60 research outputs found

    Temporal trends and geographical variability of the prevalence and incidence of attention deficit/hyperactivity disorder diagnoses among children in Catalonia, Spain

    Get PDF
    Attention deficit/hyperactivity disorder (ADHD) is one of the most common behavioral disorders in childhood. According to a recent systematic review, the worldwide estimate of ADHD prevalence is 7.2% in children. This study aims to assess the prevalence of ADHD diagnoses in 2017 and the incidence of ADHD diagnoses in 2009-2017 in children living in Catalonia, Spain, as well as their temporal and geographical variability, and stratifying by sex and age. We used administrative data for all children aged 4 to 17 years who were insured in the public Catalan Health System in 2009-2017. We identified all ADHD cases diagnosed in 2009-2017 (ICD-9 code 314). We estimated the prevalence of ADHD diagnoses in 2017 and the overall annual incidence of ADHD diagnoses in 2009-2017. We used Poisson regression models to assess temporal trends in the incidence. We estimated a prevalence of ADHD diagnoses of 4.06% (95%CI 4.03, 4.10) in 2017, being 5.81% (95%CI 5.75, 5.87) for boys and 2.20% (95%CI 2.16, 2.24) for girls, the highest prevalence being in 13-to-17-year-olds (7.28% (95%CI 7.20, 7.36)). We did not observe a statistically significant increase of the incidence of ADHD diagnoses during the study period. Geographical differences were found across the healthcare areas in both prevalence and annual incidence and constant during the study period. In conclusion, the prevalence of ADHD diagnoses observed in this study was 4.06%, which was lower than the estimates reported in previous systematic reviews, but in line with the prevalence estimates from other recent European studies. The prevalence was higher in boys than girls, with a sex ratio consistent with previous studies. We did not observe an increase in the temporal trend of incidence of ADHD diagnoses in recent years, but we found geographical differences

    Hippocampal adaptations in Mild Cognitive Impairment patients are modulated by bilingual language experiences

    Get PDF
    Bilingualism has been shown to contribute to increased resilience against cognitive aging. One of the key brain structures linked to memory and dementia symptom onset, the hippocampus, has been observed to adapt in response to bilingual experience - at least in healthy individuals. However, in the context of neurodegenerative pathology, it is yet unclear what role previous bilingual experience might have in terms of sustaining integrity of this structure or related behavioral correlates. The present study adds to the limited cohort of research on the effects of bilingualism on neurocognitive outcomes in Mild Cognitive Impairment (MCI) using structural brain data. We investigate whether bilingual language experience (operationalized as language entropy) results in graded neurocognitive adaptations within a cohort of bilinguals diagnosed with MCI. Results reveal a non-linear effect of bilingual language entropy on hippocampal volume, although they do not predict episodic memory performance, nor age of MCI diagnosis

    Metallosomes for biomedical applications by mixing molybdenum carbonyl metallosurfactants and phospholipids

    Get PDF
    New supramolecular systems have been prepared by mixing molybdenum organometallic metallosurfactants M(CO)5L and M(CO)4L2 {L = Ph2P(CH2)6SO3Na} with the phospholipid phosphatidylcholine. The analysis of the resulting supramolecular structures using dynamic light scattering and cryo-transmission electron microscopy has shown the formation of different aggregates depending on the metallosurfactant/phospholipid ratio, as well as a significantly different behaviour between the two studied metallosurfactants. Mixed vesicles, with properties very similar to liposomes, can be obtained with both compounds, and are called metallosomes. The formation of the mixed aggregates has also been studied by microfluidics using MeOH and EtOH as organic solvents, and it has been observed that the size of the aggregates is strongly dependent on the organic solvent used. In order to analyse the viability of these mixed systems as CO Releasing Molecules (CORMs) for biomedical applications, the CO release was studied by FT-IR spectroscopy, showing that they behave as photo-CORMs with visible and ultraviolet light. Toxicity studies of the different mixed aggregate systems have shown that metallosomes exhibit a very low toxicity, similar to liposomes that do not contain metallosurfactants, which is well below the results observed for pure metallosurfactants. Micro-FTIR microscopy using synchrotron radiation has shown the presence of metallosurfactants in cells. The results of this study show the influence of the length of the hydrocarbon chain on the properties of these mixed systems, compared with previously reported data

    Big dynorphin is a neuroprotector scaffold against amyloid β-peptide aggregation and cell toxicity

    Get PDF
    Amyloid β-peptide (Aβ) misfolding into β-sheet structures triggers neurotoxicity inducing Alzheimer's disease (AD). Molecules able to reduce or to impair Aβ aggregation are highly relevant as possible AD treatments since they should protect against Aβ neurotoxicity. We have studied the effects of the interaction of dynorphins, a family of opioid neuropeptides, with Aβ40 the most abundant species of Aβ. Biophysical measurements indicate that Aβ40 interacts with Big Dynorphin (BigDyn), lowering the amount of hydrophobic aggregates, and slowing down the aggregation kinetics. As expected, we found that BigDyn protects against Aβ40 aggregates when studied in human neuroblastoma cells by cell survival assays. The cross-interaction between BigDyn and Aβ40 provides insight into the mechanism of amyloid pathophysiology and may open up new therapy possibilities.The authors would like to thank Mr. Jordi Pujols Pujol for skillful technical assistance in RP-HPLC experiments, and Mr. Mateo Calle Velásquez for skillful assistance in the docking process.Peer reviewe

    Intracranial tumors of the central nervous system and air pollution - A nationwide case-control study from Denmark

    Get PDF
    Background: Inconclusive evidence has suggested a possible link between air pollution and central nervous system (CNS) tumors. We investigated a range of air pollutants in relation to types of CNS tumors. Methods: We identified all (n = 21,057) intracranial tumors in brain, meninges and cranial nerves diagnosed in Denmark between 1989 and 2014 and matched controls on age, sex and year of birth. We established personal 10- year mean residential outdoor exposure to particulate matter < 2.5 μm (PM2.5), nitrous oxides (NOX), primary emitted black carbon (BC) and ozone. We used conditional logistic regression to calculate odds ratios (OR) linearly (per interquartile range (IQR)) and categorically. We accounted for personal income, employment, marital status, use of medication as well as socio-demographic conditions at area level. Results: Malignant tumors of the intracranial CNS was associated with BC (OR: 1.034, 95%CI: 1.005–1.065 per IQR. For NOx the OR per IQR was 1.026 (95%CI: 0.998–1.056). For malignant non-glioma tumors of the brain we found associations with PM2.5 (OR: 1.267, 95%CI: 1.053–1.524 per IQR), BC (OR: 1.049, 95%CI: 0.996–1.106) and NOx (OR: 1.051, 95% CI: 0.996–1.110). Conclusion: Our results suggest that air pollution is associated with malignant intracranial CNS tumors and malignant non-glioma of the brain. However, additional studies are needed

    Human Albumin Impairs Amyloid β-peptide Fibrillation Through its C-terminus: From docking Modeling to Protection Against Neurotoxicity in Alzheimer's disease

    Get PDF
    Alzheimer's disease (AD) is a neurodegenerative process characterized by the accumulation of extracellular deposits of amyloid β-peptide (Aβ), which induces neuronal death. Monomeric Aβ is not toxic but tends to aggregate into β-sheets that are neurotoxic. Therefore to prevent or delay AD onset and progression one of the main therapeutic approaches would be to impair Aβ assembly into oligomers and fibrils and to promote disaggregation of the preformed aggregate. Albumin is the most abundant protein in the cerebrospinal fluid and it was reported to bind Aβ impeding its aggregation. In a previous work we identified a 35-residue sequence of clusterin, a well-known protein that binds Aβ, that is highly similar to the C-terminus (CTerm) of albumin. In this work, the docking experiments show that the average binding free energy of the CTerm-Aβ1–42 simulations was significantly lower than that of the clusterin-Aβ1–42 binding, highlighting the possibility that the CTerm retains albumin's binding properties. To validate this observation, we performed in vitro structural analysis of soluble and aggregated 1 μM Aβ1–42 incubated with 5 μM CTerm, equimolar to the albumin concentration in the CSF. Reversed-phase chromatography and electron microscopy analysis demonstrated a reduction of Aβ1–42 aggregates when the CTerm was present. Furthermore, we treated a human neuroblastoma cell line with soluble and aggregated Aβ1–42 incubated with CTerm obtaining a significant protection against Aβ-induced neurotoxicity. These in silico and in vitro data suggest that the albumin CTerm is able to impair Aβ aggregation and to promote disassemble of Aβ aggregates protecting neurons

    Elevated levels of endothelial-derived microparticles, and serum CXCL9 and SCGF-β are associated with unstable asymptomatic carotid plaques.

    Get PDF
    Endothelial microparticles (EMPs) are released from dysfunctional endothelial cells. We hypothesised that patients with unstable carotid plaque have higher levels of circulating microparticles compared to patients with stable plaques, and may correlate with serum markers of plaque instability and inflammation. Circulating EMPs, platelet MPs (PMPs) and inflammatory markers were measured in healthy controls and patients undergoing carotid endarterectomy. EMP/PMPs were quantified using flow cytometry. Bioplex assays profiled systemic inflammatory and bone-related proteins. Immunohistological analysis detailed the contribution of differentially-regulated systemic markers to plaque pathology. Alizarin red staining showed calcification. EMPs and PMPs were significantly higher in patients with carotid stenosis (≥70%) compared to controls, with no differences between asymptomatic vs symptomatic patients. Asymptomatic patients with unstable plaques exhibited higher levels of EMPs, CXCL9 and SCGF-β compared to those with stable plaques. CXCL9, and SCGF-β were detected within all plaques, suggesting a contribution to both localised and systemic inflammation. Osteopontin and osteoprotegerin were significantly elevated in the symptomatic vs asymptomatic group, while osteocalcin was higher in asymptomatic patients with stable plaque. All plaques exhibited calcification, which was significantly greater in asymptomatic patients. This may impact on plaque stability. These data could be important in identifying patients at most benefit from intervention
    corecore