149 research outputs found

    On the relative absorption strengths of water vapour in the blue wavelength range

    Get PDF
    In recent updates of the HITRAN water vapour H2O spectroscopic compilation covering the blue spectral region (here: 394–480 nm) significant changes for the absorption bands at 416 and 426 nm were reported. In order to investigate the consistency of the different cross-sections calculated from these compilations, H2O vapour column density ratios for different spectral intervals were retrieved from long-path and multi-axis differential optical absorption spectroscopy (DOAS) measurements. We observed a significant improvement of the DOAS evaluation when using the updated HITRAN water vapour absorption cross-sections for the calculation of the reference spectra. In particular the magnitudes of the residual spectra as well as the fit errors were reduced. However, we also found that the best match between measurement and model is reached when the absorption cross-section of groups of lines are scaled by factors ranging from 0.5 to 1.9, suggesting that the HITRAN water vapour absorption compilation still needs significant corrections. For this spectral region we present correction factors for HITRAN 2009, HITRAN 2012, HITEMP and BT2 derived from field measurements. Additionally, upper limits for water vapour absorption in the UV-A range from 330 to 390 nm are given

    The spatial distribution of the reactive iodine species IO from simultaneous active and passive DOAS observations

    Get PDF
    We present investigations of the reactive iodine species (RIS) IO, OIO and I<sub>2</sub> in a coastal region from a field campaign simultaneously employing active long path differential optical absorption spectroscopy (LP-DOAS) as well as passive multi-axis differential optical absorption spectroscopy (MAX-DOAS). The campaign took place at the Martin Ryan Institute (MRI) in Carna, County Galway at the Irish West Coast about 6 km south-east of the atmospheric research station Mace Head in summer 2007. In order to study the horizontal distribution of the trace gases of interest, we established two almost parallel active LP-DOAS light paths, the shorter of 1034 m length just crossing the intertidal area, whereas the longer one of 3946 m length also crossed open water during periods of low tide. In addition we operated two passive Mini-MAX-DOAS instruments with the same viewing direction. While neither OIO nor I<sub>2</sub> could be unambiguously identified with any of the instruments, IO could be detected with active as well as passive DOAS. The IO column densities seen at both active LP-DOAS light paths are almost the same. Thus it can be concluded that coastal IO is almost exclusively located in the intertidal area, where we detected mixing ratios of up to 35±7.7 ppt (equivalent to pmol/mol). Nucleation events with particle concentrations of 10<sup>6</sup> cm<sup>−3</sup> particles were observed each day correlating with high IO mixing ratios. Therefore we feel that our detected IO concentrations confirm the results of model studies, which state that in order to explain such particle bursts, IO mixing ratios of 50 to 100 ppt in so called "hot-spots" are required

    Iodine monoxide in the Western Pacific marine boundary layer

    Get PDF
    A latitudinal cross-section and vertical profiles of iodine monoxide (IO) are reported from the marine boundary layer of the Western Pacific. The measurements were taken using Multi-Axis Differential Optical Absorption Spectroscopy (MAX-DOAS) during the TransBrom cruise of the German research vessel Sonne, which led from Tomakomai, Japan (42° N, 141° E) through the Western Pacific to Townsville, Australia (19° S, 146° E) in October 2009. In the marine boundary layer within the tropics (between 20° N and 5° S), IO mixing ratios ranged between 1 and 2.2 ppt, whereas in the subtropics and at mid-latitudes typical IO mixing ratios were around 1 ppt in the daytime. The profile retrieval reveals that the bulk of the IO was located in the lower part of the marine boundary layer. Photochemical simulations indicate that the organic iodine precursors observed during the cruise (CH3I, CH2I2, CH2ClI, CH2BrI) are not sufficient to explain the measured IO mixing ratios. Reasonable agreement between measured and modelled IO can only be achieved, if an additional sea-air flux of inorganic iodine (e.g. I2) is assumed in the model. Our observations add further evidence to previous studies that reactive iodine is an important oxidant in the marine boundary layer

    The Insulin-Mediated Modulation of Visually Evoked Magnetic Fields Is Reduced in Obese Subjects

    Get PDF
    BACKGROUND: Insulin is an anorexigenic hormone that contributes to the termination of food intake in the postprandial state. An alteration in insulin action in the brain, named "cerebral insulin resistance", is responsible for overeating and the development of obesity. METHODOLOGY/PRINCIPAL FINDINGS: To analyze the direct effect of insulin on food-related neuronal activity we tested 10 lean and 10 obese subjects. We conducted a magnetencephalography study during a visual working memory task in both the basal state and after applying insulin or placebo spray intranasally to bypass the blood brain barrier. Food and non-food pictures were presented and subjects had to determine whether or not two consecutive pictures belonged to the same category. Intranasal insulin displayed no effect on blood glucose, insulin or C-peptide concentrations in the periphery; however, it led to an increase in the components of evoked fields related to identification and categorization of pictures (at around 170 ms post stimuli in the visual ventral stream) in lean subjects when food pictures were presented. In contrast, insulin did not modulate food-related brain activity in obese subjects. CONCLUSIONS/SIGNIFICANCE: We demonstrated that intranasal insulin increases the cerebral processing of food pictures in lean whereas this was absent in obese subjects. This study further substantiates the presence of a "cerebral insulin resistance" in obese subjects and might be relevant in the pathogenesis of obesity

    Adiponectin Reduces Plasma Triglyceride by Increasing VLDL Triglyceride Catabolism

    Get PDF
    OBJECTIVE—Adiponectin is an adipocyte-derived hormone that plays an important role in glucose and lipid metabolism. The main aims of this study are to investigate the effects of adiponectin on VLDL triglyceride (VLDL-TG) metabolism and the underlying mechanism

    Autocrine IGF-1 Action in Adipocytes Controls Systemic IGF-1 Concentrations and Growth

    Get PDF
    OBJECTIVE—IGF-1 and the IGF-1 receptor (IGF-1R) have been implicated in the regulation of adipocyte differentiation and lipid accumulation in vitro
    corecore