7,918 research outputs found

    Very Low-Mass Objects in the Coronet Cluster: The Realm of the Transition Disks

    Full text link
    We present optical and IR spectra of a set of low-mass stars and brown dwarfs in the Coronet cluster (aged ~1Myr), obtained with the multifiber spectrograph FLAMES/VLT and IRS/Spitzer. The optical spectra reveal spectral types between M1 and M7.5, confirm the youth of the objects (via Li 6708 A absorption), and show the presence of accretion (via Halpha) and shocks (via forbidden line emission). The IRS spectra, together with IR photometry from the IRAC/MIPS instruments on Spitzer and 2MASS, confirm the presence of IR excesses characteristic of disks around ~70% of the objects. Half of the disks do not exhibit any silicate emission, or present flat features characteristic of large grains. The rest of the disks show silicate emission typical of amorphous and crystalline silicate grains a few microns in size. About 50% of the objects with disks do not show near-IR excess emission, having "transitional" disks, according to their classical definition. This is a very high fraction for such a young cluster. The large number of "transitional" disks suggests lifetimes comparable to the lifetimes of typical optically thick disks. Therefore, these disks may not be in a short-lived phase, intermediate between Class II and Class III objects. The median spectral energy distribution of the disks in the Coronet cluster is also closer to a flat disk than observed for the disks around solar-type stars in regions with similar age. The differences in the disk morphology and evolution in the Coronet cluster could be related to fact that these objects have very late spectral types compared to the solar-type stars in other cluster studies. Finally, the optical spectroscopy reveals that one of the X-ray sources is produced by a Herbig Haro object in the cloud.Comment: 51 pages, 13 figures, 10 table

    The VLT-FLAMES Tarantula Survey. VII. A low velocity dispersion for the young massive cluster R136

    Get PDF
    Detailed studies of resolved young massive star clusters are necessary to determine their dynamical state and evaluate the importance of gas expulsion and early cluster evolution. In an effort to gain insight into the dynamical state of the young massive cluster R136 and obtain the first measurement of its velocity dispersion, we analyse multi-epoch spectroscopic data of the inner regions of 30 Doradus in the Large Magellanic Cloud (LMC) obtained as part of the VLT-FLAMES Tarantula Survey. Following a quantitative assessment of the variability, we use the radial velocities of non-variable sources to place an upper limit of 6 km/s on the line-of-sight velocity dispersion of stars within a projected distance of 5 pc from the centre of the cluster. After accounting for the contributions of undetected binaries and measurement errors through Monte Carlo simulations, we conclude that the true velocity dispersion is likely between 4 and 5 km/s given a range of standard assumptions about the binary distribution. This result is consistent with what is expected if the cluster is in virial equilibrium, suggesting that gas expulsion has not altered its dynamics. We find that the velocity dispersion would be ~25 km/s if binaries were not identified and rejected, confirming the importance of the multi-epoch strategy and the risk of interpreting velocity dispersion measurements of unresolved extragalactic young massive clusters.Comment: 18 pages, 7 figures, accepted by A&

    The VLT-FLAMES Tarantula Survey XVI. The optical+NIR extinction laws in 30 Doradus and the photometric determination of the effective temperatures of OB stars

    Full text link
    Context: The commonly used extinction laws of Cardelli et al. (1989) have limitations that, among other issues, hamper the determination of the effective temperatures of O and early B stars from optical+NIR photometry. Aims: We aim to develop a new family of extinction laws for 30 Doradus, check their general applicability within that region and elsewhere, and apply them to test the feasibility of using optical+NIR photometry to determine the effective temperature of OB stars. Methods: We use spectroscopy and NIR photometry from the VLT-FLAMES Tarantula Survey and optical photometry from HST/WFC3 of 30 Doradus and we analyze them with the software code CHORIZOS using different assumptions such as the family of extinction laws. Results: We derive a new family of optical+NIR extinction laws for 30 Doradus and confirm its applicability to extinguished Galactic O-type systems. We conclude that by using the new extinction laws it is possible to measure the effective temperatures of OB stars with moderate uncertainties and only a small bias, at least up to E(4405-5495) ~ 1.5 mag.Comment: Accepted for publication in A&A. Revised version corrects language and fixes typos (one of them caught by David Nicholls). Figure 4 has poor quality due to the size restrictions imposed by arXi

    Millimeter and Submillimeter Survey of the R Corona Australis Region

    Full text link
    Using a combination of data from the Antarctic Submillimeter Telescope and Remote Observatory (AST/RO), the Arizona Radio Observatory Kitt Peak 12m telescope and the Arizona Radio Observatory 10m Heinrich Hertz Telescope, we have studied the most active part of the R CrA molecular cloud in multiple transitions of Carbon Monoxide, HCO+^+ and 870\micron continuum emission. Since R CrA is nearby (130 pc), we are able to obtain physical spatial resolution as high as 0.01pc over an area of 0.16 pc2^2, with velocity resolution finer than 1 km/s. Mass estimates of the protostar driving the mm-wave emission derived from HCO+^+, dust continuum emission and kinematic techniques point to a young, deeply embedded protostar of \sim0.5-0.75 M_\odot, with a gaseous envelope of similar mass. A molecular outflow is driven by this source that also contains at least 0.8 M_\odot of molecular gas with \sim0.5 L_\odot of mechanical luminosity. HCO+^+ lines show the kinematic signature of infall motions as well as bulk rotation. The source is most likely a Class 0 protostellar object not yet visible at near-IR wavelengths. With the combination of spatial and spectral resolution in our data set, we are able to disentangle the effects of infall, rotation and outflow towards this young object.Comment: 29 pages, 9 figures. Accepted for publication in the Astrophysical Journa

    A symmetry breaking mechanism for selecting the speed of relativistic solitons

    Get PDF
    We propose a mechanism for fixing the velocity of relativistic soliton based on the breaking of the Lorentz symmetry of the sine-Gordon (SG) model. The proposal is first elaborated for a molecular chain model, as the simple pendulum limit of a double pendulums chain. It is then generalized to a full class of two-dimensional field theories of the sine-Gordon type. From a phenomenological point of view, the mechanism allows one to select the speed of a SG soliton just by tuning elastic couplings constants and kinematical parameters. From a fundamental, field-theoretical point of view we show that the characterizing features of relativistic SG solitons (existence of conserved topological charges and stability) may be still preserved even if the Lorentz symmetry is broken and a soliton of a given speed is selected.Comment: 23 pages, no figure

    Soft-core meson-baryon interactions. I. One-hadron-exchange potentials

    Get PDF
    The Nijmegen soft-core model for the pseudoscalar-meson baryon interaction is derived, analogous to the Nijmegen NN and YN models. The interaction Hamiltonians are defined and the resulting amplitudes for one-meson-exchange and one-baryon-exchange in momentum space are given for the general mass case. The partial wave projection is carried through and explicit expressions for the momentum space partial wave meson-baryon potentials are presented.Comment: 25 pages, 2 PostScript figures, revtex4, submitted to Phys. Rev.

    Green functions and dimensional reduction of quantum fields on product manifolds

    Full text link
    We discuss Euclidean Green functions on product manifolds P=NxM. We show that if M is compact then the Euclidean field on P can be approximated by its zero mode which is a Euclidean field on N. We estimate the remainder of this approximation. We show that for large distances on N the remainder is small. If P=R^{D-1}xS^{beta}, where S^{beta} is a circle of radius beta, then the result reduces to the well-known approximation of the D dimensional finite temperature quantum field theory to D-1 dimensional one in the high temperature limit. Analytic continuation of Euclidean fields is discussed briefly.Comment: 17 page

    Hard Thermal Loops, Static Response and the Composite Effective Action

    Full text link
    First, we investigate the static non-Abelian Kubo equation. We prove that it does not possess finite energy solutions; thereby we establish that gauge theories do not support hard thermal solitons. A similar argument shows that "static" instantons are absent. In addition, we note that the static equations reproduce the expected screening of the non-Abelian electric field by a gauge invariant Debye mass m=gT sqrt((N+N_F/2)/3). Second, we derive the non-Abelian Kubo equation from the composite effective action. This is achieved by showing that the requirement of stationarity of the composite effective action is equivalent, within a kinematical approximation scheme, to the condition of gauge invariance for the generating functional of hard thermal loops.Comment: 17 pages, MIT preprint CTP#2261. An Appendix [including one (appended) PS figure] presenting a numerical analysis of the static solutions has been included. A note relating our approach to alternative ones has been added. We have also added references and comments in Section II

    Correlated electron emission in laser-induced nonsequence double ionization of Helium

    Full text link
    In this paper, we have investigated the correlated electron emission of the nonsequence double ionization (NSDI) in an intense linearly polarized field. The theoretical model we employed is the semiclassical rescattering model, the model atom we used is the helium. We find a significant correlation between magnitude and direction of the momentum of two emission electrons, and give a good explanation for this striking phenomenon by observing the classical collisional trajectories. We argue that this correlation phenomenon is universal in NSDI process, as revealed by the recent experiment on the argon.Comment: 4 pages, 3 figures, accepted for publication in Phys. Rev.

    Images of the Dark Soliton in a Depleted Condensate

    Full text link
    The dark soliton created in a Bose-Einstein condensate becomes grey in course of time evolution because its notch fills up with depleted atoms. This is the result of quantum mechanical calculations which describes output of many experimental repetitions of creation of the stationary soliton, and its time evolution terminated by a destructive density measurement. However, such a description is not suitable to predict the outcome of a single realization of the experiment were two extreme scenarios and many combinations thereof are possible: one will see (1) a displaced dark soliton without any atoms in the notch, but with a randomly displaced position, or (2) a grey soliton with a fixed position, but a random number of atoms filling its notch. In either case the average over many realizations will reproduce the mentioned quantum mechanical result. In this paper we use N-particle wavefunctions, which follow from the number-conserving Bogoliubov theory, to settle this issue.Comment: 8 pages, 6 figures, references added in version accepted for publication in J. Phys.
    corecore