72 research outputs found
Development and test of advanced composite components. Center Directors discretionary fund program
This report describes the design, analysis, fabrication, and test of a complex bathtub fitting. Graphite fibers in an epoxy matrix were utilized in manufacturing of 11 components representing four different design and layup concepts. Design allowables were developed for use in the final stress analysis. Strain gage measurements were taken throughout the static load test and correlation of test and analysis data were performed, yielding good understanding of the material behavior and instrumentation requirements for future applications
Fluid Acquisition and Resupply Experiments on Space Shuttle Flights STS-53 and STS-57
The Fluid Acquisition and Resupply Experiment (FARE) program, managed by the Marshall Space Flight Center Space Propulsion Branch with Martin Marietta Civil Space and Communications as the contractor, consisted of two flights designated FARE I and FARE II. FARE I flew in December 1992 on STS-53 with a screen channel liquid acquisition device (LAD) and FARE II flew in June 1993 on STS-57 with a vane-type LAD. Thus, the FARE I and II flights represent the two basic LAD categories usually considered for in-space fluid management. Although both LAD types have been used extensively, the usefulness of the on-orbit data has been constrained by the lack of experimentation beyond predicted performance limits, including both propellant fill and expulsion. Therefore, the FARE tests were designed to obtain data that would satisfy two primary objectives: (1) Demonstrate the performance of the two types of LADs, screen channel and vane, and (2) support the anchoring of analytical models. Both flights were considered highly successful in meeting these two primary objectives
The Advanced Automated Directional Solidification Furnace
The Advanced Automated Directional Solidification Furnace (AADSF) is a five zone tubular furnace designed for Bridgman-Stockbarger, other techniques of crystal growth involving multiple temperature zones such as vapor transport experiments and other materials science experiments. The five zones are primarily designed to produce uniform hot and cold temperature regions separated by an adiabatic region constructed of a heat extraction plate and an insert to reduce radiation from the hot to the cold zone. The hot and cold zone temperatures are designed to reach 1600 C and 1100 C, respectively. AADSF operates on a Multi-Purpose Experiment Support Structure (MPESS) within the cargo bay of the Space Shuttle on the United States Microgravity Payload (USMP) missions. Two successful flights, both employing the directional solidification or Bridgman Stockbarger technique for crystal growth have been made, and crystals of HgCdTe and PbSnTe grown in microgravity have been produced on USMP-2 and USMP-3, respectively. The addition of a Sample Exchange Mechanism (SEM) will enable three different samples to be processed on future flights including the USMP-4 mission
Nudging allows direct evaluation of coupled climate models with in situ observations: a case study from the MOSAiC expedition
Comparing the output of general circulation models to observations is essential for assessing and improving the quality of models. While numerical weather prediction models are routinely assessed against a large array of observations, comparing climate models and observations usually requires long time series to build robust statistics. Here, we show that by nudging the large-scale atmospheric circulation in coupled climate models, model output can be compared to local observations for individual days. We illustrate this for three climate models during a period in April 2020 when a warm air intrusion reached the MOSAiC (Multidisciplinary drifting Observatory for the Study of Arctic Climate) expedition in the central Arctic. Radiosondes, cloud remote sensing and surface flux observations from the MOSAiC expedition serve as reference observations. The climate models AWI-CM1/ECHAM and AWI-CM3/IFS miss the diurnal cycle of surface temperature in spring, likely because both models assume the snowpack on ice to have a uniform temperature. CAM6, a model that uses three layers to represent snow temperature, represents the diurnal cycle more realistically. During a cold and dry period with pervasive thin mixed-phase clouds, AWI-CM1/ECHAM only produces partial cloud cover and overestimates downwelling shortwave radiation at the surface. AWI-CM3/IFS produces a closed cloud cover but misses cloud liquid water. Our results show that nudging the large-scale circulation to the observed state allows a meaningful comparison of climate model output even to short-term observational campaigns. We suggest that nudging can simplify and accelerate the pathway from observations to climate model improvements and substantially extends the range of observations suitable for model evaluation.</p
Bounded and compact multipliers between Bergman and Hardy spaces
This paper studies the boundedness and compactness of the coefficient multiplier operators between various Bergman spaces A p and Hardy spaces H q . Some new characterizations of the multipliers between the spaces with exponents 1 or 2 are derived which, in particular, imply a Bergman space analogue of the Paley-Rudin Theorem on sparse sequences. Hardy and Bergman spaces are shown to be linked using mixed-norm spaces, and this linkage is used to improve a known result on ( A p , A 2 ), 1< p <2.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/42949/1/20_2005_Article_BF01225524.pd
Cosmic ray oriented performance studies for the JEM-EUSO first level trigger
JEM-EUSO is a space mission designed to investigate Ultra-High Energy Cosmic Rays and Neutrinos (E > 5 ⋅ 1019 eV) from the International Space Station (ISS). Looking down from above its wide angle telescope is able to observe their air showers and collect such data from a very wide area. Highly specific trigger algorithms are needed to drastically reduce the data load in the presence of both atmospheric and human activity related background light, yet retain the rare cosmic ray events recorded in the telescope. We report the performance in offline testing of the first level trigger algorithm on data from JEM-EUSO prototypes and laboratory measurements observing different light sources: data taken during a high altitude balloon flight over Canada, laser pulses observed from the ground traversing the real atmosphere, and model landscapes reproducing realistic aspect ratios and light conditions as would be seen from the ISS itself. The first level trigger logic successfully kept the trigger rate within the permissible bounds when challenged with artificially produced as well as naturally encountered night sky background fluctuations and while retaining events with general air-shower characteristics
Clouds Increasingly Influence Arctic Sea Surface Temperatures as CO2 Rises
Abstract As Arctic sea ice retreats during the melt season, the upper ocean warms in response to atmospheric heat fluxes. Overall, clouds reduce these fluxes in summer, but how the radiative impacts of clouds on ocean warming could change as sea ice declines has not been documented. In global climate model simulations with variable CO2, the timing of sea ice retreat strongly influences the amplitude of cloud‐induced summer cooling at the ocean surface. Under pre‐industrial CO2 concentrations, summer clouds have little direct effect on maximum annual sea surface temperatures (SST). When CO2 concentrations increase, sea ice retreats earlier, allowing more solar radiation to warm the ocean. Clouds can counteract this summer warming by reflecting solar radiation back to space. Consequently, clouds explain up to 13% more variability in maximum annual SST under modern‐day CO2 concentrations. Maximum annual SST are three times more sensitive to summer clouds when CO2 concentrations are four times pre‐industrial levels
Influence coefficients of a circular cylindrical shell with rapidly varying parabolic wall thickness
- …