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Abstract

We consider a bistable integral equation which governs the stationary solutions of a
convolution model of solid–solid phase transitions on a circle. We study the bifurcations
of the set of the stationary solutions as the diffusion coefficient is varied to examine the
transition from an infinite number of steady states to three for the continuum limit of
the semi–discretised system. We show how the symmetry of the problem is responsible
for the generation and stabilisation of equilibria and comment on the puzzling connection
between continuity and stability that exists in this problem.

1 Introduction

Integro-differential equations are used to model various phenomena in materials science [1, 2,
3, 5, 9, 17] and biology [7, 8, 21, 25], which involve non-local diffusion/dispersal mechanisms.
We consider the integro-differential equation (IDE)

ut = ε

(
∫

R

J∞(x− y)u(y, t)dy − u(x, t)

∫

R

J∞(x− y)dy

)

+ f(u), (1)

where the L1(R) kernel J∞ satisfies J∞(x) ≥ 0, J∞(x) = J∞(−x) and f(u) is a bistable
nonlinearity. Below we routinely consider f(u) = u(1− u2) and kernel

J∞(x) =

√

100

π
exp(−100x2), (2)

so that
∫

R
J∞ dx = 1. To obtain a well-defined problem, (1) has to be supplemented by

a suitable initial condition, u(x, 0) = u0(x) which needs to be chosen in a suitable function
space, see [15, 19, 16].
The convolution equation (1) is the L2-gradient flow of the free energy functional

E(u) =
1

4
ε

∫

R

∫

R

J∞(x− y) (u(y)− u(x))2 dxdy +

∫

R

F̂ (u)dx, (3)

where F̂ (u, t) is the smooth double well potential, F̂ ′(u) = −f(u).
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For an overview of the use of (1) in materials science, see [10]. There are many papers dealing
with the mathematical analysis of this equation, which examine existence and stability of trav-
elling waves [3], the structure of the stationary solutions set [2], propagation of discontinuities
[11], coarsening [9] and long time behaviour [15, 19, 24, 20].
Note, in particular, that in [15] it is shown that if the diffusion coefficient ε is sufficiently
large, a “Conway–Hopf–Smoller” type result holds: the only stable steady state solutions,
say, in L∞(R), are the constant stable steady states of the kinetic equation ut = f(u). Thus,
if we choose f(u) = u(1 − u2), the stable states are u = 1 and u = −1. On the other hand,
if ε = 0, (1) admits an uncountable set of equilibria: let X, Y and Z be any disjoint sets
such that A ∪ B ∪ C = R, then a function u(x) that is equal to 1 on X, −1 on Y and 0
on Z is a steady state solution. Note that if Z = ∅, all the resulting equilibria are stable
in L∞(I). Furthermore, it is shown in [9] that there exists an ε0 > 0 which depends on the
kernel J∞, such that for all 0 < ε < ε0 the set of steady state solutions of (1) is in one-to-one
correspondence with the set of equilibria of ut = f(u). Hence, in view of the above, it is of
interest to perform a bifurcation analysis of the set of steady states of (1),

0 = ε

∫

R

J∞(x− y)(u(y)− u(x)) dy + f(u), (4)

as we decrease ε from some initially large value to zero, and investigate the transition from a
finite to infinite set of solutions.
To the best of our knowledge, such a study has not been performed before. The object of
this paper is precisely such a study of the spatially discretised version of (1). For simplicity,
here we restrict ourselves to 1-periodic patterns.
If we choose spatially one-periodic initial data u(x, 0), then from (1) it is clear that for all
x ∈ R and t ∈ R+

u(x, t) = u(x+ 1, t).

Then from (1) we have

ut = ε

∫

R

J∞(x− y) (u(y, t)− u(x, t)) dy + f(u)

= ε

∞
∑

r=−∞

∫ r+1

r
J∞(x− y) (u(y, t)− u(x, t)) dy + f(u)

= ε

∞
∑

r=−∞

∫ 1

0
J∞(x− z − r) (u(z + r, t)− u(x, t)) dz + f(u)

= ε

∫ 1

0
J(x− z) (u(z, t) − u(x, t)) dz + f(u), (5)

where

J(x) =
∞
∑

r=−∞

J∞(x− r) (6)

and x ∈ [0, 1]. Thus, for 1-periodic initial data we only need to solve the problem (1) on the
interval Ω = [0, 1] with the kernel J(x). For the kernel given by (2), J∞(x) and J(x) are
plotted in Figure 1.
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Lemma 1. For J defined by (6) the following two properties hold.

1. If J∞(x) = J∞(−x) we have that

J(x) = J(1− x).

2.
∫ 1
0 J(x) dx =

∫

∞

−∞
J∞(x) dx.

Property 1. above has an important influence on the spectrum of the matrix governing the
semi-discretised version of (1) as we explain in the next section. From now on we work on
[0, 1] and use the kernel J given in (6)

(a) (b)
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Figure 1: The kernels J∞(x) in (a) and J(x) in (b) for the case of equation (2).

2 The semi-discretised system

We discretise in space using piecewise-constant functions [9] and collocating at the uniformly
spaced element mid-points, x = xj+ 1

2

, j = 0, 1, 2, · · · , N −1. Setting uj = u(xj+ 1

2

, t), we have

the semi-discrete approximation of (1) given by

ut = εANu+ F (u), (7)

where now u(t) ∈ R
N , supplemented with some initial condition u(0) = u0 ∈ R

N . The
nonlinearity F : RN 7→ R

N is given by Fj(u) = f(uj). It remains to specify the N ×N matrix
AN . If we put h = 1

N , its elements are given by

aj,i =

{

hJ(|xj−i|) j 6= i

h
[

J(0) −
∑N

r=1 J(|xj−r|)
]

j = i.
(8)

From Lemma 1 it follows that AN is a symmetric circulant matrix generated by the elements
a1,1, . . . , a1,N . Hence the theory of circulant matrices can be used to characterise its spectrum
precisely. Let Wk be the N distinct roots of zN − 1 = 0, so Wk = exp

(

i2πk
N

)

, for k =
0, 1, 2, ..., N − 1. Then the following theorem holds:
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Proposition 1 ([23]). Let AN be the circulant matrix defined by a1,1, a1,2, ..., a1,N . Then

−AN is diagonalisable with eigenvalues

λk = −[a1,1 + a1,2Wk + a1,3W
2
k + ...+ a1,NWN−1

k ], (9)

with corresponding eigenvectors vk =
(

1,Wk,W
2
k , ...,W

N−1
k

)T
.

Let us see what this implies in our case for the spectrum of the discretisation.

Lemma 2. The following three properties hold for the spectrum of AN

1. λ0 = 0;
2. λk = λN−k;

3. Let IN be the convex hull of the set of non-zero eigenvalues of AN . As N → ∞, IN
converges in the Hausdorff metric to the set

I∞ =

[
∫ 1

0
J(x)dx−

∫ 1

0
J(x) exp(2πix) dx,

∫ 1

0
J(x)dx.

]

.

Before we prove this lemma, let us explain what it means. First of all, we must have a zero
eigenvalue with a constant eigenvector, because, like in the case of the Neumann Laplacian,
the equation

ut =

∫

∞

−∞

J∞(x− y)(u(y, t)− u(x, t)) dx,

conserves mass.
Secondly, the pairing of the eigenvalues is simply the consequence of the symmetry J(x) =
J(1 − x) inherited from the evenness of the kernel J∞. Finally, the third part of the lemma
implies that as N → ∞, the spectrum accumulates at the point

∫ 1
0 J(x) dx. Note that in the

case of J∞(x) =
√

100/π exp(−100x2), we explicitly have

I∞ = [1− exp(−π2/100), 1] = [0.094, 1].

Proof. 1. From (8), putting W0 = 1, we immediately obtain from (9) that λ0 = 0.
2. From part 1. of Lemma 1 it follows that for all j = 2, . . . , N ,

a1,j = a1,N+2−j ,

so that the matrix AN is symmetric. Hence its eigenvalues λk are real. But then taking
complex conjugates of ANvk = λkvk, we get that ANvk = λkvk, or in other words AnvN−k =
λkvN−k and hence λk = λN−k.
3. Finally, by taking the limit as N → ∞ in (9) we immediately obtain that

λk →

∫ 1

0
J(x) dx −

∫ 1

0
J(x) exp(2πikx) dx,

k = 1, 2, . . ..

Our aim is to examine bifurcations in this system and, below, we perform a numerical path–
following of solution branches. Some of these will, by symmetry, arise in pitchfork bifurcations
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from the trivial solution u = 0. Here we examine analytically the values of ε where such bi-
furcations may occur in the semi-discrete system and later we can compare to the numerically
found values. Linearising around the zero solution, we have the eigenvalue problem

εANv + gradF (0)v = µv, (10)

and hence bifurcations from the zero solution will only occur if µ = 0, or in other words, if

−ANv =
f ′(0)

ε
v.

Thus, for the semi-discrete system (7) we can fully characterize the values of ε where bifur-
cations of the zero solution occur, namely

εk :=
f ′(0)

λk
, k = 0, . . . , N − 1. (11)

For example, for N = 32, J∞(x) =
√

100
π exp(−100x2) and f(u) = u(1 − u2), we have using

(9), the results of Lemma 2 and the formula (11) that bifurcations from the zero solution are
expected at the values of ε as in Table 2. Note that for this case of N = 32, the value of ε1
agrees to 12 decimal points with the limiting value of ε1, 1/(1 − exp(−π2/100)) as N → ∞,
(see part 3 of Lemma 2).

ε1 = ε31 10.6403416996149 ε9 = ε23 1.00033746722800

ε2 = ε30 3.06584313146254 ε10 = ε22 1.00005172586163

ε3 = ε29 1.69885748860222 ε11 = ε21 1.00000650971543

ε4 = ε28 1.25968856776757 ε12 = ε20 1.00000067252291

ε5 = ε27 1.09266327932320 ε13 = ε19 1.00000005703325

ε6 = ε26 1.02948119722480 ε14 = ε18 1.00000000397031

ε7 = ε25 1.00800141737791 ε15 = ε17 1.00000000022729

ε8 = ε24 1.00180943793728 ε16 1.00000000002128

Table 1: For N = 32 Bifurcation values in terms of ε of the zero solution.

Let us examine the eigenvectors of −AN in some more detail. Since both vk and vN−k are
eigenvectors, we immediately have that Re (vk) and Im (vk) are eigenvectors. Define the cyclic
shift σ on u = (u1, . . . , uN ) ∈ R

N by

σ(u) = (uN , u1, . . . , uN−1),

then we have

Lemma 3. If v is a real eigenvector of −AN corresponding to a double eigenvalue λ, then so

is σ(v).

This follows since if v is an eigenvector, then so is e2iπ/Nv.
Remark. In the above argument, we can pass to the limit as N → ∞ and arrive at the
somewhat startling conclusion that cos(2πkx) and all their translates are eigenfunctions of
−A = −(

∫ 1
0 J(x − y)(u(y) − u(x)) dy) no matter what the kernel J(x) is as long as it has
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the right symmetry property. Of course, cosines are also the eigenfunctions of the Neumann
Laplacian. It is very pleasing to obtain such a result via a semi-discretisation.
Finally we note that fixed points of the semi-discrete problem satisfy

0 = εANu+ F (u). (12)

Thus at ε = 0 stable solutions are given by

u =

{

1 x ∈ X,
−1 x ∈ Y

(13)

where X ∪ Y = [0, 1]. Unstable solutions at ε = 0 are given by

u =







1 x ∈ X,
−1 x ∈ Y ,
0 x ∈ Z

(14)

where X ∪ Y ∪ Z = [0, 1] with some nonempty Z.
We use this to define solutions with different numbers of interfaces. When X = [0, α) and
Y = [α, 1], 0 < α < 1, we call u a one-interface solution of (12) if for ε = 0 for some
n ∈ [0, N − 1], σn(u) = a1 on X = [0, α) and σn(u) = a2 on Y = [α, 1], a1 a2 ∈ {−1, 0, 1},
a1 6= a2. That is loosely speaking we have at ε = 0 one jump in the solution upto cyclic
shift. Two-interface, three-interface solutions, etc., are defined similarly. Thus, for example,
the branch of solutions corresponding to orbit A in Table 2 are of one-interface and those
corresponding to E are of three-interface.

3 Results

We take for our computations the kernel function

J∞(x) =

√

100

π
e−100x2

,

with f(u) = u(1 − u2) and vary the parameter ε. For small values of N it is possible to
enumerate all possible solutions of the semi-discrete system (12) with ε = 0 and to analyse
their continuation to ε > 0 using the theory of bifurcation with symmetry. This we do below
for N = 4 and these analytic results were used to check the validity of our numerics.
We implemented in Matlab a standard pseudo arc–length continuation algorithm with step
size control as described in [14, 22, 13] for the discrete problem (12). Since AN is a circulant
matrix, we take advantage of reducing storage costs as the full information of AN can be
obtained storing one row or column only, see [4] and references therein. Furthermore the use
of the FFT for each matrix vector multiplication reduces the computational cost. We detect
bifurcation points by observing where eigenvalues of the Jacobian J = DuF of the nonlinear
system F (u, β) = 0 cross the imaginary axis and perform branch switching at those points
by perturbing in the direction of the associated eigenvector.
The arc-length ℓ of u(x) ∈ C1(R) is defined in the standard way

ℓ =

∫

Ω

√

1 +

(

du

dx

)2

dx,

6



and we approximate the arc–length of u(x) with the mid-point rule and using the standard
forward difference approximation for the derivative. With a uniform discretization we get

ℓ ≈ ℓh =

N−1
∑

j=0

√

h2 + (uj+1 − uj)
2 (15)

where h = xj+1 − xj and uj ≈ (xj). Note that although ℓ only makes sense for u ∈ C1

however we can evaluate ℓh even when u is discontinuous at grid points.
Then, for N = 32 we compute the bifurcation diagram numerically and gain insight into the
structure of the bifurcation diagram of the original continuous problem.
Finally, we examine the large N limit and formulate the results of the numerics as two
conjectures concerning the interplay of continuity and stability and the behaviour of saddle-
node bifurcations as α → 1/2.
For the continuous system, the symmetry group is O(2) × Z2, and so for a finite number of
nodes N , we use ΓN = DN × Z2 equivariance structure [12, 18].

3.1 The N = 4 case

If N = 4, there are a total of 81 possible steady states at ε = 0, 16 of them stable. The
group Γ4 is generated by the shift p, the flip f and the reversal m. In other words, if
v = (v1, v2, v3, v4), we have that

p(v) = (v2, v3, v4, v1);

f(v) = (v4, v3, v2, v1);

m(v) = (−v1, −v2, −v3, −v4);

Inverses of the nonzero eigenvalues of the 4 × 4 matrix A4 are {91.82, 183.63, 183.63}, so we
expect primary branches to bifurcate from the zero solution at those values of ε. Note that
all primary branches have zero mean, but the converse is not true.
Since here we know all the solutions at ε = 0 and their stability, and since symmetry properties
are conserved on primary branches, we can cut down the work considerably by looking only
at orbits of solutions under Γ4. In the table 2, we collect all the orbits, their lengths and
the corresponding isotropy subgroups Σx. There, 〈f〉 stands for the group generated by
f ∈ D4 × Z2.
Now we can immediately draw the bifurcation diagram using the following three rules [12, 18].
First a bifurcating branch must have the isotropy subgroup which is a subgroup of the isotropy
subgroup of the primary branch; secondly dimensions of unstable manifolds have to match at
a bifurcation point to satisfy the principle of exchange of stability, and thirdly at ε = 0; the
number of nodal domains must increase from one bifurcation point to the next.
With these rules there is only one way to construct the bifurcation diagram; see Figure 2
(a) and (b), where the y-axis is not to any scale, and is only intended to make clear the
end-points of various branches at ε = 0. These figures show the bifurcation structure arising
from bifurcations of the zero solution.
We would like to make the following observations. The stable non-zero-mean branches cor-
responding to the orbit K have to arise through a saddle-node bifurcation. Numerically,
this happens at a value of epsilon ≈ 49.294 that is smaller than the value ε4 = 122.432 at
which the branches of the orbit A become stable, see Figure 3 which shows the numerically

7



Name Orbit length Σx

(0,0,0,0) 1 D4 × Z2

(1,1,1,1) 2 D4

A (-1,1,1,-1) 4 〈f, p2m〉
B (1,0,-1,0) 4 〈mp2, fp〉
C (0,0,1,1) 8 〈f〉
D (0,-1,1,1) 16 〈I〉

Name Orbit length Σx

E (-1,1,-1,1) 2 〈pm, fp〉
F (0,1,0,0) 8 〈fp〉
G (1,0,0,-1) 8 〈mf〉
H (0,1,0,1) 4 〈p2, fp〉
I (0,1,-1,1) 8 〈fp〉
J (0,1,1,1) 8 〈fp〉
K (-1,1,1,1) 8 〈fp〉

Table 2: Steady states for N = 4, the length of the orbits and isotropy subgroups Σx. We
have separated the solutions into the homogeneous states, those connected with the first and
second bifurcation of u = 0 and the two solutions connected by a saddle-node J and K. See
also Figure 2.
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Figure 2: Bifurcations from the zero solution from the first (a) and second (b) bifurcation
points. Solid lines represent stable and broken lines unstable unstable solutions respectively.
We indicate above each branch the dimension of the unstable manifold. We do not show
the homogeneous solutions or the orbits J and K (which are connected by a saddle-node
bifurcation).
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Figure 3: Numerically computed bifurcation diagram from the zero solution from the first
(a) and second (b) bifurcation points. Solid lines represent stable and broken lines unstable
unstable solutions respectively. We indicate above each branch the dimension of the unstable
manifold. We show the homogeneous solutions or the orbits J and K connected by a saddle-
node bifurcation on (b). Compare to the theoretical prediction in Figure 2.

computed diagram. We will see the equivalents of these statements in higher dimensional
discretisations.
Finally, we did not perform a Liapunov–Schmidt calculation to determine the order of bifur-
cations at the double eigenvalue point ε = 183.63, but the opposite assignment of stabilities
cannot be reconciled with the above rules of bifurcation.

3.2 The case of N = 32

Though an analysis similar to that in the case of N = 4 can be attempted here, the numbers
of orbits are astronomical, and we rely on our numerical continuation method, the results of
which match exactly the predictions of the analysis in the case N = 4. In Figure 4 we plot
in (a)–(d) sample solution branches of the bifurcation diagram with N = 32. If we start with
a large value of ε we see in (a) and (b) the first bifurcation arises at ε ≈ 10.64 as predicted
by the theory in Table 2. In (a) we show the continuation of the zero mean one-interface
which undergoes a pitchfork bifurcation at ǫ ≈ 2.012. In (b) we have plotted the one-, three-,
five- and seven interfaces and their stabilization. In (c) we show details of the bifurcation
structure close to the pitchfork at ε ≈ 2.012 (note for clarity one branch of the pitchfork
seen in (a) is not plotted). As α → 0.5, the saddle-node bifurcation points converge to ε3,2.
This structure is repeated for the other n-interface solutions and is illustrated in (d) for the
three-interfaces solutions. Here we see that the zero-mean one-interface solution branches
stabilize at ε3,2 ≈ 2.012. Below we will formulate a conjecture concerning the limiting value
which we call ε01 at which the one-interface branch with zero-mean stabilizes as N → ∞.
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4 The limiting problem and conclusions

It is not hard to prove (see for example [3]) that if ε > 1, steady state solutions of (4) are
continuous, since the function −εu+ f(u) is monotone. Hence it is interesting to understand
when the solutions lose continuity (certainly, for ε = 0 there are no non-constant continuous
solutions).
The non-trivial stable one-interface zero-mean solution branches (α = 0.5) that originate at
ε = 0 were investigated in detail as we change N . If we define M by

M := max
j

∣

∣

∣

∣

uj+1 − uj
h

∣

∣

∣

∣

then for a C1 function this converges to maxx∈[0,1] |ux| and so we can identify where the
solution is continuous.
Figure 5 plots in (a) M against ε along a branch of one-interface zero-mean solutions for
N = 2p, p = 4, 5, 6, 7, 8, 9, 10. If we let εd1 be the value of ε at which this branch of solutions
becomes discontinuous, then this figure suggests εd1 = 1. This is supported in (b) which shows
for different ε convergence of the derivative M with N on a log log scale.
Furthermore the loss of continuity appears to coincide with the loss of stability. In Figure 6
we show numerically that the bifurcation values converge to ε01 = ε02 = ε03 = 1 as N → ∞.
Now we can collect our observations and form two conjectures. First we consider the zero-
mean interface branches. Let ε0m be the value at which the zero-mean 2m−1-interface solution
becomes stable. Let εdm be the value of ε at which this branch becomes discontinuous. Then
we have
Conjecture 1: ε0m = εdm.
We can prove a very weak form of this conjecture for m = 1. From the results of [3] it follows
that discontinuous stationary solutions will exist for any ǫ such that the function

g(u) := −εu

∫ 1

0
J(s) ds + f(u)

is non-monotone. On the other hand, from Theorem 2.1 of [6] it follows if g(u) is monotone,
there are no nonconstant minimizers of the energy functional (3). Hence we have εs1 ≤ εd1.
However we do not have the inequality the other way.
We now consider the saddle-node bifurcation of the non–zero mean interface solutions. Now,
let us be a branch of 2m− 1-interface stable solutions of (4) with mean s, and let εb,sm be the
value of ε at which the saddle-node bifurcation giving rise to the branch occurs. Then we
have
Conjecture 2: lim

s→0
εb,sm = ε0m.

These two conjectures, if true, would lead to the bifurcation picture sketched in Figure 7. In
(a) we plot the zero-mean one-interface branch and have indicated the continuum of saddle–
node bifurcations εs1 that approach the bifurcation at εs1 = εd1 = 1. In (b) we indicate the
first four branches of the infinite number that bifurcate from zero, the branches of associated
saddle-node bifurcations and here we have that lims→0 ε

b,s
m = ε0m = εdm. In addition our

numerical investigation seems to indicate that εs1 = εd1 = 1 = εs2 = εd2.
Finally let us consider the stable solutions - that is the solutions we expect to see from any
simulation. Thus we have for ǫ > 1 two stable solutions, then a region of parameter space
with an infinite number of stable solutions of one and three interface type, then a region of
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parameter space with one, three and five interfaces and so on. In conclusion the diffusion
coefficient ε determines the number and type of stable solutions.
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Figure 4: (a) Continuation of the zero-mean one-interface (α = 0.5) solution branch. When
ε ≈ 2.012 shown by ’o’ there is a stabilizing pitchfork bifurcation. (b) Stabilization of one-,
three-, five-, and seven-interface solutions. (c) This is a blow up of the bifurcation diagram
around the stabilizing bifurcation at ε ≈ 2.012 shown by ’o’ for the α = 0.5 curve. Here stable
solutions are continued from ε = 0 with different ratios (α) of −1 and 1 values of α. (d) A
similar structure is observed starting from ε = 0 with two–interface solutions with different
ratios (α) of −1 and 1.
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Figure 5: In (a) we show the maximum of |ux| in [0, 1] of the solution u(x) for one-interface
initial data with ±1 and α = 0.5. In (b) we see maxx(ux) for different system sizes for some
particular ε’s with system size as the x-axis with a clear change in behaviour at ε = 1.
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three, five and seven–interface solutions.
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Figure 7: (a) Proposed bifurcation diagram for the one-interface solutions in the N = ∞
case. We show the primary branch and the continuum of saddle-node from the saddle–node
bifurcations. In (b) we indicate that this structure is then repeated for the three-interface,

five-interface,... solutions. The solid circles represent lims→0 ε
b,s
m = ε0m = εdm. The bifurcations

for the one and three interface solutions both occur at ε = 1.
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