 2.

The localized DCM that bifurcates as λ0 crosses zero is a stable attractor of the flow

generated by (1.1), for all ρ > 1 and Λ0 = O(1) with respect to ε, cf. (1.16).

As we remarked above, the amplitude Ω∗
0 of this localized DCM, and thus also the

biomass associated with it, grows linearly with Λ0 in that regime, cf. (1.18)–(1.19).

Quite remarkably, from the point of view of our weakly nonlinear stability analysis, Ω∗
0

continues growing linearly with Λ0 also beyond the region where the center manifold

reduction is valid. In particular, (1.18)–(1.19) remain valid in the regime ρ = 1 and

Λ0 = O(1), see (4.9). The corresponding biomass turns out to be
∫ 1

0

ω+(x) dx = ε
(1 + jH)

(1 − ν) ν (1 − x∗)
Λ0 =

(1 + jH) ν − ℓ− v

(1 − ν) (1 − x∗) (ℓ+ v)
, (1.20)
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0
0

0
0x

*
x x

ω+ ω+

Figure 1. Left panel : a DCM profile for the planktonic component of (1.5)–(1.6).

Essentially all plankton is concentrated in an O(ε1/4) region around a finite depth x∗.

Right panel : a BL profile for the planktonic component of (1.5)–(1.6). Here, essentially

all plankton is concentrated in an O(ε1/2) region over the depth of the basin.

to leading order. This second result establishes that, in the λ0 = O(ε) regime, the DCM

pattern grows with ν and hence also with NB, the primary parameter measuring nutrient

availability in the water column (see (1.9) and (1.12)). This fact certainly reinforces our

ecological intuition.

The stability properties of the DCM mode corresponding to Ω∗
0, on the other

hand, undergo a drastic change in that same regime. Our rather involved stability

analysis of this emergent nontrivial steady state reveals that it becomes unstable, in

this same λ0 = O(ε) regime already, as Λ0 continues to grow and through a standard

Hopf bifurcation; this is our third result. The appearance of this secondary bifurcation

can be determined explicitly by our methods and, as we demonstrate, its onset occurs

for values of Λ0 which increase unboundedly as x∗ ↓ 0 (equivalently, as v ↓ 0). It is

natural, then, to attempt an extension of our analysis into a region where Λ0 ≫ 1. In

that regime, we establish the existence of a second localized DCM-type pattern: the

associated reduced system has two critical points. Using our methods, we trace this

second localized structure back to O(1) values of Λ0 and find that it corresponds to an

O(ε1/2) biomass depending nonlinearly on Λ0. This is our fourth result. The stability

type of this pattern can be also determined explicitly, although we do not undertake

this task in the present work.

Hence, our analysis yields that the stationary, stable, localized DCM pattern

emerging at the transcritical bifurcation through which the trivial state becomes
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unstable only persists in an asymptotically small, O(ε) region in parameter space

before it yields to an oscillatory pattern emerging through a Hopf bifurcation. This

fact reinforces our mathematical intuition that the appearance of this stationary DCM

is the first step in a cascade of bifurcations leading to the chaotic dynamics reported

in [15]—see also our discussion in [25]. In light of this, our analytical findings seem

to agree qualitatively with these numerical results. In the same vein, our findings

here suggest that the chaotic dynamics can be traced back to the small amplitude

patterns emerging from the destabilization of the trivial steady state. (Of course, one

must always exercise caution in interpreting numerical observations from an asymptotic

point of view, especially when these simulations concern an unscaled system as is the

case here: the authors of [15] have simulated the original system (1.1) and not the scaled

system (1.5).) Additionally, the fact that the onset of the Hopf bifurcation for v ↓ 0

occurs in the regime Λ0 ≫ 1—where certain higher order terms in our analysis become

leading order and hence the analysis must be necessarily extended—possibly explains

the absence of oscillatory and chaotic dynamics for small values of v, see [25, Figure 3.3].

Naturally, the questions on the fate of the oscillatory pattern generated through

the Hopf bifurcation and on the nature of the larger DCM pattern are intriguing. At

present, this is the subject of ongoing research. We do not pursue these questions further

in this article, apart from a short discussion in its concluding section.

1.2. The asymptotic method

Parallel to understanding the character and fate of the linear destabilization mechanism

established in [25], this article has a second—and from a mathematical point of view

at least equally important—theme. Here, we have developed a powerful approach by

which we can study the weakly nonlinear dynamics generated by (1.5) in full asymptotic

detail and far from the region covered by more standard techniques (such as the

center manifold reduction method). Indeed, one cannot hope in general to extend the

analysis beyond the one-dimensional center manifold reduction discussed above and into

the regime where λ0 is not asymptotically closer to zero than all other eigenvalues.

In other words, the sole analytical insight into the dynamics of the flow near the

destabilization that one can generically obtain is the confirmation that DCMs indeed

appear through a transcritical bifurcation. Let us look into this last point in more

detail and for our specific model (1.5)–(1.6). For λ0 = O(ε)—equivalently, for ρ = 1 in

(1.16)—one can no longer ‘project away’ the directions corresponding to the eigenvalues

νn = −ε (n+1/2)2 π2 associated with the operator DT +. Indeed, these are O(ε) for O(1)

values of n, and hence of the same asymptotic magnitude as λ0. As a result, the center

manifold reduction approach yields a leading order system in at least asymptotically

many dimensions. In general, such a system cannot be studied analytically, and one has

to abandon the idea of performing an asymptotically accurate analysis.

The crucial ingredient in our approach is our ability to explicitly determine, to

leading order, all relevant coefficients in the reduced, asymptotically high-dimensional
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λ
0
 > 0λ

0
 < 0

F(1)

νν
DCM

ν
BL

λ
0
 > 0λ

0
 < 0

v

νν
DCM

ν
BL

Ω
0
*

Λ
0
* Λ

0

Figure 2. Left panel : the bifurcation diagram for the trivial steady state of (1.5) in the

regime v < f(0) − f(1) = F (1). The trivial steady state is stable in the region λ0 < 0

and unstable in the region λ0 > 0. Here, νDCM = ℓ(1 + jH) and νBL = ℓ(1 + eκjH).

Right panel : the bifurcation diagram for the small-amplitude DCM reported in (1.17)

and (1.19). The origin marks the transcritical bifurcation through which the trivial

steady state is destabilized and the small-amplitude DCM pattern emerges. The value

Λ∗
0

marks the (first) Hopf bifurcation where this small-amplitude DCM is destabilized

and a time-periodic DCM pattern is generated.

system that extends the leading order, one-dimensional center manifold reduction. All

of these coefficients are defined in a relatively standard manner in terms of projections

based on the linear spectral analysis, see (2.21) in Section 2. We report the outcome

of this part of our work in (4.1). These leading order formulas clearly reveal a certain

structure in these coefficients, which in turn reflects on the system of ODEs for the

Fourier modes. It is this structure that allows us to extend our stability and bifurcation

analysis. The sometimes remarkably subtle and laborious analysis by which these

coefficients are computed provides the foundation for the strength and success of our

program. Therefore, this analysis is a central component of our approach and lies at

the core of the forthcoming presentation, see especially Sections 3 and 5–7.

An understanding of the conditions under which similar structure may be expected

to appear is apposite to deciphering the fundamental mechanisms underpinning the

success of our method and to determining a more general setting where this method

is applicable. Naturally, what enables us to compute these coefficients, and thus

also determine how they are related, is the accurate asymptotic control over the

eigenfunctions that we establish. It is neither clear, a priori, that the structure present

in the reduced system is a necessary consequence of that control, nor how much of that
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control is necessary to establish the presence of sufficient structure. These issues are

the subject of current research undertaken by the authors. Below we offer a brief sketch

of the ideas behind this work in progress, as it also encapsulates the essentials of the

method developed in the present work.

To avoid the computational complexities associated with the weakly nonlinear

analysis, we consider a much simpler, autonomous, coupled, reaction–diffusion system,

Ut = Uxx +µU +F (U, V ; ε),

Vt = ε (Vxx +ν V + G(U ;V, ε)) .
(1.21)

Here, U and V are defined in [0, 1] × R
+ and obey certain boundary conditions,

e.g., of homogeneous Neumann or Dirichlet type. The nonlinearities F (U, V ) and

G(U, V ) are assumed to be smooth and at least quadratic in U and V ; finally,

0 < ε ≪ 1 is an asymptotically small parameter. The spectral problem associated

with the trivial state (U, V ) ≡ (0, 0) decouples into two scalar problems of harmonic

oscillator type. It immediately follows that, for ν below a certain critical value

ν∗, this trivial state loses stability when µ crosses a threshold µ∗. Moreover, the

eigenvalues {λUn }n≥0 associated with the U−component (and hence also with µ) are

O(1)−apart, while the eigenvalues {λVn }n≥0 associated with the V−component (and

also with ν) are O(ε)−apart. Both sets of eigenvalues are naturally paired with simple

trigonometric eigenfunctions. A straightforward center manifold reduction suffices to

determine the nature of the bifurcation as µ crosses µ∗ and in the regime µ − µ∗ ≪ ε.

This situation corresponds directly to our—technically more involved—center manifold

problem (1.17)–(1.19) briefly discussed earlier. Note that, here, the leading order analog

of the DCM pattern identified in that discussion is a sinusoidal function.

As long as µ − µ∗ ≪ ε, the modes associated with the eigenvalues {λVn }n
remain slaved to the critical λU0 -mode, exactly as in our phytoplankton–nutrient model.

However, this is no longer the case when µ− µ∗ = O(ε); in that regime, asymptotically

many λvn-modes are nonlinearly triggered by that critical mode. Nevertheless, the

remaining λUn -modes stay slaved, so that one obtains a reduced system of asymptotically

high dimension. Here also, the coefficients of the leading nonlinearities can all be

expressed in terms of projections along the eigenmodes, albeit they correspond to much

simpler integrals. This process should enable us to study the conditions under which

one is able to infer relations between these coefficients similar to those reported in (4.1).

This, in turn, should lead to conditions under which the reduced system has sufficient

structure to allow a secondary bifurcation analysis—and perhaps even the identification

of a cascade of subsequent bifurcations—of the nontrivial state bifurcating at µ = µ∗.

An additional benefit of working in a simple setting of this sort is its amenability to

rigorous analysis, which is beyond the scope of this article.

A natural question to ask at this point is whether the model problem (1.21)

shares enough structure with (1.5) to enjoy similarly complex yet tractable dynamics.

Note, in particular, the absence of nonlocal and non-autonomous terms from (1.21).

Mathematically speaking, we expect these aspects to be insignificant for the type of
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dynamics that the model exhibits close to bifurcation. (The situation is very different

from the ecological point of view, naturally.) In the setting of (1.5), the nonlocality

only complicates our analysis and thus clouds our understanding of the secondary and

subsequent bifurcations beyond the center manifold reduction. Indeed, one expects the

self-shading effect that a small DCM pattern has on itself to be much smaller than the

shading due to the water column above it. This is most evident in Sections 3 and 6, where

self-shading (quantified by the parameter r) is finally shown to contribute higher order

terms only. Similarly, the sole role of the non-autonomous features of (1.1) is seemingly

to introduce two spectra, {νn}n and {λn}n, with different asymptotic properties. In our

model problem (1.21), this is achieved instead by choosing disparate diffusivities for the

two model components.

Finally, it should be noted that our work resembles, but is certainly not identical to,

Lange’s work in [19, 20]. Lange has devised a powerful asymptotic method applicable

to problems with closely spaced branch points which allows one to track the evolution

of solution branches well into the regime where center manifold reduction breaks down.

In our work also, the spectrum is asymptotically closely spaced, as are also then

the branch points. Nevertheless, the differences between our work and the work in

[19] are substantial. Most prominently, Lange essentially defines branch points as

points in parameter space where the linearization around the steady state admits a

zero eigenvalue, see the derivation of [19, (3.10)] in particular. In our work, instead,

the secondary bifurcation is induced by the parameter-independent negative spectrum

related to pure diffusion and occur before any eigenvalues other than λ0 have bifurcated.

As such, these branch points are not captured by Lange’s method. In fact, this secondary

bifurcation—and, we expect, part of the cascade toward chaotic dynamics—occurs in

a region of parameter space which is asymptotically small compared to the magnitude

of the next critical eigenvalue λ1. Viewed from this perspective, then, the existence

of the rich dynamics reported here for the regime λ0 = O(ε) acts as a paradigmatic

manifestation of nonlinear interactions. The linearly stable modes manage to have a

decisive impact on the dynamics solely through nonlinear couplings and although a

strictly linear point of view dictates that these modes should be utterly irrelevant.

2. Evolution of the Fourier coefficients

Our aim in this section is to write the PDE system (1.10) as an infinite-dimensional

system of nonlinear ODEs and subsequently reduce it by relaxing the fast stable

directions. To achieve this, we need explicit formulas for the (point) spectrum σ(DT +),

as well as for the corresponding eigenbasis and its dual. The spectrum and the eigenbasis

have been determined in [25]; we summarize the relevant formulas in Section 2.1 below.

We then obtain the dual basis in Section 2.2 by solving the eigenproblem for the adjoint

operator (DT +)∗. Finally, in Section 2.3, we derive the desired ODEs for the Fourier

coefficients close to the bifurcation point.



Emergence of localized structures in a phytoplankton–nutrient model 13

2.1. The spectrum and the corresponding eigenbasis of DT +

For completeness, we let Hω+ and Hη be the subspaces of L2(0, 1) associated with the

boundary conditions (1.6), Hω be associated with the boundary conditions

(∂xω −
√

v/ε ω)(0) = (∂xω −
√

v/ε ω)(1) = 0, (2.1)

and we write H+ = Hω+ ×Hη and H = Hω×Hη. Both product spaces can be equipped

with the inner product

〈u+
1 , u

+
2 〉 =

〈(

ω+
1

η1

)

,

(

ω+
2

η2

)〉

=

∫ 1

0

(

ω+
1 (x)ω+

2 (x) + η1(x) η2(x)
)

dx.

Subsequently, we define the function E(x) = exp(
√

v/ε x) and the operator E : H → H+

corresponding to an application of the Liouville transform,

Eu =

(

E ω

η

)

=

(

ω+

η

)

= u+ with inverse u =

(

ω

η

)

=

(

ω+/E

η

)

= E−1u+.(2.2)

(It is straightforward to check that the boundary conditions (1.6) for u yield the

boundary conditions (2.1) for u+.) Both E and E−1 are self-adjoint and bounded and

DT = E−1DT +E =

(

ε∂xx + f − ℓ− v 0

εℓ−1fE ε∂xx

)

, (2.3)

with DT densely defined and having self-adjoint diagonal blocks.

As mentioned in the Introduction, the eigenvalues νn associated with DT +

correspond to the pure diffusion problem for the nutrient in the absence of plankton. In

particular, they are solutions to the eigenvalue problem

ε∂xxζn = νnζn, with ∂xζn(0) = ζn(1) = 0,

and may be calculated explicitly,

νn = −εNn, where Nn = (π/2 + nπ)2 for n ≥ 0. (2.4)

The corresponding eigenfunctions have a zero ω+−component, and they are

vn =

(

0

ζn

)

, where ζn(x) =
√

2 cos(
√

Nn x). (2.5)

These are normalized so that ||ζn||2 = 1.

The eigenvalues λn, on the other hand, correspond to the eigenvectors

w+
n =

(

ω+
n

ηn

)

.

Here, the functions ω+
n and ηn are solutions to

ε ∂xxω
+
n − 2

√
εv ∂xω

+
n + (f(x) − ℓ− λn)ω

+
n = 0,

(∂xω
+
n − 2

√

v/ε ω+
n )(0) = (∂xω

+
n − 2

√

v/ε ω+
n )(1) = 0,
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cf. (1.11), together with the self-adjoint, inhomogeneous, boundary value problem for

the component ηn,

ε ∂xxηn − λn ηn = −εℓ−1f ω+
n , where ∂xηn(0) = ηn(1) = 0. (2.6)

Equivalently, they are solutions to the self-adjoint, Sturm–Liouville problem

ε ∂xxωn + (f(x) − ℓ− v − λn)ωn = 0,

(∂xωn −
√

v/ε ωn)(0) = (∂xωn −
√

v/ε ωn)(1) = 0,
(2.7)

cf. (2.2)–(2.3). As already stated, in [25] we derived the asymptotic expressions

λn = λ∗ − ε1/3σ
2/3
0 |An+1| + O(ε1/2), with n ≥ 0,

cf. (1.13). Here, λ∗ = f(0) − ℓ− v, σ0 = F ′(0) = −f ′(0), and An < 0 is the n−th root

of the Airy function Ai, cf. (1.15). A formula for the n−th eigenfunction ωn can also be

derived using the WKB method, cf. [25]. The corresponding eigenfunctions for DT +

are w+
n = (ω+

n , ηn)
T, where ω+

n = E ωn—cf. (2.2). As we will see in the next section, it

is natural to impose the normalization condition ||ωn||2 = 1.

2.2. The dual eigenbasis of DT +

To carry out the weakly nonlinear stability analysis of the bifurcating DCM profile, we

also need to obtain the dual eigenbasis {ŵ+
n }n≥0 ∪ {v̂n}n≥0 uniquely determined by the

conditions

〈w+
n , ŵ

+
m〉 = 〈vn, v̂m〉 = δnm and 〈w+

n , v̂m〉 = 〈vn, ŵ+
m〉 = 0,

for all n,m ≥ 0. In this section, we show that

ŵ+
n =

(

ω−
n

0

)

and v̂n =

(

ψ−
n

ζn

)

. (2.8)

Here, ω−
n ≡ ωn/E, where ωn solves the eigenvalue problem (2.7) and satisfies the

normalization condition ||ωn||2 = 1. Further, expressions for the functions {ζn}n were

reported in (2.5), while the functions {ψ−
n }n may be found by solving the inhomogeneous

problem

ε ∂xxψ
−
n + 2

√
εv ∂xψ

−
n + (f(x) − ℓ− νn)ψ

−
n = −εℓ−1f ζn,

∂xψ
−
n (0) = ∂xψ

−
n (1) = 0.

(2.9)

Alternatively, ψ−
n = ψn/E, where ψn solves the self-adjoint inhomogeneous problem

ε ∂xxψn + (f(x) − ℓ− v − νn)ψn = −εℓ−1fE ζn,

(∂xψn −
√

v/ε ψn)(0) = (∂xψn −
√

v/ε ψn)(1) = 0.
(2.10)

To verify the above, we start from the observation that the dual basis may be

obtained by solving the corresponding eigenvalue problem for (DT +)∗, the adjoint of

the operator DT +. To calculate (DT +)∗, we write v− = E−1v, recall (2.3), and note

that

〈DT +u+, v−〉 = 〈DT +Eu, v−〉 = 〈EDT u, v−〉 = 〈DT u, Ev−〉 = 〈DT u, v〉 = 〈u,DT ∗v〉.



Emergence of localized structures in a phytoplankton–nutrient model 15

This implies, further, that

〈DT +u+, v−〉 = 〈u,DT ∗v〉 = 〈E−1 u+,DT ∗Ev−〉 = 〈u+, E−1DT ∗Ev−〉,
whence (DT +)∗ = E−1DT ∗E . Here, u+ satisfies the boundary conditions (1.6), whereas

the boundary conditions for v− are determined from v− = E−1v and the boundary

conditions (2.1) for v—in particular,

∂xψ
−(0) = ∂xψ

−(1) = 0 and ∂xζ(0) = ζ(1) = 0, where v =

(

ψ−

ζ

)

. (2.11)

It is straightforward to show that

DT ∗ =

(

ε∂xx + f − ℓ− v εℓ−1fE

0 ε∂xx

)

,

and, since also (DT +)∗ = E−1DT ∗E ,

(DT +)∗ =

(

ε ∂xx + 2
√
εv ∂x + f − ℓ εℓ−1f

0 ε ∂xx

)

. (2.12)

In view of (2.12), the eigenvalue problem (DT +)∗ŵ+
n = λnŵ

+
n for ŵ+

n = (ω̂+
n , η̂n)

T

reads

ε ∂xxω̂
+
n + 2

√
εv ∂xω̂

+
n + (f − ℓ− λn) ω̂

+
n = −εℓ−1f η̂n,

ε∂xxη̂n = λn η̂n,

subject to the boundary conditions (2.11). The latter equation yields immediately

η̂n ≡ 0, so that the former equation becomes homogeneous. It is now trivial to check

that ω̂+
n = ω−

n ≡ ωn/E, where ωn solves the eigenvalue problem (2.7). This establishes

the first part of (2.8).

Similarly, (2.12) shows that the eigenvalue problem (DT +)∗v̂n = νnv̂n has solutions

v̂n =

(

ψ−
n

ζn

)

,

where the functions {ψ−
n }n satisfy the boundary value problem (2.9). An application of

the Liouville transform ψn = Eψ−
n leads directly to the self-adjoint problem (2.10).

2.3. Evolution of the Fourier coefficients

Our aim in this section is to write the PDE system (1.10) as an infinite-dimensional

system of nonlinear ODEs. We start by expanding the solution of ∂τu
+ = T +(u+) in

terms of the eigenbasis associated with the linear stability problem,

u+(x, τ) = εc−1/6 δ
∑

n≥0

Ωn(τ)w
+
n (x) + εc

∑

n≥0

Ψn(τ) vn(x), (2.13)

where c > 0 is yet undetermined and the coefficients Ωn and Ψn are determined by

Ωn = ε−c δ−1〈u+, ŵ+
n 〉 and Ψn = ε−c〈u+, v̂n〉. (2.14)
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The exponent of 1/6 in the first sum of (2.13) is related to the localized nature of

ω+
0 , the planktonic component of w+

0 . In particular, ω+
0 is shaped as a DCM with an

O(ε1/6) biomass
∣

∣

∣

∣ω+
0

∣

∣

∣

∣

1
(recall from our discussion following (2.8) that, in contrast,

||ω0||2 = 1). More details on this issue will be presented in Section 4.3.2. Moreover, we

have introduced the exponentially small parameter

δ = exp

(−J−(x∗)√
ε

)

≪ 1, (2.15)

the role of which is to counterbalance the exponentially large amplitudes of the

eigenfunctions w+
n and vn. In particular,

J±(x) =
√

v x± I(x) and I(x) =

∫ x

x0

√

F (s) − F (x0) ds. (2.16)

Here, the O(ε1/3)−parameter x0 corresponds to the turning point of (2.7),

x0 = F−1(λ∗ − λ0) = ε1/3σ
−1/3
0 |A1| + O(ε1/2), (2.17)

while x∗ is the location of the DCM, the unique point where J−(·) attains its (positive)

maximum ([25]—see also Appendix A), i.e.,

x∗ = F−1(v + F (x0)) = F−1(v) + O(ε1/3). (2.18)

Thus, δ−1 is a measure for the amplitude of the ω-component of the (linear) mode

associated with a bifurcating DCM. The introduction of δ in the decomposition (2.13)

allows us to identify small patterns (u+ ≪ 1) and is motivated by the observation that

this decomposition yields

ω+(x, τ) = εc−1/6 δ
∑

n≥0 Ωn(τ)ω
+
n (x),

η(x, τ) = εc−1/6 δ
∑

n≥0 Ωn(τ) ηn(x) + εc
∑

n≥0 Ψn(τ) ζn(x).
(2.19)

The principal part of ω+
0 is derived in Appendix A, while asymptotic formulas for ω+

n ,

with n ≥ 1, can be derived in a similar manner. For O(1) values of n, it follows that ω+
n

is exponentially small everywhere apart from an asymptotically small neighborhood of

x∗ where it attains its maximum value of asymptotic magnitude at most O(ε−1/12δ−1).

Similarly, the principal part of η0 is given in Appendix B, together with an L∞−estimate

which shows that η0 is at most O(ε1/6δ−1) in [0, 1]. As a result, the coefficients of the

eigenmodes Ωn (n ≥ 0) in (2.13) are bounded uniformly in L∞(0, 1) by an O(εc−1/12)

constant, while those of Ψn (n ≥ 0) are O(1). In what follows, we derive the ODEs

governing the evolution of these eigenmodes.

2.3.1. Eigenbasis decomposition of T +(u+) To derive the ODEs for the eigenmodes,

we need to express T +(u+) in the eigenbasis {w+
n }n≥0 ∪{vn}n≥0. In particular, we show

that

T +(u+) = εc−1/6 δ
∑

k≥0

[

λk Ωk − εc
∑

m≥0

∑

n≥0

(amnk ΩmΩn + bmnk ΨmΩn)

]

w+
k

+ εc
∑

k≥0

[

νkΨk − εc
∑

m≥0

∑

n≥0

(a′mnk ΩmΩn + b′mnk ΨmΩn)

]

vk, (2.20)
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where we have omitted an O(ε3c−1/2) remainder. The coefficients appearing in this

equation are given by the formulas

amnk = ε−1/6

〈(

1

εℓ−1

)

am ω
+
n , ŵ

+
k

〉

= ε−1/6〈amωn, ωk〉,

a′mnk = ε−1/3

〈(

1

εℓ−1

)

δ am ω
+
n , v̂k

〉

= ε−1/3δ
[

〈amωn, ψk〉 + εℓ−1〈amω+
n , ζk〉

]

,

bmnk =

〈(

1

εℓ−1

)

bm ω
+
n , ŵ

+
k

〉

= 〈bmωn, ωk〉,

b′mnk = ε−1/6

〈(

1

εℓ−1

)

δ bm ω
+
n , v̂k

〉

= ε−1/6δ
[

〈bmωn, ψk〉 + εℓ−1〈bmω+
n , ζk〉

]

.

(2.21)

Here, we have defined the functions

am = δ [(1 − ν) ηm + (1 − ν−1f) r sm] f, with sn(x) =
∫ x

0
ω+
n (s)ds,

bm = (1 − ν) f ζm.
(2.22)

Note that we use 〈·, ·〉 to denote all inner products—in H, Hω+ , and Hη—as there is no

danger of confusion.

We start by decomposing T +(u+) into linear and nonlinear terms by means of

T +(u+) = DT +u+ + N (u+), where N (u+) =

(

1

εℓ−1

)

(p− f)ω+. (2.23)

Substitution of the decomposition (2.13) into the linear term yields the eigendecompo-

sition of that linear term,

DT +u+ = εc−1/6 δ
∑

k≥0

ΩkDT + w+
k + εc

∑

k≥0

ΨkDT + vk

= εc−1/6 δ
∑

k≥0

λk Ωkw
+
k + εc

∑

k≥0

νkΨkvk, (2.24)

where we have also used that w+
n and vn are eigenvectors of DT + (see Section 2.1). It

remains to express the nonlinearity N (u+) with respect to that same eigenbasis. First,

since p− f contains the nonlocal term
∫ x

0
ω+(s)ds, see (1.7)–(1.8), we write (cf. (2.19))

S(x, τ) := ε−c+1/6

∫ x

0

ω+(s, τ)ds = δ
∑

n≥0

Ωn(τ) sn(x), (2.25)

where sn was introduced in (2.22). We subsequently obtain, by (1.7) and (1.12),

p =
1 − η

ν−1 − η

1

1 + jH exp(κx) exp(εc−1/6 r S)

= f
1 − η

1 − νη

1

1 + (1 − ν−1f)(exp(εc−1/6 r S) − 1)
.

Substituting from (2.19) for ω+ and η into this formula and expanding asymptotically,

we find further

p(ω+, η, x) = f − εc−1/6
∑

m≥0

amΩm − εc
∑

m≥0

bmΨm + O
(

ε2c−1/3
)

, (2.26)
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with am and bm as defined in (2.22). We remark for later use that this asymptotic

expansion remains valid for o(ε1/4−c) values of Ωn (n ≥ 0) and o(ε−c) values of Ψn

(n ≥ 0) (see our discussion following (2.19)). Next, (2.19) and (2.26) yield

(p− f)ω+ = −ε2c−1/3 δ
∑

m≥0

∑

n≥0

amω
+
n ΩmΩn − ε2c−1/6 δ

∑

m≥0

∑

n≥0

bmω
+
n ΨmΩn,

where we have again omitted an O(ε3c−1/2) remainder. By virtue of (2.23), then,

N (u+) = − ε2c−1/3 δ
∑

m≥0

∑

n≥0

(

1

εℓ−1

)

amω
+
n ΩmΩn

− ε2c−1/6 δ
∑

m≥0

∑

n≥0

(

1

εℓ−1

)

bmω
+
n ΨmΩn + O

(

ε3c−1/2
)

.

We may now decompose the spatial components in these sums with respect to the

eigenbasis,
(

1

εℓ−1

)

δ am ω
+
n =

∑

k≥0

(

ε1/6δ amnk w
+
k + ε1/3 a′mnk vk

)

,

(

1

εℓ−1

)

δ bm ω
+
n =

∑

k≥0

(

δ bmnkw
+
k + ε1/6 b′mnkvk

)

,

where the coefficients amnk, a
′
mnk, bmnk, and b′mnk are found by means of (2.21). Using

this decomposition, we finally write (omitting throughout an O(ε3c−1/2) term)

N (u+) = − ε2c
∑

m≥0

∑

n≥0

∑

k≥0

(

ε−1/6δ amnk w
+
k + a′mnk vk

)

ΩmΩn

− ε2c
∑

m≥0

∑

n≥0

∑

k≥0

(

ε−1/6δ bmnk w
+
k + b′mnk vk

)

ΨmΩn

= − ε2c−1/6δ
∑

m≥0

∑

n≥0

∑

k≥0

(amnkΩmΩn + bmnkΨmΩn)w
+
k

− ε2c
∑

m≥0

∑

n≥0

∑

k≥0

(a′mnkΩmΩn + b′mnkΨmΩn) vk. (2.27)

Combining (2.24) and (2.27), then, we arrive at the desired result (2.20).

2.3.2. ODEs near the bifurcation point We are now in a position to derive the ODEs

for the amplitudes {Ωn}n≥0 and {Ψn}n≥0. Differentiating both members of (2.13) with

respect to time, we find

∂τu
+ = εc−1/6 δ

∑

k≥0

Ω̇k w
+
k + εc

∑

k≥0

Ψ̇k vk, (2.28)

where the overdot denotes differentiation with respect to τ . Next, ∂τu
+ = T +(u+) and

hence, combining (2.20) with (2.28), we obtain the ODEs for the amplitudes,

Ω̇k = λkΩk − εc
∑

m≥0

∑

n≥0

(amnk ΩmΩn + bmnk ΨmΩn) + O
(

ε2c
)

,

Ψ̇k = νkΨk − εc
∑

m≥0

∑

n≥0

(a′mnk ΩmΩn + b′mnk ΨmΩn) + O
(

ε2c
)

.
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We now tune the bifurcation parameter λ∗ so that the largest eigenvalue, λ0, is the

only positive eigenvalue while the eigenvalues λ1, λ2, . . . are negative. In particular, we

write (cf. (1.16))

λ0 = εΛ0, where 0 < Λ0 << ε−2/3,

νk = − εNk, where Nk > 0 is O(1) for k = 0, 1, . . . ,

λk = − ε1/3Λk, where Λk > 0 for k = 1, 2, . . . .

As we will see shortly, the cases of particular interest will turn out to be those where Λ0

is either O(1) or logarithmically large. Note also that, since the distance between λ0 and

λk is O(ε1/3) by (1.13), it follows that λ1, λ2, . . . ≪ ν1. Then, the evolution equations

for the amplitudes become

Ω̇0 = ερΛ0Ω0 − εc
∑

m≥0

∑

n≥0

amn0ΩmΩn − εc
∑

m≥0

∑

n≥0

bmn0ΨmΩn, (2.29)

Ψ̇k = −εNkΨk − εc
∑

m≥0

∑

n≥0

a′mnkΩmΩn − εc
∑

m≥0

∑

n≥0

b′mnkΨmΩn, k ≥ 0, (2.30)

Ω̇k = −ε1/3ΛkΩk − εc
∑

m≥0

∑

n≥0

amnkΩmΩn − εc
∑

m≥0

∑

n≥0

bmnkΨmΩn, k ≥ 1, (2.31)

where we have omitted all higher order terms.

3. Application of Laplace’s method on a000

Explicit asymptotic expressions for the coefficients in the ODEs (2.29)–(2.31) obtained

in the previous section can be derived by applying Laplace’s method and the principle

of stationary phase to the integrals in (2.21). In this section, we demonstrate the use

of the former in deriving an asymptotic formula for a000. Asymptotic expressions for

the remaining coefficients will be derived independently in Sections 5–7, after we have

thoroughly analyzed the bifurcations that our system undergoes. Although the analysis

in those sections is substantially more involved, our approach there is very similar to

that in the present section.

The main result of this section is the leading order approximation

a000 = A(Λ0) = αa(Λ0), (3.1)

where we have defined the O(1), positive, Λ0−independent constant α and the function

a by means of

α = (1 − ν) f(0)C1C2 σ
1/3
0 σ−1/2

∗ > 0 and a(Λ0) =
sinh

(√
Λ0(1 − x∗)

)

√
Λ0 cosh

√
Λ0

. (3.2)

Here, σ0 is defined in (1.15), while

C1 =

(
∫ ∞

A1

Ai2(s) ds

)−1/2

, C2 = exp(|A1|3/2), and σ∗ = F ′(x∗) = −f ′(x∗), (3.3)

see [25] and Appendix A. We start by recalling that the coefficient a000 is given by

a000 = ε−1/6

∫ 1

0

a0(x)ω
2
0(x) dx, (3.4)
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cf. (2.21), where

a0(x) = δ
[

r(1 − ν−1f(x))s0(x) + (1 − ν)η0(x)
]

f(x).

Employing (2.22), (2.25), using the explicit approximation (B.5) for η0 from Appendix

B, and defining the functions

h1(x, y) = f(x)

[

r

(

1 − f(x)

ν

)

− 1 − ν

ℓ
√

Λ0

sinh
(

√

Λ0(x− y)
)

f(y)

]

, (3.5)

h2(x, y) =
(1 − ν) f(x) cosh

(√
Λ0 x

)

ℓ
√

Λ0 cosh
√

Λ0

f(y) sinh
(

√

Λ0(1 − y)
)

, (3.6)

we find further

a0(x) = ε−1/6δ

∫ x

0

h1(x, y)ω
+
0 (y) dy + ε−1/6δ

∫ 1

0

h2(x, y)ω
+
0 (y) dy.

Thus,

a000 = ε−1/6δ

∫ 1

0

∫ x

0

h1(x, y)ω
2
0(x)ω

+
0 (y) dydx+ ε−1/6δ

∫ 1

0

∫ 1

0

h2(x, y)ω
2
0(x)ω

+
0 (y) dydx

= ε−1/6δ(I1 + I2), (3.7)

where I1 and I2 are the two double integrals appearing in this expression.

We can obtain the principal parts of I1 and I2 using Theorem Appendix D.2,

based on [24], in Appendix D. We start with the latter integral which, as we will see,

fully determines the leading order behavior of a000. First, the normalization condition

‖ω0‖2 = 1 yields
∫ 1

0
h2(x, y)ω

2
0(x) dx = h2(0, y) to leading order. Since, also, ω+

0 has

a unique maximum at the interior critical point x∗, Theorem Appendix D.2.I (with

λ = ε−1/2, Π = −J−, and Ξ = h2(0, ·)) yields

I2 =

∫ 1

0

h2(0, y)ω
+
0 (y) dy =

1

(ε−1/2)1/2

√
2π h2(0, x∗)
√

−J ′′
−(x∗)

ω+
0 (x∗) = ε1/6 δ−1C3 (3.8)

to leading order, where we have used the explicit leading order approximation (A.2) of

ω+
0 from [25] (see also Appendix A), recalled the definition (2.15) of δ, defined

C3 =

√
2π h2(0, x∗)
√

−J ′′
−(x∗)

C1C2 σ
1/3
0

2
√
π F 1/4(x∗)

= C1C2 σ
1/3
0 σ−1/2

∗ h2(0, x∗), (3.9)

and employed the identity J ′′
− = −2−1F−1/2F ′.

Next, we show I1 to be exponentially smaller than I2. First, we rewrite it as

I1 = ε−1/4 C
3
1 C

3
2 σ0

8π3/2

6
∑

j=1

θj

∫ ∫

D

h1(x, y)
√

F (x)F 1/4(y)
exp

(

Πj(x, y)√
ε

)

dAxy, (3.10)

where we have used (A.2) and (A.1). Here, D = {(x, y)|0 ≤ y ≤ x, 0 ≤ x ≤ 1} and

Π1(x, y) = J−(y) − 2I(x) and θ1 = 1,

Π2(x, y) = J−(y) − 2I(1) and θ2 = 2θ,

Π3(x, y) = J−(y) + 2I(x) − 4I(1) and θ3 = θ2,

Π4(x, y) = J+(y) − 2I(x) − 2I(1) and θ4 = θ,

Π5(x, y) = J+(y) − 4I(1) and θ5 = 2θ2,

Π6(x, y) = J+(y) + 2I(x) − 6I(1) and θ6 = θ3,

(3.11)
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where I(x) and J±1(y) have been defined in (2.16), and

θ =

√
σ1 +

√
v√

σ1 −
√

v
with σ1 = F (1). (3.12)

Theorem Appendix D.1 yields, for each integral, a result proportional to

exp(max(x,y)∈D Πj(x, y)/
√
ε). We first identify max Π1 and then show that max Π1 >

max Πj , for j = 2, . . . , 6; it follows that the dominant term in (3.10) corresponds to Π1

and the rest are exponentially smaller than it. Now, Π1 has no critical points in D, and

thus its global maximum lies on

∂D =

3
⋃

i=1

(∂D)i = {(1, y)|0 ≤ y ≤ 1} ∪ {(x, x)|0 ≤ x ≤ 1} ∪ {(x, 0)|0 ≤ x ≤ 1}.

First, the global maximum cannot be on (∂D)1; indeed, D̊ lies to the left of (∂D)1 and

∂xΠ1(x, y) = −2
√

F̄ (x) ≤ 0, where we have introduced F̄ (x) = F (x) − F (x0), so that

Π1 assumes higher values in D̊ than on (∂D)1. Next, Π1(x, x) =
√

vx−3I(x) on (∂D)2,

and thus max Π1(x, x) = Π1(x
∗∗, x∗∗) with 0 < x∗∗ = F̄−1(v/9) < x∗ (recall (2.18) and

note that F̄ > 0 is increasing). Finally, Π1(x, 0) = −2I(x) ≤ 0 on (∂D)3, and thus

max(∂D)3 Π1 ≤ 0 < Π1(x
∗∗, x∗∗). In total, then, we find that max Π1 = Π1(x

∗∗, x∗∗) > 0.

Next, Π2(x, y) ≤ Π1(x, y) ≤ Π1(x
∗∗, x∗∗). Since the leftmost equality holds only in

an O(ε1/2)-neighborhood of x = 1, we find that max Π2 < Π1(x
∗∗, x∗∗), as desired.

Additionally, Π3 ≤ Π2 on D, and thus also maxD Π3 < maxD Π1. Next, Π4 has

no critical points in D̊, and hence we need to examine its behavior on ∂D. First,

the maximum cannot be on (∂D)1 by the same argument we used for Π1. Next,

Π4(x, x) = J−(x)−2I(1) on (∂D)2, and thus max(∂D)2 Π4 = Π4(x∗, x∗) = J−(x∗)−2I(1).

Finally, Π4 ≤ −2I(1) < Π4(x∗, x∗) on (∂D)3, and hence max Π4 = J−(x∗) − 2I(1) =

max Π2 < max Π1, as desired. Finally, Π5 ≤ Π4 and Π6 ≤ Π4, and the desired result

now follows.

These estimates show, then, that max Π1 = Π(x∗∗, x∗∗) > max Πj , for j = 2, . . . , 6.

Since (x∗∗, x∗∗) ∈ ∂D and its Jacobian satisfies DΠ1(x
∗∗, x∗∗) 6= 0, Theorem Appendix

D.1 yields for (3.10) the asymptotic formula

I1 = ε3/4C ′
1

(

ε−1/4 C
3
1 C

3
2

8π3/2
exp

(

Π1(x
∗∗, x∗∗)√
ε

))

= ε1/2C ′′
1 exp

(

Π1(x
∗∗, x∗∗)√
ε

)

,

for some O(1) constants C ′
1, C

′′
1 > 0. Since I2 = O(ε1/6δ−1) (3.8) and, by (2.15),

I1

I2
= ε1/3C

′′
1

C3
exp

(

Π1(x
∗∗, x∗∗) − J−(x∗)√

ε

)

with

Π1(x
∗∗, x∗∗) − J−(x∗) = [J−(x∗∗) − J−(x∗)] − 2I(x∗∗) < 0

(recall that x∗ is defined in (2.18) as the location of the maximum of J−), it indeed

follows that I1 is exponentially small compared to I2.

We conclude that a000 is given by δ I2 at leading order. Combining the expressions

(3.8)–(3.9) with the definition of h2 in (3.6), we obtain the leading order result (3.1)
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by using the fact that f(x∗) = ℓ, also at leading order. To derive this last identity,

observe that—in the regime λ0 ≪ 1—it holds that λ∗ = 0 at O(1), see (1.14), (1.16), or

equivalently that v = f(0) − ℓ; further, and also to leading order, F (x∗) = v by (2.18),

so that the desired identity follows from the definition F (x) = f(0) − f(x) applied at

x = x∗. Finally, we note that higher order terms in formula (3.1) may be obtained solely

by considering I2, as I1 is exponentially smaller than I2.

4. Emergence of a stable DCM

The trivial (zero) state is, by construction, a fixed point of the ODEs (2.29)–(2.31) for

the Fourier coefficients. In this and the next section, we identify the remaining fixed

points of that system and determine their stability. In this entire section, we work

exclusively in the regime ρ = 1 and Λ0 = O(1).

4.1. Asymptotic expressions for bm00, a
′
00k, and b′m0k

As stated in the previous section, where we derived an asymptotic expression for a000,

asymptotic expressions for the coefficients bm00, a
′
00k, and b′m0k appearing in (2.29)–(2.31)

are derived independently in Sections 5–7 below. Here, we summarize the leading order

behavior of these coefficients, including also (3.1) for completeness:

a000 = A(Λ0),

bm00 = B, for m≪ ε−1/3,

a′00k = −A′
k(Λ0)A(Λ0), for 0 6= k ≪ ε−1/3,

b′m0k = −A′
k(Λ0)B, for 0 6= k,m≪ ε−1/3.

(4.1)

The function A was introduced in (3.1)–(3.2), whereas B =
√

2 (1− ν) f(0) is a positive

O(1) constant. Further, we have introduced the function A′
k via

A′
k(Λ0) = α′ a′k(Λ0), where α′ =

√
2C2 σ

1/3
0

C1C3 σ
1/2
∗

and a′k(Λ0) =
cos(

√
Nk x∗)

Nk + Λ0
. (4.2)

Here, C3 = (Ai′(A1))
2. Note that, similarly to α (cf. (3.2)), α′ is an O(1) constant

independent of Λ0; the constants σ0, σ∗, C1 and C2 have been defined in (1.15) and (3.3).

We also note the following identity concerning Airy functions (see [5, Section 9.11(iv),

identity (9.11.5)])
∫ ∞

A1

Ai2(s) ds = (Ai′(A1))
2, or equivalently C2

1 C3 = 1,

which, in turn, yields an identity that will prove to be of exceeding importance in the

rest of this section—namely,

2α = α′B. (4.3)

Asymptotic formulas for bm00, a
′
00k, and b′m0k and for higher values of m and k can be

derived similarly. However, seeing as such formulas only contribute higher order terms

in our analysis below, we refrain from presenting the details. In what follows, instead,

we treat (4.1) as being valid for all values of k and m.
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4.2. The reduced system

The system (2.29)–(2.31) exhibits asymptotically disparate timescales depending on the

value of ρ and associated with the asymptotic magnitudes of the eigenvalues. In this

section, we investigate the case ρ = 1, in which regime Ω0 and Ψ0, Ψ1, . . . evolve on a

slow timescale and the higher-order modes Ω1, Ω2, . . . become slaved to them. Setting,

then, ρ = 1 and rescaling time (with a slight abuse of notation) as t = ετ , the evolution

equations become

Ω̇0 = Λ0Ω0 − εc−1
∑

m≥0

∑

n≥0

amn0ΩmΩn − εc−1
∑

m≥0

∑

n≥0

bmn0ΨmΩn, (4.4)

Ψ̇k = −NkΨk − εc−1
∑

m≥0

∑

n≥0

a′mnkΩmΩn − εc−1
∑

m≥0

∑

n≥0

b′mnkΨmΩn, k ≥ 0, (4.5)

ε2/3Ω̇k = −ΛkΩk − εc−1/3
∑

m≥0

∑

n≥0

amnkΩmΩn − εc−1/3
∑

m≥0

∑

n≥0

bmnkΨmΩn, k ≥ 1. (4.6)

(Here also, the overdot denotes differentiation with respect to t.) It is natural to

introduce slaving relations for the latter modes in this system,

Ωk = εck Gk(Ω0,Ψ1,Ψ2, . . .), for all k ≥ 1, (4.7)

where the positive constants c1, c2, . . . and the O(1) functions (with O(1) partial

derivatives) G1, G2, . . . are to be determined. To do so, we first write the evolution

equations for Ω0 and Ψ1, Ψ2, . . . under these slaving relations; we find

Ω̇0 = Λ0Ω0 − εc−1a000Ω
2
0 − εc−1Ω0

∑

m≥0

bm00Ψm,

Ψ̇k = −NkΨk − εc−1a′00kΩ
2
0 − εc−1Ω0

∑

m≥0

b′m0kΨm, k ≥ 0,

where we have retained only the leading order terms from each sum. Dominant balance

yields, then, c = 1. Next, the invariance equation for Ωk yields that the right member

of (4.6) must vanish to leading order. Dominant balance yields ck = 2/3 and

Gk(Ω0,Ψ1,Ψ2, . . .) = −a00k

Λk
Ω2

0 −
Ω0

Λk

∑

m≥0

bm0kΨm.

Recalling, also, (4.1), we arrive at the evolution equations

Ω̇0 = Λ0Ω0 − AΩ2
0 −B Ω0

∑

m≥0 Ψm ,

Ψ̇k = −NkΨk + A′
k

[

AΩ2
0 +B Ω0

∑

m≥0 Ψm

]

, k ≥ 0.
(4.8)

Here also, we have retained only the leading order terms from each sum.

Remark 4.1. The ODE (1.17)—describing the flow on the one-dimensional center

manifold in the regime where λ0 = ερΛ0 ≪ ε—can be obtained from the system (4.8)

above as its Λ0 → 0 limit. Indeed, the Ψ-modes become slaved to the mode Ω0 in this

limit, and (4.8) reduces to (1.17) with a000(0) replacing A = a000(Λ0) (cf. (4.1)). Note

that a000 has a removable singularity at zero, so we write a000(0) = limΛ0→0 a000(Λ0) =

(1−x∗)α. Using (3.2), it is plain to check that, indeed, the formula for a000(0) reported

in (1.19) equals (1 − x∗)α.
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4.3. The bifurcating steady state

In this section, we identify the nontrivial fixed point of the reduced system (4.8). In

particular, we show that this fixed point is given to leading order by the formulas

Ω∗
0(Λ0) =

Λ0

(1 − x∗)α
and Ψ∗

k(Λ0) =
2 Λ2

0 cos(
√
Nk x∗)

(1 − x∗)BNk (Nk + Λ0)
, (4.9)

where k ≥ 0 and the parameter α was introduced in (3.2). Plainly, Ω∗
0 remains positive,

and hence also ecologically relevant, for all positive values of Λ0 and all values of

0 ≤ x∗ < 1 (equivalently, all positive values of v up to the co-dimension two point).

Further, the leading order expression (4.9) for Ω∗
0 exactly matches

Ω∗
0 =

Λ0

a000(0)
, for Λ0 → 0, (4.10)

cf. our discussion in the Introduction and in Remark 4.1 above. It will also be elucidated

in Section 4.3.2 below that this fixed point corresponds to a DCM with an O(ε) biomass

and an associated O(ε) nutrient depletion.

Note that the denominators in the formulas for Ω∗
0 and Ψ∗

k vanish for x∗ = 1. As

explained in the Introduction, this value is attained by x∗ at the co-dimension two point

where DCMs and BLs bifurcate concurrently. This is another indication that the nature

of the co-dimension two bifurcation is of independent analytical interest.

4.3.1. Derivation of (4.9) First, setting the left members of (4.8) to zero, we obtain

an algebraic system for the nontrivial steady states,

Λ0 − AΩ0 − B
∑

m≥0

Ψm = 0, (4.11)

NkΨk − A′
k Ω0

[

AΩ0 +B
∑

m≥0

Ψm

]

= 0. (4.12)

Here, k ≥ 0 and we have removed a superfluous factor of Ω0 in (4.11) corresponding

to the trivial steady state. Substituting from this equation into (4.12), we obtain the

equivalent formulation

AΩ0 +B
∑

m≥0

Ψm = Λ0 and NkΨk − A′
k Λ0 Ω0 = 0. (4.13)

This system is readily solved to yield

Ω∗
0 =

Λ0

α′ sB Λ0 + A
and Ψ∗

k =
A′
k

Nk

Λ0 Ω∗
0, (4.14)

where s is defined by the series

s =
1

α′

∑

m≥0

A′
m

Nm

=
∑

m≥0

cos(
√
Nm x∗)

Nm (Nm + Λ0)
.

To produce a closed formula for s, we recast this formula as

s =
∑

m≥0

cos(
√
Nm x∗)

Nm (Nm + Λ0)
=

1

Λ0

(

∑

m≥0

cos(
√
Nm x∗)

Nm
−
∑

m≥0

cos(
√
Nm x∗)

Nm + Λ0

)

, (4.15)
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with both series in the right member converging absolutely and uniformly with x∗. The

second series appearing in the right member of this last equation is a Mittag-Leffler

expansion; analytic formulas for such expansions can often be obtained by means of the

Fourier transform. In particular, [21, Eq. (1.63)] (with a = π, b = i
√

Λ0, and l = 1)

yields the explicit formula

∑

m≥0

cos
(√

Nm x∗
)

Nm + Λ0
=

sin
(

i
√

Λ0 (1 − x∗)
)

2i
√

Λ0 cos(i
√

Λ0)
=

sinh
(√

Λ0 (1 − x∗)
)

2
√

Λ0 cosh
√

Λ0

=
a(Λ0)

2
, (4.16)

whence also
∑

m≥0

cos
(√

Nm x∗
)

Nm
=
a(0)

2
=

1 − x∗
2

. (4.17)

Substituting into (4.15), we obtain

s =
1 − x∗
2Λ0

− a(Λ0)

2Λ0
, (4.18)

and therefore (4.14) for Ω∗
0 becomes

Ω∗
0 =

Λ0

(α− α′B/2) a(Λ0) + (1 − x∗)α′B/2
.

The final formulas collected in (4.9) now follow by identity (4.3) and (4.14) for Ψ∗
k.

4.3.2. Ecological interpretation We next proceed to show that the steady state

(stationary pattern) we identified above corresponds to an O(ε) biomass with a

corresponding O(ε) depletion of the nutrient. Indeed, (2.19) yields the leading order

expression
∫ 1

0

ω+(x) dx = ε5/6 δΩ∗
0

∫ 1

0

ω+
0 (x) dx (4.19)

for the biomass. Here, we have also recalled that c = 1 and that Ω∗
1,Ω

∗
2, . . . are higher

order, cf. (4.7). Recalling the definition of δ in (2.15) and using the explicit leading

order formula (A.2) for ω+
0 , we obtain

δ

∫ 1

0

ω+
0 (x) dx = ε−1/12 C1C2σ

1/3
0

2
√
π

∫ 1

0

F−1/4(x) exp

(

J−(x) − J−(x∗)√
ε

)

dx.

As mentioned in Section 3, J−(·) has a sole, locally quadratic maximum at x∗, and

hence the integrand above is exponentially small except in an asymptotically small

neighborhood of that point. Hence, the integral is of the type considered in Appendix

D, and Theorem Appendix D.1 yields, to leading order,

δ

∫ 1

0

ω+
0 (x) dx = ε−1/12 C1C2 σ

1/3
0

2
√
π

(

ε1/4

√
2π

F 1/4(x∗)
√

−J ′′
−(x∗)

)

= ε1/6 C1C2 σ
1/3
0 σ−1/2

∗ ,

where we have also recalled that J ′′
− = −2−1F−1/2F ′. Substituting back into (4.19),

together with the formula for Ω∗
0 given in (4.9), we finally recover the first expression

(1.20) for the total biomass given in the Introduction. The second expression may be
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derived by noting that (1.16) implies the leading order result ν/(1+ jH) = ℓ+v, as well

as that εΛ0 = ν(1 + jH)−1 − ℓ− v.

Similarly, (2.19) yields the leading order formula
∫ 1

0

η(x) dx = ε5/6δΩ∗
0

∫ 1

0

η0(x) dx+ ε
∑

k≥0

Ψ∗
k

∫ 1

0

ζk(x) dx. (4.20)

Now,
∫ 1

0
ζk(x) dx = (−1)k/Nk by (2.5). Further, the integral

∫ 1

0
η0(x) dx can be

calculated using (B.1): integrating both members over [0, x] and using the boundary

condition at zero, we find

ℓΛ0

∫ 1

0

η0(x) dx = ℓ ∂xη0(1) +

∫ 1

0

f(x)ω+
0 (x) dx. (4.21)

The derivative ∂xη0(1) can be estimated at leading order by (B.5). Differentiating both

members of that formula, we find

ℓ ∂xη0(1) =

∫ 1

0

[

tanh
√

Λ0 sinh
(

√

Λ0(1 − y)
)

− cosh
(

√

Λ0(1 − y)
)]

f(y)ω+
0 (y) dy.

It follows from (4.21), then, that

ℓΛ0

∫ 1

0

η0(x) dx

=

∫ 1

0

[

1 + tanh
√

Λ0 sinh
(

√

Λ0(1 − y)
)

− cosh
(

√

Λ0(1 − y)
)]

f(y)ω+
0 (y) dy.

Applying Theorem Appendix D.1, we obtain
∫ 1

0

η0(x) dx = ε1/6δ−1 C1C2 σ
1/3
0 σ

−1/2
∗

Λ0

(

1 − cosh
(√

Λ0 x∗
)

cosh
√

Λ0

)

, (4.22)

which is the desired formula for
∫ 1

0
η0(x) dx. Recalling also (4.9) for Ψ∗

k, we obtain from

(4.20) the leading order result
∫ 1

0

η(x) dx = εΩ∗
0(Λ0)

[

C1C2 σ
1/3
0 σ

−1/2
∗

Λ0

(

1 − cosh
(√

Λ0 x∗
)

cosh
√

Λ0

)

+ α′ s̄Λ0

]

, (4.23)

where

s̄ =
1

α′

∑

m≥0

(−1)m
A′
m(Λ0)

N2
m

=
∑

m≥0

(−1)m
cos
(√

Nm x∗
)

N2
m (Nm + Λ0)

=
∑

m≥0

sin
(√

Nm (1 − x∗)
)

N2
m (Nm + Λ0)

. (4.24)

This equation, together with (4.9) for Ω∗
0, yields the total nutrient depletion level to

leading order.

4.4. Stability of the small pattern

In this section, we examine the stability of the DCM-like fixed point (Ω∗
0,Ψ

∗) =

(Ω∗
0,Ψ

∗
0,Ψ

∗
1, . . .) which we identified in the previous section. In particular, we show

that this fixed point is stabilized through a transcritical bifurcation at Λ0 = 0 and that

it subsequently undergoes a destabilizing Hopf bifurcation.
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4.4.1. The eigenvalue equation We start by linearizing the ODE system

Ω̇0 = Λ0 Ω0 − AΩ2
0 −B Ω0

∑

m≥0

Ψm,

Ψ̇k = −NkΨk + A′
k

[

AΩ2
0 +BΩ0

∑

m≥0

Ψm

]

, for all k ≥ 0,

around (Ω∗
0,Ψ

∗). Letting Ω0 = Ω∗
0 + dΩ0 and Ψk = Ψ∗

k + dΨk and recalling (4.13), we

find that the corresponding linearized problem reads

˙dΩ0 = −AΩ∗
0 dΩ0 − BΩ∗

0

∑

m≥0

dΨm, (4.25)

˙dΨk = A′
k [Λ0 + AΩ∗

0] dΩ0 + [A′
k B Ω∗

0 −Nk] dΨk + A′
k BΩ∗

0

∑

m6=k
dΨm, (4.26)

where we have only retained the leading order component from each term.

Truncating at the arbitrary value k = K ∈ N, we obtain the system ˙δΦ = LK δΦ,

where δΦ = (dΩ0, dΨ0, dΨ1, . . . , dΨK)T and

LK =

























−AΩ∗
0 −B Ω∗

0 −B Ω∗
0 . . . −B Ω∗

0

A′
0(AΩ∗

0 + Λ0) A′
0B Ω∗

0 −N0 A′
0B Ω∗

0 . . . A′
0B Ω∗

0

A′
1(AΩ∗

0 + Λ0) A′
1B Ω∗

0 A′
1 BΩ∗

0 −N1 . . . A′
1B Ω∗

0

...
...

...
. . .

...

A′
K(AΩ∗

0 + Λ0) A′
K BΩ∗

0 A′
K BΩ∗

0 . . . A′
K B Ω∗

0 −NK

























.

To characterize the spectrum of this matrix, we derive a formula for its characteristic

polynomial det(L0 − λI). First, we use the first row of L0 − λI to eliminate the off-

diagonal entries of all other rows. In this way, we find that the equation det(L0−λI) = 0

is equivalent to setting to zero the determinant
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

λ+ AΩ∗
0 B Ω∗

0 B Ω∗
0 . . . B Ω∗

0

A′
0(λ− Λ0) λ+N0 0 . . . 0

A′
1(λ− Λ0) 0 λ+N1 . . . 0

...
...

...
. . .

...

A′
K(λ− Λ0) 0 0 . . . λ+NK

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

Next, we can use the (k + 2)−nd column to eliminate the (k + 2)−nd entry of the first

column, for 0 ≤ k ≤ K, as long as λ 6= −Nk. Since λ = −Nk if and only if A′
k = 0

(as can be shown by expanding the determinant along the (k + 2)−nd row), we can

eliminate all entries of the first column. (Note that A′
k may indeed be zero: indeed, A′

k

is proportional to cos((k + 1/2)π x∗), which may or may not be zero depending on the

values of k and x∗.) Defining K = {k : A′
k 6= 0} ⊂ {0, . . . , K}, Kk = K − {k}, and
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eliminating the entries of the first column as detailed above, we obtain
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

Q(λ) B Ω∗
0 BΩ∗

0 . . . B Ω∗
0

0 λ+N0 0 . . . 0

0 0 λ+N1 . . . 0

...
...

...
. . .

...

0 0 0 . . . λ+NK

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= 0. (4.27)

Here,

Q(λ) = (λ+ AΩ∗
0)
∏

k∈K
(λ+Nk) +BΩ∗

0 (Λ0 − λ)
∑

k∈K
A′
k

∏

m∈Kk

(λ+Nm).

As detailed above, λ = −Nk solves (4.27) if and only if A′
k = 0 (equivalently, if and only

if k 6∈ M). Further, Λ0 > 0 cannot be an eigenvalue, since Q(Λ0) > 0 and Λ0 +Nk > 0,

for all k ∈ {0, . . . , K}—note that A,N0, N1, . . . , NK are all positive constants. Hence, we

can extend the set over which we sum in the formula above to the entire set {0, . . . , K}
and rewrite the equation for Q(λ) in the form

Q(λ) =

[

B Ω∗
0

K
∑

k=0

A′
k

Nk + λ
− λ+ AΩ∗

0

λ− Λ0

]

(Λ0 − λ)
∏

k∈K
(Nk + λ).

As we just noted, the elements of the set {−Nk}k∈K are not eigenvalues of L0.

Hence, the eigenvalues of L0 are {−Nk}k 6∈K together with all solutions to

BΩ∗
0

K
∑

k=0

A′
k

Nk + λ
=
λ+ AΩ∗

0

λ− Λ0
.

Substituting for A′
k from (4.2) and for Ω∗

0 from (4.9), recalling the identity (4.3), and

letting K → ∞, we rewrite this equation in the form

2Λ0

1 − x∗

∑

k≥0

cos
(√

Nk x∗
)

(Nk + λ) (Nk + Λ0)
=
λ+ Λ0 a(Λ0)/(1 − x∗)

λ− Λ0

.

Here again, we may write

∑

k≥0

cos
(√

Nk x∗
)

(Nk + λ) (Nk + Λ0)
=

1

λ− Λ0

(

∑

k≥0

cos
(√

Nk x∗
)

Nk + Λ0

−
∑

k≥0

cos
(√

Nk x∗
)

Nk + λ

)

=
1

2

a(Λ0) − a(λ)

λ− Λ0

,

so that the eigenvalue problem becomes (1 − x∗)λ + Λ0 a(λ) = 0. Recalling that

a(0) = 1 − x∗, we recast this equation as

λ
a(0)

a(λ)
= −Λ0, where we recall that a(λ) =

sinh
(√

λ(1 − x∗)
)

√
λ cosh

√
λ

. (4.28)

This equation is satisfied by some λ if and only if it is also satisfied by its complex

conjugate λ∗, as the right member is real and (λ−1a(λ))∗ = (λ∗)−1a(λ∗). Hence, we
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may restrict arg(λ) to lie in [0, π]. Further writing µ :=
√
λ = µR + iµI , we rewrite the

eigenvalue equation in its final form,

p(µ) := −(1 − x∗)µ
3 cosh µ

sinh ((1 − x∗)µ)
= Λ0, with arg(µ) ∈ [0, π/2]. (4.29)

We note here for later use that

Re(p(µ))

1 − x∗
= µR(3µ2

I − µ2
R)

sinh[(2 − x∗)µR] cos(x∗µI) − sinh(x∗µR) cos[(2 − x∗)µI ]

cosh[2(1 − x∗)µR] − cos[2(1 − x∗)µI ]

+ µI(3µ
2
R − µ2

I)
cosh[(2 − x∗)µR] sin(x∗µI) − cosh(x∗µR) sin[(2 − x∗)µI ]

cosh[2(1 − x∗)µR] − cos[2(1 − x∗)µI ]
,

Im(p(µ))

1 − x∗
= µI(µ

2
I − 3µ2

R)
sinh[(2 − x∗)µR] cos(x∗µI) − sinh(x∗µR) cos[(2 − x∗)µI)]

cosh[2(1 − x∗)µR] − cos[2(1 − x∗)µI ]

+ µR(3µ2
I − µ2

R)
cosh[(2 − x∗)µR] sin(x∗µI) − cosh(x∗µR) sin[(2 − x∗)µI ]

cosh[2(1 − x∗)µR] − cos[2(1 − x∗)µI ]
.

4.4.2. Analysis of (4.29) for Λ0 ↓ 0 We first establish that, as Λ0 ↓ 0, the eigenvalues

{λn}n≥−1 remain each in a neighborhood of the discrete values −Λ0,−N0,−N1, . . ..

For Λ0 = 0, (4.29) yields either µ = 0 (equivalently, λ = 0) or cosh µ = 0 (whence

µ = i
√
Nm, m ≥ 0 or, equivalently, λ ∈ {−Nm}m≥0). To investigate the possibility of

negative eigenvalues λ for Λ0 > 0, we set µR = 0 to find that (4.29) reduces to

p(iµI) =
(1 − x∗)µ

3
I

1 − cos[2(1 − x∗)µI ]
sin[(1 − x∗)µI ] cosµI = Λ0. (4.30)

For Λ0 ↓ 0, there is plainly a small root of this equation, µI =
√

Λ0 +O(Λ0), yielding the

small eigenvalue λ = −Λ0 + O(Λ2
0). Additionally, all eigenvalues of the set {−Nm}m≥1

perturb and remain real for small enough values of Λ0 > 0. Indeed, p(i·) intersects zero

transversally at {√Nm}m≥0, whence the persistence of any finite number of eigenvalues

from among this set is automatically established. That the remaining, infinitely many

eigenvalues also persist can be established by noting that, if the maximum value of p(i·)
is positive between successive zeros, then this value grows unboundedly with µI . For

the two first eigenvalues, in particular, we have the Taylor expansions

λ−1 = −Λ0 + O(Λ2
0) and λ0 = −N0 + 4

sin[(1 − x∗) π/2]

(1 − x∗) π
Λ0 + O(Λ0),

which demonstrate that both remain in the interval (−N0, 0) and approach each other

as Λ0 increases, see also Figure 3. These are precisely the two first eigenvalues that

collide as Λ0 is increased, yielding a pair of complex conjugate eigenvalues.

Next, the possibility of positive eigenvalues λ—equivalently, positive solutions of

(4.29)—can be excluded by noticing that −Λ0 < 0 while p(µ) > 0 for all µ > 0. In fact,

the possibility of eigenvalues anywhere but in a neighborhood of the negative axis can

be similarly excluded by observing that

|p(µ)| = (1 − x∗) |µ|3
(

cosh(2µR) + cos(2µI)

cosh[2(1 − x∗)µR] − cos[2(1 − x∗)µI ]

)1/2

→ ∞, as µR → ∞.



Emergence of localized structures in a phytoplankton–nutrient model 30

0 1 2 3 4 5

−0.4

−0.2

0

0.2

0.4

−25 −20 −15 −10 −5 0

−0.4

−0.2

0   

0.2 

0.4

λ

pp

µ
I

Figure 3. Plots of the function p(iµI) (see (4.30)) versus µI (left panel) and versus

λ = −µ2

I (right panel) for x∗ = 0.7. Also plotted: the level line at p = Λ0, here set

at 0.2; the first two members of the sequence {
√

Nk}k≥0 (left panel) and {−Nk}k≥0

(right panel) as solid dots; and the two smallest solutions µI to (4.30) (left panel)

together with the first two eigenvalues λ−1 and λ0 (right panel) they correspond to,

all as hollow dots.

Plainly, for every value of Λ0, there exists a value µ∗
R(Λ0) > 0 which depends

continuously on Λ0, satisfies limΛ0→0 µ
∗
R(Λ0) = 0, and is such that the equation

|p(µ)| = |Λ0| cannot be satisfied for any µR > µ∗
R(Λ0). It follows that all solutions

to (4.29) must lie in the half plane {µ |µR ≤ µ∗
R(Λ0)} which, in turn, corresponds to

a neighborhood of the half axis {λ ∈ R | λ ≤ |µ∗
R(Λ0)|2}. A local analysis around the

origin now establishes the absence of eigenvalues with positive real parts, for Λ0 small

enough, and hence also the result.

4.4.3. Complexification of eigenvalues and the Hopf bifurcation As we briefly

mentioned in the last section in conjunction with Figure 3, the two principal eigenvalues

λ−1 and λ0 come closer together as Λ0 increases. Eventually, they collide at a specific

value µ′
I ∈ (0, π/2) and for Λ0 = Λ′

0 = p(iµ′
I) = maxµI∈(0,π/2) p(iµI) > 0. For Λ0 > Λ′

0,

this pair of eigenvalues becomes complex, so it is natural to examine whether it crosses

into the right half-plane through the imaginary axis. (Note that no eigenvalues can

cross through zero, as (4.28) does not admit a zero eigenvalue for Λ0 > 0.)

To locate imaginary eigenvalues λ = iλI ∈ iR, we set µR = µI = µ̄ > 0 and rewrite

the real and imaginary parts of p as

Re(p(µ)) = 2(1 − x∗)µ̄
3

[

cosh[(2 − x∗)µ̄] sin(x∗µ̄) − cosh(x∗µ̄) sin[(2 − x∗)µ̄]

cosh[2(1 − x∗)µ̄] − cos[2(1 − x∗)µ̄]

+
sinh[(2 − x∗)µ̄] cos(x∗µ̄) − sinh(x∗µ̄) cos[(2 − x∗)µ̄]

cosh[2(1 − x∗)µ̄] − cos[2(1 − x∗)µ̄]

]

,
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Im(p(µ)) = 2(1 − x∗)µ̄
3

[

cosh[(2 − x∗)µ̄] sin(x∗µ̄) − cosh(x∗µ̄) sin[(2 − x∗)µ̄]

cosh[2(1 − x∗)µ̄] − cos[2(1 − x∗)µ̄]

−sinh[(2 − x∗)µ̄] cos(x∗µ̄) − sinh(x∗µ̄) cos[(2 − x∗)µ̄)]

cosh[2(1 − x∗)µ̄] − cos[2(1 − x∗)µ̄]

]

.

The condition Im(p(µ)) = 0, derived from (4.29), yields

cosh[(2 − x∗)µ̄] sin(x∗µ̄) − cosh(x∗µ̄) sin[(2 − x∗)µ̄]

= sinh[(2 − x∗)µ̄] cos(x∗µ̄) − sinh(x∗µ̄) cos[(2 − x∗)µ̄)]. (4.31)

Therefore, the equation Re(p(µ)) = Λ0, similarly derived from (4.29), becomes

4(1 − x∗)µ̄
3 cosh[(2 − x∗)µ̄] sin(x∗µ̄) − cosh(x∗µ̄) sin[(2 − x∗)µ̄]

cosh[2(1 − x∗)µ̄] − cos[2(1 − x∗)µ̄]
= Λ0. (4.32)

Condition (4.31) determines the values of µ̄ corresponding to imaginary eigenvalues

λ = 2iµ̄2, while (4.32) yields the corresponding values of Λ0 for which these eigenvalues

appear. Since the former of these can be recast as

e(2−x∗)µ̄ sin
(

x∗µ̄− π

4

)

− ex∗µ̄ sin
(

(2 − x∗)µ̄− π

4

)

+ e−(2−x∗)µ̄ sin
(

x∗µ̄+
π

4

)

− e−x∗µ̄ sin
(

(2 − x∗)µ̄+
π

4

)

=0,(4.33)

we see that there exists a whole, discrete sequence {µ̄k}k≥0 of values µ̄, see also Figure 4.

As k → ∞, {µ̄k}k≥0 limits to {(k + 1/4)π x∗
−1}k≥0, the sequence of the set of zeroes of

the first term in (4.33) which becomes dominant in the regime µ̄→ ∞. Equation (4.32)

yields the leading order result

Λ0 = 2
√

2π3(1 − x∗) x∗
−3(−1)kk3 e(k+1/4)π, as k → ∞,

which establishes that the values µ̄k corresponding to even values of k yield a positive,

increasing sequence of values of Λ0. (Odd k−values yield negative Λ0−values.) In

particular, the first Hopf bifurcation occurs at an O(1) value of Λ0 when the complex

conjugate pair (λ−1, λ0) crosses into the right half-plane through µ̄0. Higher, even

k−values correspond to Hopf bifurcations occurring at higher values of Λ0, presumably

when higher order eigenvalues cross into the right half-plane.

These last remarks conclude our discussion of the DCM-like steady state for O(1)

values of Λ0. In the next section, we investigate a logarithmic scaling for Λ0 in which

the number of steady states of the system (4.11)–(4.12) becomes two.

4.5. A second DCM pattern

So far, we have identified a DCM pattern corresponding to an O(ε) biomass which

is stabilized through a transcritical bifurcation at Λ0 = 0 and destabilized through a

secondary, Hopf bifurcation at an O(1) value of Λ0. Here, we show that, the system

(4.4)–(4.6) admits a second, asymptotically larger, DCM-like steady state corresponding

to an O(ε1/2) biomass. We refrain from establishing the stability type, origins and

eventual fate of that second steady state, reserving those problems to a later work.
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Figure 4. Plots of the function in the left member of (4.33) for two distinct values

of x∗, namely x∗ = 0.7 (left panel) and x∗ = 0.3 (right panel). The solid dots mark

the members of the sequence {(k +1/4)π x∗
−1}k≥0. Note that the zeros of the plotted

function approach this sequence rather quickly, with the quality of the approximation

decreasing as x∗ ↑ 1. Indeed, in that regime, all exponentials appearing in (4.33)

remain approximately equal for a large range of µ̄−values, and hence the first term

becomes dominant only in the far range.

We start by noting that the inclusion of the first higher order term in the formula

for a′00k reported in (4.1) yields

a′00k = −A′
k(Λ0)A(Λ0) + ε1/2 α Ã′

k(Λ0).

This formula is derived in Section 6.3, see (6.2) in particular. Here, the Λ0−independent

constants α and α′ were defined in (3.2) and (4.2), respectively, whereas the functions

a and a′ are reported in (3.1) and (4.2). Also, Ã′
k(Λ0) = α̃′ ã′(Λ0) cos

(√
Nk x∗

)

, with

α̃′ =
C1C2 σ

1/3
0 σ

−1/2
∗√

2 f(0)
, (4.34)

ã′(Λ0) =
sinh

(√
Λ0 (1 − x∗)

) ∫ x∗
0
f(x) cosh

(√
Λ0 x

)

dx√
Λ0 cosh

√
Λ0

. (4.35)

This formula for ã′(Λ0) is also valid in a logarithmic regime for Λ0, see (6.3) for details.

Since the first term in the formula for a′00k above decreases exponentially with Λ0 (see

(3.2)) whereas the second term decreases only algebraically, the two terms become

asymptotically comparable for values of Λ0 logarithmically large in ε, see Section 6

for details.

Replacing the formula for a′00k in (4.1) by the formula above, substituting into

(4.4)–(4.6), and working as in Section 4.2, we obtain the system

Ω̇0 = Λ0Ω0 − AΩ2
0 − B Ω0

∑

m≥0 Ψm ,

Ψ̇k = −NkΨk +
[

(A′
k A− ε1/2 α Ã′

k) Ω2
0 + A′

k B Ω0

∑

m≥0 Ψm

]

.
(4.36)
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This is the analogue of (4.8) with the inclusion of higher order terms. The fixed points

(Ω∗
0,Ψ

∗) of this system are found, here again, by setting the left members to zero,

Λ0 = AΩ∗
0 +B

∑

m≥0 Ψ∗
m ,

0 = −NkΨ
∗
k + A′

k Λ0 Ω∗
0 − ε1/2αÃ′

k (Ω∗
0)

2.
(4.37)

Solving the second equation for Ψ∗
k, we find an explicit expression for Ψ∗

k in terms of Ω∗
0,

Ψ∗
k =

A′
k

Nk

Λ0 Ω∗
0 − ε1/2α

Ã′
k

Nk

(Ω∗
0)

2.

Substituting this expression into the first equation in (4.37), we recover a singularly

perturbed quadratic equation for Ω∗
0,

ε1/2αB

(

∑

m≥0

Ã′
m

Nm

)

(Ω∗
0)

2 −
(

A+B Λ0

∑

m≥0

A′
m

Nm

)

Ω∗
0 + Λ0 = 0. (4.38)

In Section 4.3.1, we obtained the formula

A+B Λ0

∑

m≥0

A′
m

Nm
= αa(0),

while (4.16) yields

∑

m≥0

Ã′
m

Nm

= α̃′ ã′(Λ0)
∑

m≥0

cos(
√
Nm x∗)

Nm

=
a(0)

2
α̃′ ã′(Λ0).

It follows that the quadratic equation yielding Ω∗
0 can be recast as

ε1/2 α̃
′B ã′(Λ0)

2
(Ω∗

0)
2 − Ω∗

0 +
Λ0

α a(0)
= 0.

The two solutions of this equation are

Ω∗,±
0 = ε−1/2 1 ±

√

1 − 2ε1/2 α̃′B Λ0 ã′(Λ0)/(αa(0))

α̃′B ã′(Λ0)
=
{ 2ε−1/2/(α̃′B ã′(Λ0)),

Λ0/(αa(0)),

with the first one corresponding to the asymptotically larger DCM-pattern and the

second one corresponding to the DCM-pattern identified trough our earlier work. We

remark here that this first steady-state is, indeed, within the reach of our asymptotic

methods, as Ω∗
0 and Ψ∗

k safely remain asymptotically smaller than the asymptotic bounds

ε−3/4 and ε−1 for which our work in Section 2.3.1 remains valid. Note also that this

steady state is a nonlinear function of Λ0, with the distinguished limits

lim
Λ0→0

Ω∗
0(Λ0) =

2ε−1/2

(1 − x∗) α̃′B
∫ x∗
0
f(x) dx

and Ω∗
0(Λ0) =

4ε−1/2

ℓ α̃′B
Λ0, as Λ → ∞.

In particular, this second pattern approaches a nonzero value as Λ0 ↓ 0 and eventually

grows linearly for Λ0 ≫ 1.
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5. An asymptotic formula for bm00

In this section, we derive the asymptotic formula for bm00 given in (4.1), where m ∈ N

and

bm00 = (1 − ν)

∫ 1

0

f(x) ζm(x)ω2
0(x) dx. (5.1)

As detailed earlier, the function ω0, appearing in (5.1), decays exponentially outside an

O(ε1/3)−neighborhood of the origin (cf. (A.1)), whereas the period of the sinusoidal

term ζm is equal to 2π/
√
Nm = 4/(2m + 1). Below, we analyze the three different

regimes—in which the integrand is predominantly localized, concurrently localized and

oscillatory, and predominantly oscillatory—and we derive the leading order, uniform

asymptotic expansion

bm00 =



































b, for m≪ ε−1/3,

b C2
1

∫ ∞

0

cos

(

ε1/3
√
Nm τ

σ
1/3
0

)

Ai2 (τ + A1) dτ, for m = O(ε−1/3),

−b 6C3C
2
1 σ

2
0

εN2
m f(0)

, for m≫ ε−1/3.

(5.2)

Here, b =
√

2 (1 − ν) f(0), cf. Section 4.1.

5.1. The case m≪ ε−1/3

Here, 2π/
√
Nm ≫ ε1/3 and hence the integrand is predominantly localized around x = 0.

Thus, ζm may be approximated to leading order by ζm(0) =
√

2 in that neighborhood.

Since ‖ω0‖2 = 1 (cf. our discussion in Sections 2.1–2.2), we obtain the desired formula

bm00 ∼ b. (5.3)

5.2. The case m = O(ε−1/3)

Here, 2π/
√
Nm = O(ε1/3), and hence the neighborhood of the origin outside which ω0

decays exponentially and the period of the sinusoidal term are of the same asymptotic

magnitude. Defining the new variable τ = τ1 x in (5.1), with τ1 = |A1| /x0 (2.17), we

obtain

bm00 =

√
2 (1 − ν)

τ1

∫ τ1

0

f

(

τ

τ1

)

cos

(

√

Nm
τ

τ1

)

ω2
0

(

τ

τ1

)

dτ. (5.4)

Now, (A.1) yields, to leading order and for any τ0 ≪ ε−1/3,

ω0

(

τ

τ1

)

=















ε−1/6 C1 σ
1/6
0 Ai (τ + A1) , for τ ∈ [0,−A1),

ε−1/12 C1 C2 σ
1/3
0

2
√
π F 1/4(τ/τ1)

exp
(

− 1√
ετ1

∫ τ+A1

0

√

F ( t
τ1

+ x0) − F (x0) dt
)

,

for τ ∈ (−A1, τ0],

where we have also changed the integration variable by means of s = t/τ1+x0. These two

formulas agree—as, indeed, they should by construction—in the regime 1 ≪ τ0 ≪ ε−1/3.
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Indeed, recalling the asymptotic expansion of Ai in a neighborhood of infinity [2], we

find that the first branch of the formula above yields

ε−1/6 C1 σ
1/6
0

2
√
π τ 1/4

exp

(

−2

3
(τ + A1)

3/2

)

.

Similarly, the formula in the case τ ∈ (|A1| , τ0] becomes, upon Taylor-expanding F ,

ε−1/12 C1C2 σ
1/12
0 τ

1/4
1

2
√
π τ 1/4

exp

(

−2

3

√

σ0

ε

(

τ + A1

τ1

)3/2
)

.

That the two formulas agree now follows from the definition τ1 = |A1| /x0 and the

formulas (2.17) and (3.3) for x0 and C2. Hence, we may write

ω0

(

τ

τ1

)

∼ ε−1/6C1 σ
1/6
0 Ai (τ + A1) , for τ ≪ ε−1/3.

Since the contribution to the integral in (5.4) of greater values of τ may be estimated

to be exponentially small, we can write

bm00 = ε−1/3

√
2 (1 − ν)C2

1 σ
1/3
0

τ1

∫ ∞

0

f

(

τ

τ1

)

cos

(

√

Nm
τ

τ1

)

Ai2 (τ + A1) dτ

= bC2
1

∫ ∞

0

cos

(

ε1/3
√
Nm τ

σ
1/3
0

)

Ai2 (τ + A1) dτ, (5.5)

to leading order, as desired. Note that this formula reduces to (5.3), for m≪ ε−1/3.

5.3. The case m≫ ε−1/3

Here, 2π/
√
Nm ≪ ε1/3. Similarly to our work in the previous section, we define the new

variable τ = ε−1/3x. We find, then,

bm00 =
√

2 ε1/3 (1 − ν)

∫ ε−1/3

0

g(τ) cos
(

ε1/3
√

Nm τ
)

dτ,

where g(τ) = f
(

ε1/3τ
)

ω2
0

(

ε1/3τ
)

. Using Theorem Appendix D.4 (with λ = ε1/3
√
Nm,

Φ(t) = t = τ , and h(τ) = g(τ)) and the fact that the right-boundary term is

exponentially smaller than the left one, as ω0(1) is exponentially smaller than ω0(0)

(cf. Appendix A), we obtain

bm00 =
√

2 ε1/3 (1 − ν) Re

( ∞
∑

k=0

g(k)(0)

(

i

ε1/3
√
Nm

)k+1
)

=
√

2
1 − ν

ε1/3Nm

∞
∑

k=0

(−1)k+1g(2k+1)(0)

(

1

ε1/3
√
Nm

)2k

. (5.6)

Recalling the definition of g, and employing (A.1) and that Ai(A1) = Ai′′(A1) = 0, we

calculate

g′(0) = 0 and g′′′(0) = −6 [Ai′(A1)]
2C2

1 σ
2
0.

The desired result now follows, while (5.6) also reduces to (5.5) for m = O(ε−1/3).
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6. An asymptotic formula for a′00k

In this section, we derive the asymptotic formula for a′00k for O(1) values of Λ0 collected

in (4.1),

a′00k = −A′
k(Λ0)A(Λ0), for 0 6= k ≪ ε−1/3. (6.1)

Further, we extend this result to

a′00k = −
(

A′
k(Λ0)A(Λ0) − ε1/2 α Ã′

k(Λ0)
)

, for 0 6= k ≪ ε−1/3, (6.2)

which remains valid at least in the regime

Λ0 =
1

4x∗2
log2 ε+

1

x∗2
log ε log(− log ε) +

1

x∗2
log2 log ε+ µ log ε, (6.3)

for all µ ∈ (−∞, µ0] and µ0 > 0 any O(1) value. Here, A(Λ0) = αa(Λ0), A
′
k(Λ0) =

α′ a′k(Λ0), and Ã′
k(Λ0) = α̃′ ã′(Λ0). The Λ0−independent constants α, α′, and α̃′ were

defined in (3.2), (4.2), and (4.34), respectively, whereas the functions a, a′, and ã′ are

reported in (3.1), (4.2), and (4.35). We remark, here, that these results are only valid for

those values of k for which ζk(x∗) 6= 0. For the remaining values of k, Theorem Appendix

D.1 yields (algebraically) higher order results. Also, we note that asymptotic formulas

for higher values of k can be derived as in the previous section, albeit at considerable

extra computational cost.

We first write out explicitly the expression for a′00k yielded by (2.21),

a′00k = ε−1/3δ

∫ 1

0

a0(x)ω0(x)ψk(x) dx+ ε2/3δℓ−1

∫ 1

0

a0(x)ω
+
0 (x) ζk(x) dx.

Recalling the definition of a0 from (2.22) and working as in Section 3, we obtain further

a′00k = ε−1/3δ2

∫ 1

0

∫ x

0

h1(x, y)ω
+
0 (y)ω0(x)ψk(x) dydx

+ ε−1/3δ2

∫ 1

0

∫ 1

0

h2(x, y)ω
+
0 (y)ω0(x)ψk(x) dydx

+ ε2/3δ2ℓ−1

∫ 1

0

∫ x

0

h1(x, y) ζk(x)ω
+
0 (y)ω+

0 (x) dydx

+ ε2/3δ2ℓ−1

∫ 1

0

∫ 1

0

h2(x, y) ζk(x)ω
+
0 (y)ω+

0 (x) dydx.

Substituting, finally, from (C.21), we obtain an integral formula for a′00k which is

amenable to the sort of asymptotic analysis employed in Sections 3 and 5,

a′00k =
ε−1/3δ2

ℓ

[

(Wψ)
−1

∫ 1

0

∫ x

0

∫ x

0

h1,k(x, y, z)ω0(x)ψk,−(x)ω+
0 (y)ψ+

k,+(z) dzdydx

+ (Wψ)−1

∫ 1

0

∫ 1

0

∫ x

0

h2,k(x, y, z)ω0(x)ψk,−(x)ω+
0 (y)ψ+

k,+(z) dzdydx

− (Wψ)−1Dk(0)

∫ 1

0

∫ x

0

∫ 1

0

h1,k(x, y, z)ω0(x)ψk,−(x)ω+
0 (y)ψ+

k,−(z) dzdydx

− (Wψ)−1Dk(0)

∫ 1

0

∫ 1

0

∫ 1

0

h2,k(x, y, z)ω0(x)ψk,−(x)ω+
0 (y)ψ+

k,−(z) dzdydx
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Figure 5. The domains of integration for the integrals I1, . . . , I6 in (6.4).

+ (Wψ)−1

∫ 1

0

∫ x

0

∫ 1

x

h1,k(x, y, z)ω0(x)ψk,+(x)ω+
0 (y)ψ+

k,−(z) dzdydx

+ (Wψ)−1

∫ 1

0

∫ 1

0

∫ 1

x

h2,k(x, y, z)ω0(x)ψk,+(x)ω+
0 (y)ψ+

k,−(z) dzdydx

+ ε

∫ 1

0

∫ x

0

h1(x, y) ζk(x)ω
+
0 (x)ω+

0 (y) dydx

+ε

∫ 1

0

∫ 1

0

h2(x, y) ζk(x)ω
+
0 (x)ω+

0 (y) dydx

]

. (6.4)

Here, hi,k(x, y, z) = hi(x, y) f(z) ζk(z), for i = 1, 2, and the constants Dk(0) are reported

in (C.19)–(C.20). Let I1, . . . , I8 denote the integrals in the right member of (6.4) in the

order that they appear (the three-dimensional domains of integration for I1, . . . , I6 are

sketched in Figure 5). In what follows, we omit the term θ ω2
0,−(1; x0)ω0,+(x; x0) in the

expression (A.1) for ω0, as one can show that its contribution is exponentially small

compared to the leading order terms (see also Sections 3 and 5).

6.1. A rewrite of (6.4)

In this section, we group together integrals appearing in the right member of (6.4) in

order to achieve a first reduction in the numbers of terms of that member. We start

with rewriting the term −(Wψ)−1Dk(0) I4 + (Wψ)−1 I6 + ε I8. First,

I4 =

∫ ∫

πxD4

(
∫ 1

0

h2,k(x, y, z)ω0(x)ψk,−(x) dx

)

ω+
0 (y)ψ+

k,−(z) dAyz,

where πx is the orthogonal projection on the yz−plane—and hence πxD4 = [0, 1]2—and

dAyz is the area element on that plane. Since ψk,− = ε1/3C−1
1 σ

−1/3
0 ω0 in a neighborhood

of the origin (cf. (A.1) and (C.12)), ω0 is exponentially small outside this neighborhood,



Emergence of localized structures in a phytoplankton–nutrient model 38

and ‖ω0‖2 = 1, we write

I4 = ε1/3C−1
1 σ

−1/3
0

∫ ∫

πxD4

h2,k(0, y, z)ω
+
0 (y)ψ+

k,−(z) dAyz.

Recalling that ψ+
k,− = E ψk,−, according to our convention in Section 2, and substituting

into the formula above from (A.2) and (C.12), we obtain

I4 = ε1/2 C
2
2

4π

∫ ∫

πxD4

h2,k(0, y, z)

F 1/4(y)F 1/4(z)
exp

(

J−(y) + J−(z)√
ε

)

dAyz,

whence, employing also (C.19), we find

(Wψ)
−1Dk(0) I4 = ε−1/6

∫ ∫

πxD4

Ξ4(y, z) exp

(

Π4(y, z)√
ε

)

dAyz. (6.5)

Here,

Ξ4(y, z) =
C2

2 dk
4πWψ

h2(0, y) f(z) ζk(z)

F 1/4(y)F 1/4(z)
and Π4(y, z) = J−(y) + J−(z). (6.6)

Next, we rewrite I6,

(Wψ)−1 I6 = (Wψ)−1

∫ ∫

πxD6

(
∫ z

0

h2,k(x, y, z)ω0(x)ψk,+(x) dx

)

ω+
0 (y)ψ+

k,−(z) dAyz.

Employing (A.1) and (C.13), now, we obtain

(Wψ)−1 I6 = ε1/6 C1 σ
1/3
0

2πWψ

∫ ∫

πxD6

(

∫ z

0

h2,k(x, y, z)
√

F (x)
dx

)

ω+
0 (y)ψ+

k,−(z) dAyz.

Further using (A.2) and, once again, (C.13), we find

(Wψ)
−1 I6 = ε1/3

∫ ∫

πxD6

Ξ6(y, z) exp

(

Π6(y, z)√
ε

)

dAyz. (6.7)

Here, πxD6 = πxD4, Π6(y, z) = Π4(y, z), and

Ξ6(y, z) =
C2

1 C
2
2 σ

2/3
0

8π2Wψ

f(z) ζk(z)

F 1/4(y)F 1/4(z)

∫ z

0

h2(x, y)
√

F (x)
dx. (6.8)

Similarly, renaming (x, y) as (y, z) in I8, we derive the formula

ε I8 = ε5/6

∫ ∫

D8

Ξ8(y, z) exp

(

Π8(y, z)√
ε

)

dAyz, (6.9)

where D8 = πxD6 = πxD4, Π8(y, z) = Π6(y, z) = Π4(y, z), and

Ξ8(y, z) =
C2

1 C
2
2 σ

2/3
0

4π

h2(y, z) ζk(y)

F 1/4(y)F 1/4(z)
. (6.10)

Combining (6.5)–(6.10), we obtain

−(Wψ)−1Dk(0) I4 + (Wψ)
−1 I6 + I8

= −ε−1/6

∫ ∫

πxD4

Ξ̃4(y, z) exp

(

Π4(y, z)√
ε

)

dAyz, (6.11)
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where, to leading order, uniformly over πxD4, and for all O(1) values of Λ0,

Ξ̃4(y, z) = Ξ4(y, z) =
C2

2 dk
4πWψ

h2(0, y) f(z) ζk(z)

F 1/4(y)F 1/4(z)
. (6.12)

Next, we rewrite the term (Wψ)−1I5 + ε I7. We write first

I5 =

∫ ∫

πxD5

(
∫ z

y

h1,k(x, y, z)ω0(x)ψk,+(x) dx

)

ω+
0 (y)ψ+

k,−(z) dAyz,

where πxD5 = {(y, z)|0 ≤ y ≤ z, 0 ≤ z ≤ 1}. Now, (A.1)–(A.2) and (C.12) yield further

(Wψ)−1 I5 = ε1/6 C1C2 σ
1/3
0

2πWψ

∫ ∫

πxD5

(

∫ z

y

h1,k(x, y, z)
√

F (x)
dx

)

ω+
0 (y)ψ+

k,−(z) dAyz

= ε1/3

∫ ∫

πxD5

Ξ5(y, z) exp

(

Π5(y, z)√
ε

)

dAyz, (6.13)

where we have defined the functions

Ξ5(y, z) =
C2

1 C
3
2 σ

2/3
0

8π2Wψ

f(z) ζk(z)

F 1/4(y)F 1/4(z)

∫ z

y

h1(x, y)
√

F (x)
dx (6.14)

and Π5(y, z) = Π4(y, z). Next, renaming x into z in I7, we find

ε I7 = ε5/6

∫ ∫

D7

Ξ7(y, z) exp

(

Π7(y, z)√
ε

)

dAyz, (6.15)

where

D7 = πxD5, Ξ7(y, z) =
C2

1 C
2
2 σ

2/3
0

4π

h1(z, y) ζk(z)

F 1/4(y)F 1/4(z)
, and Π7(y, z) = Π4(y, z). (6.16)

Combining (6.13)–(6.16), we find, to leading order and uniformly over D8,

(Wψ)
−1 I5 + ε I7 = ε1/3

∫ ∫

D7

Ξ̃5(y, z) exp

(

Π4(y, z)√
ε

)

dAyz, (6.17)

where Ξ̃5(y, z) = Ξ5(y, z) + ε1/2 Ξ7(y, z).

We now rewrite (Wψ)−1I2. First,

I2 =

∫ ∫

πyD2

H̃2(x) f(z) ζk(z)ω0(x)ψk,−(x)ψ+
k,+(z) dAxz,

where H̃2(x) =
∫ 1

0
h2(x, y)ω

+
0 (y) dy. Substituting for ω+

0 (y) from (A.2), we find further

I2 = ε−1/12 C1C2σ
1/3
0

2
√
π

∫ ∫

πyD2

H2(x)ω0(x)ψk,−(x) f(z) ζk(z)ψ
+
k,+(z) dAxz,

where H2(x) =
∫ 1

0
h2(x, y)F

−1/4(y) exp(J−(y)/
√
ε) dy. Using Theorem Appendix D.1,

now, we obtain

(Wψ)−1 I2 = ε1/6δ−1C ′′
2

∫ ∫

πyD2

h2(x, x∗)ω0(x)ψk,−(x) f(z) ζk(z)ψ
+
k,+(z) dAxz

= ε7/12

∫ ∫

πyD2

Ξ2(x, z) exp

(

Π2(x, z)√
ε

)

dAxz, (6.18)
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where C ′′
2 is an O(1) constant, πyD2 = {(x, z)|0 ≤ z ≤ x, 0 ≤ x ≤ 1}, Π2(x, z) =

J−(x∗) + J+(z) − 2I(x),

Ξ2(x, z) = C ′
2

h2(x, x∗) f(z) ζk(z)
√

F (x)F 1/4(z)
, with C ′

2 an O(1) constant. (6.19)

Finally, we rewrite (Wψ)−1Dk(0) I3. First,

I3 =

(∫ 1

0

f(z) ζk(z)ψ
+
k,−(z) dz

)∫ ∫

πzD3

h1(x, y)ω0(x)ψk,−(x)ω+
0 (y) dAxy.

Substituting from (A.1)–(A.2) and (C.12) into this formula and interchanging the roles

of y and z in the single and double integrals, we find

(Wψ)
−1Dk(0) I3 = ε−1/3 Ĩ3

∫ ∫

πyD2

Ξ̃3(x, z) exp

(

Π̃3(x, z)√
ε

)

dAxz, (6.20)

where Ĩ3 =
∫ 1

0
F−1/4(y) f(y) ζk(y) exp (J−(y)/

√
ε) dy and

Ξ̃3(x, z) = C̃3
h1(x, z)

√

F (x)F 1/4(z)
and Π̃3(x, z) = J−(z) − 2I(x), (6.21)

for some O(1) constant C̃3.

6.2. An asymptotic estimate for a′00k in the regime Λ0 = O(1)

In this section, we estimate the various terms derived above, starting from

−(Wψ)−1Dk(0) I4 + (Wψ)−1 I6 + ε I8 (cf. (6.11)–(6.12)). The exponent Π4 becomes

maximum at the interior critical point (x∗, x∗), and thus Theorem Appendix D.1 yields

−(Wψ)−1Dk(0) I4 + (Wψ)
−1 I6 + I8 = −ε1/2 2π

|J ′′
−(x∗)|

(

ε−1/6 Ξ̃4(x∗, x∗) exp

(

Π4(x∗, x∗)√
ε

))

= −ε1/3 δ−2 C̃4,

where

C̃4 = C2
2 (σ∗Wψ)−1 dk ζk(x∗) f(x∗) h2(0, x∗).

Next, we estimate (Wψ)−1 I5+ε I7, cf. (6.17). The sole (quadratic) maximum of Π4

in D7 lies at the critical point (x∗, x∗) ∈ ∂D7, where Ξ̃5(x∗, x∗) = 0 and Ξ̃7(x∗, x∗) 6= 0.

Recalling the definition of Ξ̃5 and employing Theorem Appendix D.1, then, we obtain

(Wψ)
−1 I5 + I7 = ε

(

ε1/3C0 exp

(

Π4(x∗, x∗)√
ε

))

= ε4/3δ−2 C̃7,

for some O(1) constants C0 and C̃7.

We now estimate the remaining three integrals starting with (Wψ)−1 I2, cf. (6.18)–

(6.19). The exponent Π2 has a sole maximum at the point (x∗, x∗) ∈ ∂(πyD2) which

is not a critical point (compare to the maximization of Π4 in Section 3). Hence,

Theorem Appendix D.1 yields

(Wψ)
−1 I2 = ε3/4C ′′′

2

(

ε7/12 Ξ2(x∗, x∗) exp

(

Π2(x∗, x∗)√
ε

))

= ε4/3 δ−2C2,
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for some O(1) constants C ′′′
2 and C2. Next, since D1 ⊂ D2 and the integrands of I1

and I2 differ only by an O(1) multiple, the above analysis also yields that (Wψ)−1I1

is at most of the same order as (Wψ)−1I2. Finally, we estimate (Wψ)−1Dk(0) I3, cf.

(6.20)–(6.21). First, we estimate

Ĩ3 =

∫ 1

0

f(y) ζk(y)

F 1/4(y)
exp

(

J−(y)√
ε

)

dy = ε1/4 δ−1C ′′
3 ,

for some O(1) constant C ′′
3 . Substituting into (6.20), then, we obtain

(Wψ)
−1Dk(0) I3 = ε−1/12

∫ ∫

πyD2

Ξ3(x, z) exp

(

Π3(x, z)√
ε

)

dAxz,

where

Ξ3(x, z) = C̃ ′
3

h1(x, z)
√

F (x)F 1/4(z)
and Π3(x, z) = J−(x∗) + J−(z) − 2I(x),

for some O(1) constant C̃ ′
3. The exponent Π3 has a sole maximum at the point

(x∗∗, x∗∗) ∈ ∂(πyD2) which is also not a critical point (compare to the maximization

of Π1 in Section 3). Hence, Theorem Appendix D.1 yields

(Wψ)
−1Dk(0) I3 = ε3/4C ′

3

(

ε−1/12Ξ3(x∗, x∗) exp

(

Π3(x∗, x∗)√
ε

))

= ε2/3C3 exp

(

Π3(x
∗∗, x∗∗)√
ε

)

,

for some O(1) constants C3 and C̃ ′
3 and where Π3(x

∗∗, x∗∗) < 2J−(x∗).

In total, then, and to leading order, we obtain the leading order formula

a′00k = −C
2
2 dk ζk(x∗) h2(0, x∗)

σ∗Wψ
, for k ≪ ε−1/3. (6.22)

Here, we have used that f(x∗) = ℓ to leading order, while h2 is given in (3.6) and

(cf. (C.14) and (C.20))

Wψ = Ai′(A1) |Bi(A1)| =
1

π
and dk =

σ
2/3
0

π C3 (Nk + Λ0)
.

To derive the desired formula (6.1) from (6.22), we note that (cf. (3.5)–(3.6))

h2(0, x∗) = (1 − ν) f(0)
sinh

(√
Λ0(1 − x∗)

)

√
Λ0 cosh

√
Λ0

. (6.23)

Hence, (6.22) becomes

a′00k = −(1 − ν)C2
2 σ

2/3
0 f(0) ζk(x∗)

σ∗C3

sinh
(√

Λ0(1 − x∗)
)

√
Λ0 (Nk + Λ0) cosh

√
Λ0

.

The desired formula (6.1) may now be derived from this equation by recalling (2.5) and

the definitions collected in (4.2).
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6.3. Higher order terms in the asymptotic estimate for a′00k

As became evident in the material presented above, certain terms among those we

estimated are Λ0−dependent, and hence they do not necessarily remain higher order for

asymptotically large values of Λ0. As we will see in this section, certain terms which

are higher order for Λ0 = O(1) become leading order for Λ0 ≫ 1. Apart from that,

these higher order terms have an important effect even for Λ0 = O(1), as they lead

to the singularly perturbed problem (4.38) for the steady states of the reduced system

(4.4)–(4.6).

To quantify these terms, we recall from the last section that

−(Wψ)−1Dk(0) I4 + (Wψ)
−1 I6 + I8 = −ε1/3 2π

|J ′′
−(x∗)|

δ−2 Ξ̃4(x∗, x∗). (6.24)

By definition of Ξ̃4,

Ξ̃4(x∗, x∗) = Ξ4(x∗, x∗) − ε1/2 Ξ6(x∗, x∗) − εΞ8(x∗, x∗), (6.25)

where Ξ4, Ξ6, and Ξ8 are expressed in terms of the function h2 defined in (3.6)—see

(6.6), (6.8), and (6.10), respectively. As we saw in the last section,

−ε
−1/3δ2Dk(0)

ℓWψ

I4 = −(1 − ν)C2
2 σ

2/3
0 f(0) ζk(x∗)

σ∗ C3

sinh
(√

Λ0(1 − x∗)
)

√
Λ0 (Nk + Λ0) cosh

√
Λ0

.

At the same time, we calculate

−ε
−1/3δ2

ℓWψ
I6 = ε1/2 (1 − ν)C2

1 C
2
2 σ

2/3
0 ζk(x∗)

2σ∗

sinh
(√

Λ0 (1 − x∗)
) ∫ x∗

0
f(x) cosh

(√
Λ0 x

)

dx√
Λ0 cosh

√
Λ0

,

ε
ε−1/3δ2

ℓ
I8 = ε

(1 − ν)C2
1 C

2
2 σ

2/3
0 ζk(x∗)

σ∗

cosh
(√

Λ0 x∗
)

sinh
(√

Λ0 (1 − x∗)
)

√
Λ0 cosh

√
Λ0

.

There are two distinguished limits for these expressions, namely,

−ε−1/3δ2Dk(0)
ℓWψ

I4 = − (1−ν) (1−x∗)C2
2 σ

2/3
0 f(0) ζk(x∗)

σ∗ C3

1
Nk+Λ0

,

ε−1/3δ2

ℓWψ
I6 = ε1/2 (1−ν) (1−x∗)C2

1 C
2
2 σ

2/3
0 ζk(x∗)

R x∗
0

f(x) dx

2σ∗
,

ε−1/3δ2

ℓ
ε I8 = ε

(1−ν) (1−x∗)C2
1 C

2
2 σ

2/3
0 ζk(x∗)

σ∗
,

for Λ0 ≪ 1, (6.26)

and

−ε−1/3δ2Dk(0)
ℓWψ

I4 = − (1−ν)C2
2 σ

2/3
0 f(0) ζk(x∗)

σ∗ C3

e−
√

Λ0 x∗√
Λ0 (Nk+Λ0)

,

ε−1/3δ2

ℓWψ
I6 = ε1/2 (1−ν) ℓ C2

1 C
2
2 σ

2/3
0 ζk(x∗)

4σ∗
1

Λ0
,

ε−1/3δ2

ℓ
ε I8 = ε

(1−ν)C2
1 C

2
2 σ

2/3
0 ζk(x∗)

2σ∗
1√
Λ0
,

for Λ0 ≫ 1, (6.27)

where we have used Theorem Appendix D.2 to estimate the integral appearing in the

definition (6.8) of Ξ6. It immediately follows that εΞ8(x∗, x∗) ≪ ε1/2 Ξ6(x∗, x∗) for all

Λ0 ≪ ε−1/2.

Next, we estimate (Wψ)−1 I5 + ε I7 in the regime Λ0 ≫ 1. First, we recall (6.17),

(Wψ)
−1 I5 + ε I7 = ε1/3

∫ ∫

D7

Ξ̃5(y, z) exp

(

Π4(y, z)√
ε

)

dAyz,
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where Ξ̃5(y, z) = Ξ5(y, z) + ε1/2 Ξ7(y, z). The functions Ξ5 and Ξ7 are expressible in

terms of the function h1 defined in (3.5), see (6.14) and (6.16), respectively. Working as

for h2 above, we procure the leading order asymptotic relation

h1(x, y) = r f(x)

(

1 − f(x)

ν

)

− θ
(

√

Λ0 (x− y)
)

h2(x, y).

Here, θ(s) = (1 − e−2s)/2—and hence θ(0) = 0—while the first term in the right

member is Λ0−independent and hence remains bounded in this regime also. Using this

expression, we can establish that (Wψ)
−1 I5 + I7 is at most of order ε4/3 Λ−1

0 and hence

higher order.

Similarly, (6.18) yields to leading order

(Wψ)
−1 I2 = ε4/3 δ−2 (1 − ν) ℓ2C ′

2C
′′′
2 ζk(x∗)

2F 3/4(x∗)

1√
Λ0

, for Λ0 ≫ 1,

where C ′
2 and C ′′′

2 are O(1) constants. Hence, this term is also higher order. The

term (Wψ)
−1I1 can be bounded in a similar way, whereas (Wψ)−1Dk(0) I3 is, here also,

exponentially smaller than all other terms.

In total, then, and to leading order, we obtain the formula

a′00k = (1 − ν)C2
2 σ

2/3
0 σ−1

∗ ζk(x∗)

(

−f(0)

C3

sinh
(√

Λ0 (1 − x∗)
)

√
Λ0 (Nk + Λ0) sinh

√
Λ0

+ε1/2 C
2
1

2

sinh
(√

Λ0 (1 − x∗)
) ∫ x∗

0
f(x) cosh

(√
Λ0 x

)

dx√
Λ0 cosh

√
Λ0

)

.

This formula precisely matches (6.2). The two associated distinguished limits are

a′00k =
(1 − ν) (1 − x∗)C

2
2 σ

2/3
0 ζk(x∗)

σ∗

(

− f(0)

(Nk + Λ0)C3
+
C2

1

∫ x∗
0
f(x) dx

2

)

, for Λ0 ≪ 1,

and

a′00k =
(1 − ν)C2

2 σ
2/3
0 ζk(x∗)

σ∗

(

−f(0)

C3

e−
√

Λ0 x∗

√
Λ0 (Nk + Λ0)

+
ℓ C2

1

4

ε1/2

Λ0

)

, for Λ0 ≫ 1.

Note that, in this last formula, the first term in the parentheses dominates the second

one for all o(1) values of µ (cf. (6.3)); the two terms only become commensurate for

O(1) values of µ.

7. An asymptotic formula for b′m0k

Finally, we derive the asymptotic formula for b′m0k

b′m0k = −A′
k(Λ0)B, for 0 6= k,m≪ ε−1/3, (7.1)

which has already been reported in (4.1). We also remark that, here also, this result

is valid for those values of k for which ζk(x∗) 6= 0. Theorem Appendix D.1 yields an

(algebraically) higher order result for the remaining values of k.
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Definition (2.21) and (C.21) yield the expression

b′m0k = ε−1/6δ (1 − ν)

∫ 1

0

f(x) ζm(x)ω0(x)ψk(x) dx

+ ε5/6 δ ℓ−1(1 − ν)

∫ 1

0

f(x) ζm(x)ω+
0 (x) ζk(x) dx

=
ε−1/6δ (1 − ν)

ℓ

[

1

Wψ

∫ 1

0

∫ x

0

f(x) f(y) ζm(x) ζk(y)ω0(x)ψk,−(x)ψ+
k,+(y) dydx

− Dk

Wψ

∫ 1

0

∫ 1

0

f(x) f(y) ζm(x) ζk(y)ω0(x)ψk,−(x)ψ+
k,−(y) dydx

+
1

Wψ

∫ 1

0

∫ 1

x

f(x) f(y) ζm(x) ζk(y)ω0(x)ψk,+(x)ψ+
k,−(y) dydx

+ε

∫ 1

0

f(x) ζm(x) ζk(x)ω
+
0 (x) dx

]

. (7.2)

Let I1, . . . , I4 denote the integrals in the right member of this formula in the order

that they appear in it. We will derive the leading order terms in the asymptotic

expansions of these integrals using Theorem Appendix D.1, as in the previous section

and also for k,m ≪ ε−1/3. In what follows, we omit the terms θω2
0,−(1; x0)ω0,+(1; x0)

and θω2
0,−(1; x0)ω

+
0,+(1; x0) in (A.1) and (A.2), respectively, as one can show that their

contribution is exponentially small compared to the leading order terms (see also

Section 3 and 5–6).

First, we derive a formula for −(Wψ)−1Dk I2 + (Wψ)−1I3 + ε I4. We write

I2 =

∫ 1

0

(
∫ 1

0

f(x) ζm(x)ω0(x)ψk,−(x) dx

)

f(y) ζk(y)ψ
+
k,−(y) dy

= ε1/3
√

2 f(0)C−1
1 σ

−1/3
0

∫ 1

0

f(y) ζk(y)ψ
+
k,−(y) dy,

where we have used that ψk,− = ε1/3C−1
1 σ

−1/3
0 ω0 in a neighborhood of the origin, that

ω0 is exponentially small outside this neighborhood, the identity ‖ω0‖2 = 1, and (2.5).

Employing (C.12), next, we obtain

I2 = ε7/12 f(0)C2√
2π C1 σ

1/3
0

∫ 1

0

f(y) ζk(y)

F 1/4(y)
exp

(

J−(y)√
ε

)

dy.

Substituting for Dk from (C.19), we obtain

(Wψ)
−1Dk I2 = ε−1/12

∫ 1

0

Ξ2(y) exp

(

Π2(y)√
ε

)

dy, (7.3)

where we have defined the functions

Ξ2(y) =
C2 f(0) dk√

2π C1Wψ σ
1/3
0

f(y) ζk(y)

F 1/4(y)
and Π2(y) = J−(y). (7.4)

Next, we change the order in which integration is carried out in I3 and use (A.1) and

(C.12)–(C.13) to rewrite this integral as

(Wψ)−1 I3 = (Wψ)−1

∫ 1

0

(∫ y

0

f(x) ζm(x)ω0(x)ψk,+(x) dx

)

f(y) ζk(y)ψ
+
k,−(y) dy
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= ε5/12

∫ 1

0

Ξ3(y) exp

(

Π3(y)√
ε

)

dy, (7.5)

where Π3(y) = Π2(y) and

Ξ3(y) =
C1C2 σ

1/3
0

4π3/2 Wψ

(

∫ y

0

f(x) ζm(x)
√

F (x)
dx

)

f(y) ζk(y)

F 1/4(y)
. (7.6)

Finally, using (A.2) and renaming the integration variable x into y, we obtain

ε I4 = ε−13/12

∫ 1

0

Ξ4(y) exp

(

Π4(y)√
ε

)

dy, (7.7)

where

Ξ4(y) =
C1C2 σ

1/3
0

2
√
π

f(y) ζm(y) ζk(y)

F 1/4(y)
and Π4(y) = Π3(y) = Π2(y). (7.8)

Combining (7.3)–(7.8), we obtain

−(Wψ)−1Dk I2+(Wψ)−1I3+I4 = −ε−1/12

∫ 1

0

Ξ̃2(y) exp

(

Π2(y)√
ε

)

dy,(7.9)

where, to leading order and uniformly over [0, 1],

Ξ̃2(y) = Ξ2(y) =
C2 dk ζk(y) f(0) f(y)√
2π C1 σ

1/3
0 Wψ F 1/4(y)

. (7.10)

Regarding I1, we use (A.2) and (C.12)–(C.13), to write it in the form

(Wψ)
−1 I1 = ε5/12

∫ ∫

D

Ξ1(x, y) exp

(

Π1(x, y)√
ε

)

dA, (7.11)

where D = {(x, y)|0 ≤ x ≤ 1 and 0 ≤ y ≤ x}, Π1(x, y) = J+(y) − 2I(x), and

Ξ1(x, y) =
C1C2 σ

1/3
0

4π3/2 Wψ

f(x) f(y) ζm(x) ζk(y)
√

F (x)F 1/4(y)
. (7.12)

First, we estimate −(Wψ)−1Dk I2 + (Wψ)−1 I3 + ε I4, cf. (7.9)–(7.10). The

exponent Π2 assumes its maximum at the interior critical point x∗ ∈ (0, 1), and hence

Theorem Appendix D.1 yields

−(Wψ)−1Dk I2 + (Wψ)−1 I3 + ε I4 = −ε1/4

√
2π

√

−J ′′
−(x∗)

(

ε−1/12 δ−1 Ξ̃2(x∗)
)

= −ε1/6 δ−1 C̃2.

Here,

C̃2 =

√
2C2 σ

1/3
0 f(0) f(x∗) ζk(x∗)

C1C3 σ
1/2
∗ (Nk + Λ0)

.

Next, we estimate I1, cf. (7.11)–(7.12). The exponent Π1 assumes its maximum at the

point (x∗, x∗) ∈ ∂D which is not a critical point of Π1 (compare to the maximization of

Π4 in Section 3). As a result, Theorem Appendix D.1 yields

(Wψ)
−1 I1 = ε3/4C ′

1

(

ε5/12 δ−1 Ξ1(x∗, x∗)
)

= ε7/6 δ−1C ′′
1

to leading order, and with C ′
1 and C ′′

1 being O(1) constants.
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In total, then, and to leading order, we obtain

b′m0k = −
√

2 (1 − ν)C2 σ
1/3
0 f(0) ζk(x∗)

C1C3 σ
−1/2
∗ (Nk + Λ0)

, for m, k ≪ ε−1/3.

Formula (7.1) now immediately follows.

8. Discussion

As argued in the Introduction, there are two contextual themes central to this article.

The first one relates to understanding the nonlinear, long-term dynamics of small

patterns of DCM type generated through the linear destabilization mechanism identified

in [25]. The second theme concerns the development of a concrete approach to studying

the dynamics generated by the (rescaled) PDE model (1.5) near a linear destabilization

but beyond the region of applicability of the center manifold reduction. In this article,

we have reported significant results (outlined in the Introduction) touching on both

themes. These results, in turn, inspire further investigation within this dual context.

Regarding our first focal point, and in view of our discovery that the bifurcating,

small-amplitude, DCM pattern undergoes a Hopf bifurcation, the central question is

naturally what happens beyond this secondary bifurcation. This question can be

answered by the methods developed here, as it is in principle possible to deduce

analytically the sub- or supercriticality of the Hopf bifurcation undergone by (4.8).

The numerical simulations of [15] indicate that this bifurcation may be only the first

of a cascade of subsequent period-doubling bifurcations leading to a region of spatio-

temporal chaotic dynamics and throughout which the phytoplankton profile maintains

a DCM-like structure. There is, of course, no a priori reason for this cascade to occur

entirely within the regime λ − λ∗ = O(ε) covered by our analysis here. In fact, the

simulations of [15] suggest that, for the parameter combinations considered there, this

is indeed not the case. On the other hand, our analysis is able to determine regions

in parameter space where this cascade can or cannot occur (for instance, in the event

that the Hopf bifurcation turns out to be subcritical). Moreover, the possibility that

there exist regions in parameter space where the entire cascade is within the reach of

our asymptotic methods cannot be excluded. A similar question concerns, naturally,

the origins and fate of the second DCM pattern identified in Section 4.5.

These last remarks bring us to the second theme. The approach we developed

here will be used—and if necessary extended—in forthcoming work investigating

the remaining issues pertaining to our linear destabilization results in [25]—namely,

determining the nonlinear behavior associated with the destabilization of BL-type. Our

analysis in [25] strongly suggests that, for realistic choices of the parameters pertinent to

shallower water columns (e.g., estuaries and lakes), patterns of benthic layer (BL) type

are equally relevant to the dynamics generated by (1.1) as the DCM patterns considered

here. In fact, preliminary numerical simulations strongly suggest that co-dimension

two-type patterns combining DCM and BL characteristics play an important role in
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the region where the trivial state is unstable. From a mathematical point of view, the

co-dimension two point may also be seen as an ‘organizing center ’ for the more complex

behavior exhibited by the system studied numerically in [15]. That is, the cascade of

period doubling bifurcations reported in [15] may be based on the presence of that co-

dimension two point. In view of that, the derivation and analysis of an extended reduced

system for parameter values valid within an O(ε) neighborhood of that point may prove

highly engaging.

The same methodology can also be applied to extended models. A natural extension

of (1.1) is a multi-species model, i.e., a model similar to (1.1) in which several

phytoplankton species compete for the same nutrient. At the linear level, the species

evolution decouples [25]. Nonlinear coupling, however, is present through shadowing

(light limitation) and nutrient uptake (nutrient limitation), and hence the presence of

every extra species affects the life cycle of each species. Reaction–diffusion models of

this sort for eutrophic environments—i.e., in the presence of an ample nutrient supply—

have been developed and investigated both numerically [14] and theoretically [8]. The

oligotrophic case, on the other hand—where these multi-species models are coupled to

a PDE for the nutrient—has so far only been investigated numerically [15].

Another natural, if not outright necessary, extension is the inclusion of horizontal

spatial directions. Plainly, the dynamics generated by (1.1) will be strongly influenced

by the flow in directions perpendicular to the one-dimensional water column considered

here: oceanic currents are bound to mix neighboring water columns and thus also enrich

the collection of emerging planktonic patterns. Finally, and as already described in the

Introduction, we are currently studying the simplified model problem (1.21) through

which we hope to understand the applicability and limitations of the general method

developed here. This approach may also serve as a first step towards obtaining a rigorous

validation of our method.
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Appendix A. An asymptotic formula for ω0

The formula for the principal part in the asymptotic expansion of ω0 reads

ω0(x) ∼
{

ε−1/6 σ
1/6
0 C1Ai

(

A1(1 − x−1
0 x)

)

, for x ∈ [0, x0),
ε−1/12 C1 C2 σ

1/3
0

2
√
π F 1/4(x)

[

ω0,−(x; x0) + θ ω2
0,−(1; x0)ω0,+(x; x0)

]

, for x ∈ (x0, 1],
(A.1)

cf. [25], where x0, C1, C2, F , σ0 and θ have been defined in (1.15), (2.17), (3.3), and

(3.12). We remark that C1 is a normalizing constant ensuring that ||ω0||2 = 1. (This
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factor does not appear in the formula for ω0 we give in [25], since ω0 was not normalized

there.) Also,

ω0,±(x; x0) = exp

(

±I(x)√
ε

)

,

where I has been defined in (2.16). An asymptotic formula for ω+
0 = E ω0 is readily

derived using (A.1) above,

ω+
0 (x) ∼







ε−1/6 σ
1/6
0 C1e

√
v/ε xAi

(

A1(1 − x−1
0 x)

)

, for x ∈ [0, x0),
ε−1/12 C1 C2 σ

1/3
0

2
√
π F 1/4(x)

[

ω+
0,−(x; x0) + θ ω2

0,−(1; x0)ω
+
0,+(x; x0)

]

, for x ∈ (x0, 1],
(A.2)

where we have defined the functions

ω+
0,±(x; x0) = E(x)ω0,±(x; x0) = exp

(

J±(x)√
ε

)

,

with J± as in (2.16). We remark that J− becomes maximum at the well-defined point

x∗ ∈ (0, 1)—the location of the DCM, see (2.18)—whereas J+ increases monotonically.

Also, the terms involving ω0,+ in (A.1) and ω+
0,+ in (A.2) are exponentially smaller than

the terms ω0,−(x) and ω+
0,−(x), respectively, everywhere except for an O(

√
ε)−region of

x = 1. Indeed, for all x < 1,

J+(x) − 2I(1) = J−(x) − 2(I(1) − I(x)) < J−(x). (A.3)

In particular, ‖ω+
0 ‖∞ can be bounded by an O(ε−1/12δ−1) constant, where δ =

exp(−J−(x∗))/
√
ε is an exponentially small parameter (cf. (2.15)).

Appendix B. An asymptotic formula for η0

We recall that η0 is the solution to the boundary value problem (2.6),

ε ∂xxη0 − λ0 η0 = −εℓ−1f ω+
0 , where ∂xη0(0) = η0(1) = 0.

Recalling that λ0 = εΛ0 in our bifurcation analysis, we find that

∂xxη0 − Λ0η0 = −ℓ−1fω+
0 , where ∂xη0(0) = η0(1) = 0. (B.1)

The functions η0,±(x) = e±
√

Λ0x form a pair of fundamental solutions to the homogeneous

problem. Using variation of constants, then, we obtain a special solution to the

inhomogeneous ODE,

η0,sp(x) = (2ℓ
√

Λ0)
−1 [Γ0 (η0,+f ; x) η0,−(x) − Γ0 (η0,−f ; x) η0,+(x)] .

Here, we have defined the family of functionals

Γn (· ; x) =

∫ x

0

·(s)ω+
n (s) ds, parameterized by x ∈ [0, 1] and n ≥ 0. (B.2)

The solution to (B.1) is, then,
{

η0(x) =
[

C+
η − (2ℓ

√
Λ0)

−1Γ0 (η0,−f ; x)
]

η0,+(x)

+
[

C−
η + (2ℓ

√
Λ0)

−1Γ0 (η0,+f ; x)
]

η0,−(x).
(B.3)
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Imposing the boundary conditions for η0 and using the identity Γ0 (· ; 0) = 0, we find

that the constants C−
η and C+

η satisfy the linear system
√

Λ0 C
+
η −

√

Λ0 C
−
η = 0,

[

2ℓ
√

Λ0C
+
η − Γ0 (η0,−f ; 1)

]

e
√

Λ0 +
[

2ℓ
√

Λ0C
−
η + Γ0 (η0,+f ; 1)

]

e−
√

Λ0 = 0,

the solution to which is C+
η = C−

η = Cη/(2ℓ
√

Λ0), with

Cη =
Γ0 (η0,−f ; 1) η0,+(1) − Γ0 (η0,+f ; 1) η0,−(1)

2 cosh
√

Λ0

.

Thus, (B.5) becomes

η0(x) = (2ℓ
√

Λ0)
−1
[

2Cη cosh
(

√

Λ0 x
)

+ Γ0 (η0,+f ; x) η0,−(x) − Γ0 (η0,−f ; x) η0,+(x)
]

.(B.4)

Further employing the definition (B.2), we calculate

Γ0 (η0,+f ; x) η0,−(x) − Γ0 (η0,−f ; x) η0,+(x)

=

∫ x

0

[η0,−(x)η0,+(y) − η0,+(x)η0,−(y)] f(y)ω+
0 (y) dy

= − 2

∫ x

0

sinh
(

√

Λ0(x− y)
)

f(y)ω+
0 (y) dy

= − 2 Γ0

(

sinh
(

√

Λ0(x− ·)
)

f ; x
)

.

Additionally,

Cη =
Γ0 (η0,−f ; 1) η0,+(1) − Γ0 (η0,+f ; 1) η0,−(1)

2 cosh
√

Λ0

=
1

2 cosh
√

Λ0

∫ 1

0

[η0,−(y) η0,+(1) − η0,+(y) η0,−(1)] f(y)ω+
0 (y) dy

=
1

cosh
√

Λ0

∫ 1

0

sinh
(

√

Λ0(1 − y)
)

f(y)ω+
0 (y) dy

=
1

cosh
√

Λ0

Γ0

(

sinh
(

√

Λ0(1 − ·)
)

f ; 1
)

,

and hence (B.4) becomes

η0(x) =
1

ℓ
√

Λ0

[

cosh
(√

Λ0 x
)

cosh
√

Λ0

Γ0

(

sinh
(

√

Λ0(1 − ·)
)

f ; 1
)

−Γ0

(

sinh
(

√

Λ0(x− ·)
)

f ; x
)]

=
1

ℓ
√

Λ0

[

cosh
(√

Λ0 x
)

cosh
√

Λ0

∫ 1

0

sinh
(

√

Λ0(1 − y)
)

f(y)ω+
0 (y) dy

−
∫ x

0

sinh
(

√

Λ0(x− y)
)

f(y)ω+
0 (y) dy

]

. (B.5)

To estimate ‖η0‖∞ over [0, 1], we first show that η0 is positive and that it assumes

its maximum in an O(ε1/4) neighborhood of x∗. First, an estimate based on (B.5)
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establishes readily that η0(x) > 0 for all x ∈ (0, 1),

η0(x) ≥
∫ 1

0

[

cosh
(√

Λ0 x
)

cosh
√

Λ0

sinh
(

√

Λ0(1 − y)
)

− sinh
(

√

Λ0(x− y)
)

]

f(y)ω+
0 (y)

ℓ
√

Λ0

dy

=
sinh

(√
Λ0(1 − x)

)

ℓ
√

Λ0 cosh
√

Λ0

∫ 1

0

cosh
(

√

Λ0 y
)

f(y)ω+
0 (y) dy > 0,

for x ∈ (0, 1). To locate the maximum, we differentiate both members of (B.5) and

obtain

ℓ ∂xη0(x) =
sinh

(√
Λ0 x

)

cosh
√

Λ0

∫ 1

0

sinh
(

√

Λ0(1 − y)
)

f(y)ω+
0 (y) dy

−
∫ x

0

cosh
(

√

Λ0(x− y)
)

f(y)ω+
0 (y) dy

− sinh
(√

Λ0(x− y)
)

√
Λ0

f(x)ω+
0 (x). (B.6)

Theorem Appendix D.1 can be used to yield the principal part of the two integrals in

this formula, whereas the term proportional to ω+
0 can be estimated via (A.2). For the

values of Λ0 we are interested in, the localized term in either integrand is ω+
0 , while the

Λ0−dependent terms vary on an asymptotically larger length scale. Thus,

∂xη0(x) =
sinh

(√
Λ0 x

)

ℓ cosh
√

Λ0

∫ 1

0

sinh
(

√

Λ0(1 − y)
)

f(y)ω+
0 (y) dy > 0,

to leading order and for x < x∗ and |x− x∗| ≫ ε1/4, since the second and third terms in

the right member of (B.6) are exponentially small compared to the first one. Similarly,

∂xη0(x) =
1

ℓ cosh
√

Λ0

[

sinh
(

√

Λ0 x
)

∫ 1

0

sinh
(

√

Λ0(1 − y)
)

f(y)ω+
0 (y) dy

− cosh
√

Λ0

∫ x

0

cosh
(

√

Λ0(x− y)
)

f(y)ω+
0 (y) dy

]

,

for x > x∗ and |x− x∗| ≫ ε1/4, since the second and third terms in the same formula are

of the same asymptotic order and the third one is exponentially smaller. Changing the

upper limit of the second integral to one (and thus only introducing an exponentially

small error) and combining the two integrals, we find

∂xη0(x) = −cosh
(√

Λ0 (1 − x)
)

ℓ cosh
√

Λ0

∫ 1

0

cosh
(

√

Λ0 y
)

f(y)ω+
0 (y) dy < 0,

Since η0 ∈ C2(0, 1), now, it follows that η′0(x1) = 0 at a point x1 such that |x∗ − x1| =

O(ε1/4), as desired. Hence, we can now use (B.5) to estimate further

‖η0‖∞ ≤ η0(x1) ≤
cosh

(√
Λ0 x1

)

ℓ
√

Λ0 cosh
√

Λ0

∫ 1

0

sinh
(

√

Λ0(1 − y)
)

f(y)ω+
0 (y) dy.

Using our asymptotic estimate on x1 and Theorem Appendix D.1, we find

‖η0‖∞ ≤ C ε1/6 δ−1 cosh
(√

Λ0 x∗
)

sinh
(√

Λ0(1 − x∗)
)

√
Λ0 cosh

√
Λ0

.
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for some Λ0−independent, O(1) constant C. Since the Λ0−dependent quantity in the

bound above remains bounded by an O(1) constant also for Λ0 ≫ 1, we finally conclude

that ‖η0‖∞ can be bounded by an O(ε1/6δ−1) constant.

Appendix C. Asymptotic formulas for ψn, n ≥ 0

The function ψn is the solution to the boundary value problem

ε ∂xxψn + (f(x) − ℓ− v − νn)ψn = −εℓ−1fE ζn, where G (ψn ; 0) = G (ψn ; 1) = 0,

cf. (2.10). Here, G (ψn ; x) = ψn(x) −
√

ε/v ∂xψn(x) and we recall that

ζn(x) =
√

2 cos(
√

Nn x), (C.1)

see (2.4). Recalling also the definitions F (x) = f(0) − f(x) and λ∗ = f(0) − ℓ − v, as

well as that λ∗ = λ0 + ε1/3µ0 by (1.13), we write

f(x) − ℓ− v = λ0 − F (x) + ε1/3µ0,

with µ0 = σ
2/3
0 |A1| + O(ε1/6). Finally, since λ0 = εΛ0 and νn = −εNn, we may rewrite

(2.10) in the final form

ε ∂xxψn −
[

F (x) − ε1/3µ0 − ε (Nn + Λ0)
]

ψn = −εE f ζn
ℓ

, (C.2)

together with the boundary conditions G (ψn ; 0) = G (ψn ; 1) = 0. In what follows, we

derive asymptotic formulas for ψn and for values of n satisfying n≪ ε−1/3. In that case,

ε(Nn + Λ0) ≪ ε1/3—recall our assumption that Λ0 ≪ ε−2/3 in Section 2.3.2—and hence

this term is perturbative to ε1/3µ0. Hence, we may write

ε1/3µ0 + ε(Nn + Λ0) = F (xn), where xn = x0(1 + o(1)) (C.3)

is a turning point for (C.2). Then, (C.2) becomes

ε ∂xxψn − [F (x) − F (xn)] ψn = −εℓ−1fE ζn, (C.4)

equipped with the boundary conditions (2.10). The solution to this boundary-value

problem may be found by variation of constants,

ψn(x) =
[

C+
ψ − (ℓWψ)−1G−(x)

]

ψn,+(x) +
[

C−
ψ + (ℓWψ)−1G+(x)

]

ψn,−(x). (C.5)

Here, ψn,± is any pair of fundamental solutions to ε ∂xxψn = [F (x) − F (xn)]ψn and

Wψ = ψn,−∂xψn,+ − ψn,+∂xψn,− is the associated Wronskian. (To derive the result

above, one needs to show that Wψ is constant. This is plain to show by using the

identity ∂xWψ(x) = 0, for all x ∈ [0, 1], which follows from the definition of Wψ and the

ODE that ψ± satisfy.) Further,

G±(x) =

∫ x

0

f(y)ζn(y)ψ
+
n,±(y)dy, (C.6)

where ψ+
n,± = E ψn,±. Using (C.5), we further obtain

∂xψn(x) =
[

C+
ψ − (ℓWψ)

−1G−(x)
]

∂xψn,+(x) +
[

C−
ψ + (ℓWψ)−1G+(x)

]

∂xψn,−(x),
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and thus the boundary conditions yield the system

C+
ψ G (ψn,+ ; 0) + C−

ψ G (ψn,− ; 0) = 0,
[

C+
ψ − 1

ℓWψ

G−(1)

]

G (ψn,+ ; 1) +

[

C−
ψ +

1

ℓWψ

G+(1)

]

G (ψn,− ; 1) = 0.

The solution to this system is

C+
ψ = − 1

ℓWψ
Dψ G (ψn,− ; 0) and C−

ψ =
1

ℓWψ
Dψ G (ψn,+ ; 0) , (C.7)

where

Dψ =
G−(1)G (ψn,+ ; 1) −G+(1)G (ψn,− ; 1)

G (ψn,+ ; 0) G (ψn,− ; 1) − G (ψn,− ; 0) G (ψn,+ ; 1)
. (C.8)

Thus, also, (C.5) becomes

ψn(x) = (ℓWψ)
−1 [Γ−(x)ψn,−(x) − Γ+(x)ψn,+(x)] , (C.9)

where

Γ−(x) = G+(x) +Dψ G (ψn,+ ; 0) (C.10)

Γ+(x) = G−(x) +Dψ G (ψn,− ; 0) . (C.11)

These formulas hold for an arbitrary pair ψn,± of fundamental solutions. Working

as in [25], where the problem was considered in detail in the absence of the perturbative

term ε(Nn + Λ0), we can derive the following leading order formulas for a specific pair

of solutions ψn,±:

ψn,−(x) =

{

ε1/6 σ
−1/6
0 Ai

(

A1(1 − x−1
0 x)

)

, for x ∈ [0, x0),

ε1/4 C2

2
√
π F 1/4(x)

ω0,−(x; x0), for x ∈ (x0, 1],
(C.12)

ψn,+(x) =

{

ε1/6 σ
−1/6
0 Bi

(

A1(1 − x−1
0 x)

)

, for x ∈ [0, x0),

ε1/4 1√
πC2 F 1/4(x)

ω0,+(x; x0), for x ∈ (x0, 1].
(C.13)

Here, we have used that xn = x0 + o(
√
ε). The identity ∂xWψ = 0, which was reported

earlier, leads to

Wψ(x) = Wψ(A1) = −Ai′(A1)Bi(A1) = lim
χ→∞

Wψ(χ) = 1/π > 0, (C.14)

for all x ∈ [0, 1] and for this particular pair. (To calculate the limit, we used the

asymptotic expansions of Ai(χ) and Bi(χ) as χ→ ∞—see, e.g., [2].) Next, we simplify

the formula (C.8) by investigating the asymptotic magnitude of the terms in its right

member. By definition (2.10),

G (ψn,± ; 0) = ψn,±(0) −
√

ε/v (∂xψn,±)(0).

Equations (C.3) and (C.12)–(C.13) yield

G (ψn,− ; 0) = − ε5/6 σ
−5/6
0 Ai′(A1) (Nn + Λ0) + O(ε7/6),

G (ψn,+ ; 0) = ε1/6 σ
−1/6
0 Bi(A1) + O(ε1/3).
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(Here, we have Taylor expanded Ai(A1(1 − x−1
0 x)) around its zero x = 0.) Next,

G (ψn,± ; 1) ∼ ε1/4 (1 ∓
√

σ1/v) c±

σ
1/4
1

exp

(

±I(1)√
ε

)

, (C.15)

recall (3.12). These formulas imply that G (ψn,+ ; 0)G (ψn,− ; 1) is exponentially smaller

than G (ψn,− ; 0)G (ψn,+ ; 1), and thus

Dψ =
Dn(1)G+(1) −G−(1)

G (ψn,− ; 0)
, where Dn(1) =

G (ψn,− ; 1)

G (ψn,+ ; 1)
(C.16)

and down to exponentially small terms. Next, the relative asymptotic magnitudes of

the terms in G−(1)−Dn(1)G+(1) may be derived using the definitions (2.10) and (C.6)

together with Laplace’s approximation (cf. Theorem Appendix D.1). One finds that

G−(1) is dominated by exp(ε−1/2J−(x∗)), whereas Dn(1)G+(1) by exp(ε−1/2J−(1)), and

hence the latter is exponentially smaller than the former. Hence,

Dψ = − G−(1)

G (ψn,− ; 0)
. (C.17)

It follows, then, that

Γ−(x) = G+(x) −Dn(0)G−(1) and Γ+(x) = G−(x) −G−(1), (C.18)

and down to exponentially small terms. Here,

Dn(0) =
G (ψn,+ ; 0)

G (ψn,− ; 0)
= ε−2/3 dn(Λ0), (C.19)

where (recall (C.14))

dn(Λ0) = − σ
2/3
0 Bi(A1)

Ai′(A1) (Nn + Λ0)
=

σ
2/3
0

π C3 (Nn + Λ0)
> 0. (C.20)

Combining this formula with (C.9), we find

ψn(x) = (ℓWψ)−1 [G+(x)ψn,−(x) −G−(x)ψn,+(x) +G−(1) (ψn,+(x) −Dn(0)ψn,−(x))]

= (ℓWψ)−1 [(G+(x) −Dn(0)G−(1))ψn,−(x) + (G−(1) −G−(x))ψn,+(x)]

= (ℓWψ)−1

[

ψn,−(x)

(
∫ x

0

f(y)ζn(y)ψ
+
n,+(y)dy −Dn(0)

∫ 1

0

f(y)ζn(y)ψ
+
n,−(y)dy

)

+ψn,+(x)

∫ 1

x

f(y)ζn(y)ψ
+
n,−(y)dy

]

. (C.21)

Appendix D. Asymptotic approximation of integrals

Appendix D.1. Localized integrals

Our main tool in this section will be Laplace’s method and, in particular, the following

three theorems based on [24, Ch. II, VIII, IX].
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Theorem Appendix D.1 ([24, Theorem IX.3]) Let n ∈ N, D ⊂ Rn be a domain with

piecewise smooth boundary ∂D, and u0 ∈ D̄. Let, also, the functions Π ∈ C2(D̄,R) and

Ξ ∈ C(D̄,R) satisfy the conditions

(a) inf
D̄−B(u0;δ)

Π(u) > Π(u0), for all δ > 0,

(b) σ
(

D2Π(u0)
)

⊂ R̊+,

(c) the integral ID(λ) :=

∫

· · ·
∫

D

Ξ(u) e−λΠ(u)du converges absolutely

for all sufficiently large λ.

(Here, D2Π denotes the Hessian matrix of Π.) Then,

ID(λ) ∼ e−λΠ(u0)
∞
∑

k=0

ck λ
−(k+n/2) (λ→ ∞),

where one may derive explicit formulas for the constants {ck}k. In particular,

(I) ID(λ) ∼
(

2π

λ

)n/2
Ξ(u0) e−λΠ(u0)

√

detD2Π(u0)
, if u0 ∈ D̊ and Ξ(u0) 6= 0,

(II) ID(λ) ∼
(

2π

λ

)(n+2)/2

C0 e−λΠ(u0), if u0 ∈ D̊ and Ξ(u0) = 0,

(III) ID(λ) ∼
(

2π

λ

)n/2
Ξ(u0) e−λΠ(u0)

2
√

detD2Π(u0)
, if u0 ∈ ∂D, Ξ(u0) 6= 0, and DΠ(u0) = 0,

(IV) ID(λ) ∼
(

2π

λ

)(n+1)/2
Ξ(u0) e−λΠ(u0)

2π
√

det J
, if u0 ∈ ∂D, Ξ(u0) 6= 0, and DΠ(u0) 6= 0,

as λ → ∞, for some constant C0 which is at most O(1) with respect to λ and under

the assumption that ∂D is smooth around u0 in the cases where u0 ∈ ∂D. Here, J is a

matrix related to D2Π(u0) and to the local characteristics of ∂D around u0.

Theorem Appendix D.2 Let a < b and u0 ∈ [a, b]. Let, also, the functions

Π ∈ C2([a, b],R) and Ξ ∈ C([a, b],R) satisfy the conditions

(a) inf
[a,b]−B(u0;δ)

Π(u) > Π(u0), for all δ > 0,

(b) the integral I(λ) :=

∫ b

a

Ξ(u) e−λΠ(u)du converges absolutely

for all sufficiently large λ.

Then,

I(λ) ∼ e−λΠ(u0)
∞
∑

k=1

ck λ
−k/2 (λ→ ∞),

where one may derive explicit formulas for the constants {ck}k. In particular, as λ→ ∞,

(I) I(λ) ∼ e−λΠ(u0)

λ1/2

√
2π Ξ(u0)
√

Π′′(u0)
, if u0 ∈ (a, b) and Ξ(u0) 6= 0,
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(II) I(λ) ∼ e−λΠ(u0)

λ3/2

√
π
(

Ξ′′(u0) − Ξ′(u0)Π′′′(u0)
Π′′(u0)

)

√
2 [Π′′(u0)]3/2

, if u0 ∈ (a, b) and Ξ(u0) = 0,

(III) I(λ) ∼ e−λΠ(u0)

λ

Ξ(u0)

|Π′(u0)|
, if u0 ∈ {a, b}, Ξ(u0) 6= 0, and Π′(u0) 6= 0,

(IV) I(λ) ∼ e−λΠ(u0)

λ1/2

√
π Ξ(u0)

√

2Π′′(u0)
, if u0 ∈ {a, b}, Ξ(u0) 6= 0, and Π′(u0) = 0,

(V) I(λ) ∼ e−λΠ(u0)

λ2

±Ξ′(u0)

[Π′(u0)]2
, if u0 =

{

a (+)

b (−)
, Ξ(u0) = 0, and Π′(u0) 6= 0,

(VI) I(λ) ∼ e−λΠ(u0)

λ

±Ξ′(u0)

Π′′(u0)
, if u0 =

{

a (+)

b (−)
, Ξ(u0) = 0, and Π′(u0) = 0.

Theorem Appendix D.3 Let D ⊂ R2 be a two-dimensional domain with piecewise

smooth boundary ∂D and u0 ∈ ∂D. Let, also, the functions Π ∈ C2(D̄,R) and

Ξ ∈ C(D̄,R) satisfy the conditions

(a) inf
D̄−B(u0;δ)

Π(u) > Π(u0), for all δ > 0,

(b) the integral ID(λ) :=

∫

· · ·
∫

D

Ξ(u) e−λΠ(u)du converges absolutely

for all sufficiently large λ.

Assume, further, that ∂D has a corner at u0 and, in particular, that ∂D is given (locally

around u0) by the curves k(x, y) = 0 and h(x, y) = 0 with Dk(u0) × Dh(u0) 6= 0. Let

the vectors vk and vh satisfy

vk ⊥ Dk(u0), vh ⊥ Dh(u0), and ‖vk × vh‖ = 1.

If vk and vh can be selected to further satisfy the conditions

Πk := 〈vk, DΠ(u0)〉 > 0 and Πh := 〈vh, DΠ(u0)〉 > 0, (D.1)

then

ID(λ) ∼ e−λΠ(u0)
∞
∑

k=0

ck λ
−(k+2) (λ→ ∞),

where one may derive explicit formulas for the constants {ck}k. In particular,

(I) ID(λ) ∼ 1

λ2

Ξ(u0) e−λΠ(u0)

2ΠkΠh

√

Π2
k + Π2

h

, if Ξ(u0) 6= 0,

(II) ID(λ) ∼ 1

λ3

(ΠkΞh + ΠhΞk) e−λΠ(u0)

Π2
kΠ

2
h

√

Π2
k + Π2

h

, if Ξ(u0) = 0,

as λ→ ∞. Here, Ξk := 〈vk, DΞ(u0)〉 and Ξh := 〈vh, DΞ(u0)〉, compare to (D.1).
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Appendix D.2. Oscillatory integrals

Theorem Appendix D.4 Let a < b, Ξ ∈ C([a, b],R), and Φ ∈ C2([a, b],R). Assume

that

Φ(t) = Φ(a) + (t− a) Φ1(t) and Φ′(t) > 0, for all t ∈ [a, b] and with Φ1(a) 6= 0.

Then, the integral I(λ) :=
∫ b

a
Ξ(t) eiλΦ(t)dt has the following asymptotic expansion:

I(λ) ∼
∞
∑

k=0

[

h(k)(0) eiλΦ(a) − h(k)(Φ(b) − Φ(a)) eiλΦ(b)
]

(

i

λ

)k+1

(λ→ ∞),

where we have defined the function

h(τ) = Ξ(t(τ)) t′(τ).

Here, τ(t) = Φ(t) − Φ(a) or, equivalently, t(τ) = Φ−1(Φ(a) + τ).
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