8,317 research outputs found

    Polarization dependence of x-ray absorption spectra in Na_xCoO_2

    Full text link
    In order to shed light on the electronic structure of Na_xCoO_2, and motivated by recent Co L-edge X-ray absorption spectra (XAS) experiments with polarized light, we calculate the electronic spectrum of a CoO_6 cluster including all interactions between 3d orbitals. We obtain the ground state for two electronic occupations in the cluster that correspond nominally to all O in the O^{-2} oxidation state, and Co^{+3} or Co^{+4}. Then, all excited states obtained by promotion of a Co 2p electron to a 3d electron, and the corresponding matrix elements are calculated. A fit of the observed experimental spectra is good and points out a large Co-O covalency and cubic crystal field effects, that result in low spin Co 3d configurations. Our results indicate that the effective hopping between different Co atoms plays a major role in determining the symmetry of the ground state in the lattice. Remaining quantitative discrepancies with the XAS experiments are expected to come from composition effects of itineracy in the ground and excited states.Comment: 10 pages, 4 figure

    Effective Hamiltonian for transition-metal compounds. Application to Na_xCoO_2

    Full text link
    We describe a simple scheme to construct a low-energy effective Hamiltonian H_eff for highly correlated systems containing non-metals like O, P or As (O in what follows) and a transition-metal (M) as the active part in the electronic structure, eliminating the O degrees of freedom from a starting Hamiltonian that contains all M d orbitals and all non-metal p orbitals. We calculate all interaction terms between d electrons originating from Coulomb repulsion, as a function of three parameters (F_0, F_2 and F_4) and write them in a basis of orbitals appropriate for cubic, tetragonal, tetrahedral or hexagonal symmetry around M. The approach is based on solving exactly (numerically if necessary) a MO_n cluster containing the transition-metal atom and its n nearest O atoms (for example a CoO_6 cluster in the case of the cobaltates, or a CuO_n cluster in the case of the cuprates, in which n depends on the number of apical O atoms), and mapping them into many-body states of the same symmetry containing d holes only. We illustrate the procedure for the case of Na_xCoO_2. The resulting H_eff, including a trigonal distortion D, has been studied recently and its electronic structure agrees well with angle-resolved photoemission spectra [A. Bourgeois, A. A. Aligia, and M. J. Rozenberg, Phys. Rev. Lett. 102, 066402 (2009)]. Although H_eff contains only 3d t_2g holes, the highly correlated states that they represent contain an important amount not only of O 2p holes but also of 3d e_g holes. When more holes are added, a significant redistribution of charge takes place. As a consequence of these facts, the resulting values of the effective interactions between t_2g states are smaller than previously assumed, rendering more important the effect of D in obtaining only one sheet around the center of the Brillouin zone for the Fermi surface (without additional pockets).Comment: 11 pages, 1 figure, accepted for publication in Phys.Rev.

    Optimization of circular orifice jets mixing into a heated cross flow in a cylindrical duct

    Get PDF
    To examine the mixing characteristics of circular jets in an axisymmetric can geometry, temperature measurements were obtained downstream of a row of cold jet injected into a heated cross stream. The objective was to obtain uniform mixing within one duct radius downstream of the leading edge of the jet orifices. An area weighted standard deviation of the mixture fraction was used to help quantify the degree of mixedness at a given plane. Non-reacting experiments were conducted to determine the influence of the number of jets on the mixedness in a cylindrical configuration. Results show that the number of orifices significantly impacts the mixing characteristics of jets injected from round hole orifices in a can geometry. Optimum mixing occurs when the mean jet trajectory aligns with the radius which divides the cross sectional area of the can into two equal parts at one mixer radius downstream of the leading edge of the orifice. The optimum number of holes at momentum-flux ratios of 25 and 52 is 10 and 15 respectively

    Consistent particle-based algorithm with a non-ideal equation of state

    Full text link
    A thermodynamically consistent particle-based model for fluid dynamics with continuous velocities and a non-ideal equation of state is presented. Excluded volume interactions are modeled by means of biased stochastic multiparticle collisions which depend on the local velocities and densities. Momentum and energy are exactly conserved locally. The equation of state is derived and compared to independent measurements of the pressure. Results for the kinematic shear viscosity and self-diffusion constants are presented. A caging and order/disorder transition is observed at high densities and large collision frequency.Comment: 7 pages including 4 figure

    Global modeling of secondary organic aerosol formation from aromatic hydrocarbons: high- vs low-yield pathways

    Get PDF
    Formation of SOA from the aromatic species toluene, xylene, and, for the first time, benzene, is added to a global chemical transport model. A simple mechanism is presented that accounts for competition between low and high-yield pathways of SOA formation, wherein secondary gas-phase products react further with either nitrogen oxide (NO) or hydroperoxy radical (HO2) to yield semi- or non-volatile products, respectively. Aromatic species yield more SOA when they react with OH in regions where the [NO]/[HO2] ratios are lower. The SOA yield thus depends upon the distribution of aromatic emissions, with biomass burning emissions being in areas with lower [NO]/[HO2] ratios, and the reactivity of the aromatic with respect to OH, as a lower initial reactivity allows transport away from industrial source regions, where [NO]/[HO2] ratios are higher, to more remote regions, where this ratio is lower and, hence, the ultimate yield of SOA is higher. As a result, benzene is estimated to be the most important aromatic species with regards to formation of SOA, with a total production nearly equal that of toluene and xylene combined. In total, while only 39% percent of the aromatic species react via the low-NOx pathway, 72% of the aromatic SOA is formed via this mechanism. Predicted SOA concentrations from aromatics in the Eastern United States and Eastern Europe are actually largest during the summer, when the [NO]/[HO2] ratio is lower. Global production of SOA from aromatic sources is estimated at 3.5 Tg/yr, resulting in a global burden of 0.08 Tg, twice as large as previous estimates. The contribution of these largely anthropogenic sources to global SOA is still small relative to biogenic sources, which are estimated to comprise 90% of the global SOA burden, about half of which comes from isoprene. Compared to recent observations, it would appear there are additional pathways beyond those accounted for here for production of anthropogenic SOA. However, owing to differences in spatial distributions of sources and seasons of peak production, there are still regions in which aromatic SOA produced via the mechanisms identified here are predicted to contribute substantially to, and even dominate, the local SOA concentrations, such as outflow regions from North America and South East Asia during the wintertime, though total SOA concentrations there are small (~0.1 μg/m^³)

    Multi-particle-collision dynamics: Flow around a circular and a square cylinder

    Full text link
    A particle-based model for mesoscopic fluid dynamics is used to simulate steady and unsteady flows around a circular and a square cylinder in a two-dimensional channel for a range of Reynolds number between 10 and 130. Numerical results for the recirculation length, the drag coefficient, and the Strouhal number are reported and compared with previous experimental measurements and computational fluid dynamics data. The good agreement demonstrates the potential of this method for the investigation of complex flows.Comment: 6 pages, separated figures in .jpg format, to be published in Europhysics Letter

    X-ray absorption spectroscopy on layered cobaltates Na_xCoO_2

    Full text link
    Measurements of polarization and temperature dependent soft x-ray absorption have been performed on Na_xCoO_2 single crystals with x=0.4 and x=0.6. They show a deviation of the local trigonal symmetry of the CoO_6 octahedra, which is temperature independent in a temperature range between 25 K and 372 K. This deviation was found to be different for Co^{3+} and Co^{4+} sites. With the help of a cluster calculation we are able to interpret the Co L_{23}-edge absorption spectrum and find a doping dependent energy splitting between the t_{2g} and the e_g levels (10Dq) in Na_xCoO_2.Comment: 7 pages, 8 figure

    Mesoscopic model for the fluctuating hydrodynamics of binary and ternary mixtures

    Full text link
    A recently introduced particle-based model for fluid dynamics with continuous velocities is generalized to model immiscible binary mixtures. Excluded volume interactions between the two components are modeled by stochastic multiparticle collisions which depend on the local velocities and densities. Momentum and energy are conserved locally, and entropically driven phase separation occurs for high collision rates. An explicit expression for the equation of state is derived, and the concentration dependence of the bulk free energy is shown to be the same as that of the Widom-Rowlinson model. Analytic results for the phase diagram are in excellent agreement with simulation data. Results for the line tension obtained from the analysis of the capillary wave spectrum of a droplet agree with measurements based on the Laplace's equation. The introduction of "amphiphilic" dimers makes it possible to model the phase behavior and dynamics of ternary surfactant mixtures.Comment: 7 pages including 6 figure
    corecore