30 research outputs found

    Morphogenesis of the T4 tail and tail fibers

    Get PDF
    Remarkable progress has been made during the past ten years in elucidating the structure of the bacteriophage T4 tail by a combination of three-dimensional image reconstruction from electron micrographs and X-ray crystallography of the components. Partial and complete structures of nine out of twenty tail structural proteins have been determined by X-ray crystallography and have been fitted into the 3D-reconstituted structure of the "extended" tail. The 3D structure of the "contracted" tail was also determined and interpreted in terms of component proteins. Given the pseudo-atomic tail structures both before and after contraction, it is now possible to understand the gross conformational change of the baseplate in terms of the change in the relative positions of the subunit proteins. These studies have explained how the conformational change of the baseplate and contraction of the tail are related to the tail's host cell recognition and membrane penetration function. On the other hand, the baseplate assembly process has been recently reexamined in detail in a precise system involving recombinant proteins (unlike the earlier studies with phage mutants). These experiments showed that the sequential association of the subunits of the baseplate wedge is based on the induced-fit upon association of each subunit. It was also found that, upon association of gp53 (gene product 53), the penultimate subunit of the wedge, six of the wedge intermediates spontaneously associate to form a baseplate-like structure in the absence of the central hub. Structure determination of the rest of the subunits and intermediate complexes and the assembly of the hub still require further study

    The use of genomic signature distance between bacteriophages and their hosts displays evolutionary relationships and phage growth cycle determination

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Bacteriophage classification is mainly based on morphological traits and genome characteristics combined with host information and in some cases on phage growth lifestyle. A lack of molecular tools can impede more precise studies on phylogenetic relationships or even a taxonomic classification. The use of methods to analyze genome sequences without the requirement for homology has allowed advances in classification.</p> <p>Results</p> <p>Here, we proposed to use genome sequence signature to characterize bacteriophages and to compare them to their host genome signature in order to obtain host-phage relationships and information on their lifestyle. We analyze the host-phage relationships in the four most representative groups of Caudoviridae, the dsDNA group of phages. We demonstrate that the use of phage genomic signature and its comparison with that of the host allows a grouping of phages and is also able to predict the host-phage relationships (lytic <it>vs</it>. temperate).</p> <p>Conclusions</p> <p>We can thus condense, in relatively simple figures, this phage information dispersed over many publications.</p

    Catalytic residues in hydrolases: analysis of methods designed for ligand-binding site prediction

    Get PDF
    The comparison of eight tools applicable to ligand-binding site prediction is presented. The methods examined cover three types of approaches: the geometrical (CASTp, PASS, Pocket-Finder), the physicochemical (Q-SiteFinder, FOD) and the knowledge-based (ConSurf, SuMo, WebFEATURE). The accuracy of predictions was measured in reference to the catalytic residues documented in the Catalytic Site Atlas. The test was performed on a set comprising selected chains of hydrolases. The results were analysed with regard to size, polarity, secondary structure, accessible solvent area of predicted sites as well as parameters commonly used in machine learning (F-measure, MCC). The relative accuracies of predictions are presented in the ROC space, allowing determination of the optimal methods by means of the ROC convex hull. Additionally the minimum expected cost analysis was performed. Both advantages and disadvantages of the eight methods are presented. Characterization of protein chains in respect to the level of difficulty in the active site prediction is introduced. The main reasons for failures are discussed. Overall, the best performance offers SuMo followed by FOD, while Pocket-Finder is the best method among the geometrical approaches

    A C terminal phosphatase module conserved in vertebrate CMP sialic acid synthetases provides a tetramerization interface for the physiologically active enzyme

    No full text
    The biosynthesis of sialic acid containing glycoconjugates is crucial for the development of vertebrate life. Cytidine monophosphate sialic acid synthetase CSS catalyzes the metabolic activation of sialic acids. In vertebrates, the enzyme is chimeric, with the N terminal domain harboring the synthetase activity. The function of the highly conserved C terminal domain CSS CT is unknown. To shed light on its biological function, we solved the X ray structure of murine CSS CT to 1.9 resolution. CSS CT is a stable shamrock like tetramer that superimposes well with phosphatases of the haloacid dehalogenase superfamily. However, a region found exclusively in vertebrate CSS CT appears to block the active site entrance. Accordingly, no phosphatase activity was observed in vitro, which points toward a nonenzymatic function of CSS CT. A computational three dimensional model of full length CSS, in combination with in vitro oligomerization studies, provides evidence that CSS CT serves as a platform for the quaternary organization governing the kinetic properties of the physiologically active enzyme as demonstrated in kinetic studie

    Role of glycan synthesis in colonization of the mammalian gut by the bacterial symbiont Bacteroides fragilis

    No full text
    Bacteroides species are the most abundant Gram-negative bacteria of the human colonic microbiota. These endogenous organisms are unique in that they synthesize an extensive number of phase-variable surface polysaccharides. Pathogenic bacteria phase vary expression of surface molecules for immune evasion, but the importance of the synthesis of multiple phase-variable polysaccharides to these commensal bacteria is unknown. We previously showed that a Bacteroides fragilis mutant unable to synthesize 4 of the 8 capsular polysaccharides and unable to glycosylate proteins properly is rapidly outcompeted by the wild-type strain for colonization of the gnotobiotic mouse intestine. In the present study, we constructed mutants defective only in capsule polysaccharide synthesis to define better the importance of these surface molecules to intestinal colonization. We discovered a key enzymatic activity required for synthesis of 7 of the 8 capsular polysaccharides. Deletion of its gene resulted in the first B. fragilis mutant able to synthesize only one phase-variable polysaccharide, and further mutation resulted in a stable acapsular mutant. We show that the acapsular mutant is rapidly outcompeted, but synthesis of a single polysaccharide is sufficient for the organism to colonize the gnotobiotic intestine competitively. These data demonstrate that initial colonization of the gnotobiotic mouse intestine by B. fragilis requires that the organism synthesize only a single polysaccharide and suggest that the synthesis of multiple phase-variable polysaccharides is important for the bacteria's long-term maintenance in the normally complex and competitive ecosystem

    Structure of the hepatitis E virus-like particle suggests mechanisms for virus assembly and receptor binding

    No full text
    Hepatitis E virus (HEV), a small, non-enveloped RNA virus in the family Hepeviridae, is associated with endemic and epidemic acute viral hepatitis in developing countries. Our 3.5-Å structure of a HEV-like particle (VLP) shows that each capsid protein contains 3 linear domains that form distinct structural elements: S, the continuous capsid; P1, 3-fold protrusions; and P2, 2-fold spikes. The S domain adopts a jelly-roll fold commonly observed in small RNA viruses. The P1 and P2 domains both adopt β-barrel folds. Each domain possesses a potential polysaccharide-binding site that may function in cell-receptor binding. Sugar binding to P1 at the capsid protein interface may lead to capsid disassembly and cell entry. Structural modeling indicates that native T = 3 capsid contains flat dimers, with less curvature than those of T = 1 VLP. Our findings significantly advance the understanding of HEV molecular biology and have application to the development of vaccines and antiviral medications

    Structure of a group A streptococcal phage-encoded virulence factor reveals a catalytically-active triple-stranded ß-helix.

    Get PDF
    Streptococcus pyogenes (group A Streptococcus) causes severe invasive infections including scarlet fever, pharyngitis (streptococcal sore throat), skin infections, necrotizing fasciitis (flesh-eating disease), septicemia, erysipelas, cellulitis, acute rheumatic fever, and toxic shock. The conversion from nonpathogenic to toxigenic strains of S. pyogenes is frequently mediated by bacteriophage infection. One of the key bacteriophage-encoded virulence factors is a putative “hyaluronidase,” HylP1, a phage tail-fiber protein responsible for the digestion of the S. pyogenes hyaluronan capsule during phage infection. Here we demonstrate that HylP1 is a hyaluronate lyase. The 3D structure, at 1.8-Å resolution, reveals an unusual triple-stranded β-helical structure and provides insight into the structural basis for phage tail assembly and the role of phage tail proteins in virulence. Unlike the triple-stranded β-helix assemblies of the bacteriophage T4 injection machinery and the tailspike endosialidase of the Escherichia coli K1 bacteriophage K1F, HylP1 possesses three copies of the active center on the triple-helical fiber itself without the need for an accessory catalytic domain. The triple-stranded β-helix is not simply a structural scaffold, as previously envisaged; it is harnessed to provide a 200-Å-long substrate-binding groove for the optimal reduction in hyaluronan viscosity to aid phage penetration of the capsule

    Novel Virulent and Broad-Host-Range Erwinia amylovora Bacteriophages Reveal a High Degree of Mosaicism and a Relationship to Enterobacteriaceae Phages ▿†

    No full text
    A diverse set of 24 novel phages infecting the fire blight pathogen Erwinia amylovora was isolated from fruit production environments in Switzerland. Based on initial screening, four phages (L1, M7, S6, and Y2) with broad host ranges were selected for detailed characterization and genome sequencing. Phage L1 is a member of the Podoviridae, with a 39.3-kbp genome featuring invariable genome ends with direct terminal repeats. Phage S6, another podovirus, was also found to possess direct terminal repeats but has a larger genome (74.7 kbp), and the virus particle exhibits a complex tail fiber structure. Phages M7 and Y2 both belong to the Myoviridae family and feature long, contractile tails and genomes of 84.7 kbp (M7) and 56.6 kbp (Y2), respectively, with direct terminal repeats. The architecture of all four phage genomes is typical for tailed phages, i.e., organized into function-specific gene clusters. All four phages completely lack genes or functions associated with lysogeny control, which correlates well with their broad host ranges and indicates strictly lytic (virulent) lifestyles without the possibility for host lysogenization. Comparative genomics revealed that M7 is similar to E. amylovora virus ΦEa21-4, whereas L1, S6, and Y2 are unrelated to any other E. amylovora phage. Instead, they feature similarities to enterobacterial viruses T7, N4, and ΦEcoM-GJ1. In a series of laboratory experiments, we provide proof of concept that specific two-phage cocktails offer the potential for biocontrol of the pathogen
    corecore