23 research outputs found

    A super-Earth and a sub-Neptune orbiting the bright, quiet M3 dwarf TOI-1266

    Get PDF
    We report the discovery and characterisation of a super-Earth and a sub-Neptune transiting the bright (K = 8.8), quiet, and nearby (37 pc) M3V dwarf TOI-1266. We validate the planetary nature of TOI-1266 b and c using four sectors of TESS photometry and data from the newly-commissioned 1-m SAINT-EX telescope located in San Pedro Mártir (México). We also include additional ground-based follow-up photometry as well as high-resolution spectroscopy and high-angular imaging observations. The inner, larger planet has a radius of R = 2.37_(−0.12)^(+0.16) R_⊕ and an orbital period of 10.9 days. The outer, smaller planet has a radius of R = 1.56_(−0.13)^(+0.15) R_⊕ on an 18.8-day orbit. The data are found to be consistent with circular, co-planar and stable orbits that are weakly influenced by the 2:1 mean motion resonance. Our TTV analysis of the combined dataset enables model-independent constraints on the masses and eccentricities of the planets. We find planetary masses of M_p = 13.5_(−9.0)^(+11.0) M_⊕ (<36.8 M_⊕ at 2-σ) for TOI-1266 b and 2.2_(−1.5)^(+2.0) M_⊕ (<5.7 M_⊕ at 2-σ) for TOI-1266 c. We find small but non-zero orbital eccentricities of 0.09_(−0.05)^(+0.06) (<0.21 at 2-σ) for TOI-1266 b and 0.04 ± 0.03 (< 0.10 at 2-σ) for TOI-1266 c. The equilibrium temperatures of both planets are of 413 ± 20 and 344 ± 16 K, respectively, assuming a null Bond albedo and uniform heat redistribution from the day-side to the night-side hemisphere. The host brightness and negligible activity combined with the planetary system architecture and favourable planet-to-star radii ratios makes TOI-1266 an exquisite system for a detailed characterisation

    TOI-2257 b: A highly eccentric long-period sub-Neptune transiting a nearby M dwarf

    Get PDF
    N.S., R.W. and B.-O.D. acknowledge support from the Swiss National Science Foundation (PP00P2-163967 and PP00P2-190080). M.N.G. acknowledges support from MIT's Kavli Institute as a Juan Carlos Torres Fellow and from the European Space Agency (ESA) as an ESA Research Fellow. A.A.B., B.S.S.and I.A.S. acknowledge the support of the Ministry of Science and Higher Education of the Russian Federation under the grant 075-15-2020-780 (N13.1902.21.0039). L.D. is an F.R.S.-FNRS Postdoctoral Researcher. B.V.R. thanks the Heising-Simons Foundation for support. This publication benefits from the support of the French Community of Belgium in the context of the FRIA Doctoral Grant awarded to M.T. and E.J. acknowledges DGAPA for his postdoctoral fellowship. Y.G.M.C. acknowledges support from UNAM-DGAPA PAPIIT BG-101321. D.D. acknowledges support from the TESS Guest Investigator Program grant 80NSSC19K1727 and NASA Exoplanet Research Program grant 18-2XRP18_2-0136. We acknowledge support from the Centre for Space and Habitability (CSH) of the University of Bern. Part of this work received support from the National Centre for Competence in Research PlanetS, supported by the Swiss National Science Foundation (SNSF). Funding for the TESS mission is provided by NASA's Science Mission Directorate. We acknowledge the use of public TESS data from pipelines at the TESS Science Office and at the TESS Science Processing Operations Center. This research has made use of the Exoplanet Follow-up Observation Program website, which is operated by the California Institute of Technology, under contract with the National Aeronautics and Space Administration under the Exoplanet Exploration Program. Resources supporting this work were provided by the NASA High-End Computing (HEC) Program through the NASA Advanced Supercomputing (NAS) Division at Ames Research Center for the production of the SPOC data products. This paper includes data collected by the TESS mission that are publicly available from the Mikulski Archive for Space Telescopes (MAST). This work is based upon observations carried out at the Observatorio Astronomico Nacional on the Sierra de San Pedro Martir (OAN-SPM), Baja California, Mexico. We warmly thank the entire technical staff of the Observatorio Astronomico Nacional at San Pedro Martir in Mexico for their unfailing support to SAINT-EX operations, namely: E. Cadena, T. Calvario, E. Colorado, F. Diaz, A. Franco, B. Garcia, C. Guerrero, G. Guisa, F. Guillen, A. Landa, L. Figueroa, B. Hernandez, J. Herrera, E. Lopez, E. Lugo, B. Martinez, G. Melgoza, F. Montalvo, J.M. Nunez, J.L. Ochoa, I. Plauchu, F. Quiroz, H. Riesgo, H. Serrano, T. Verdugo, I. Zavala. The research leading to these results has received funding from the European Research Council (ERC) under the FP/2007-2013 ERC grant agreement nffi 336480, and under the European Union's Horizon 2020 research and innovation programme (grants agreements nffi 679030 and 803193/BEBOP); from an Actions de Recherche Concertee (ARC) grant, financed by the Wallonia-Brussels Federation, from the Balzan Prize Foundation, from the BEL-SPO/BRAIN2.0 research program (PORTAL project), from the Science and Technology Facilities Council (STFC; grant nffi ST/S00193X/1), and from F.R.S-FNRS (Research Project ID T010920F). This work was also partially supported by a grant from the Simons Foundation (PI: Queloz, grant number 327127), as well as by the MERAC foundation (PI: Triaud). PI: Gillon is F.R.S.-FNRS Senior Research Associate. TRAPPIST is funded by the Belgian Fund for Scientific Research (Fond National de la Recherche Scientifique, FNRS) under the grant PDR T.0120.21, with the participation of the Swiss National Science Fundation (SNF). M.G. and E.J. are F.R.S.-FNRS Senior Research Associate. This work makes use of observations from the LCOGT network. Part of the LCOGT telescope time was granted by NOIRLab through the Mid-Scale Innovations Program (MSIP). M.S.I.P. is funded by NSF. Some of the observations in the paper made use of the High-Resolution Imaging instrument(s) `Alopeke (and/or Zorro). `Alopeke (and/or Zorro) was funded by the NASA Exoplanet Exploration Program and built at the NASA Ames Research Center by Steve B. Howell, Nic Scott, Elliott P. Horch, and Emmett Quigley. Data were reduced using a software pipeline originally written by Elliott Horch and Mark Everett. `Alopeke (and/or Zorro) was mounted on the Gemini North (and/or South) telescope of the international Gemini Observatory, a program of NSF's OIR Lab, which is managed by the Association of Universities for Research in Astronomy (AURA) under a cooperative agreement with the National Science Foundation, on behalf of the Gemini partnership: the National Science Foundation (United States), National Research Council (Canada), Agencia Nacional de Investigacion y Desarrollo (Chile), Ministerio de Ciencia, Tecnologia e Innovacion (Argentina), Ministerio da Ciencia, Tecnologia, Inovacoes e Comunicacoes (Brazil), and Korea Astronomy and Space Science Institute (Republic of Korea). This research has made use of the NASA Exoplanet Archive, which is operated by the California Institute of Technology, under contract with the National Aeronautics and Space Administration under the Exoplanet Exploration Program. This research made use of exoplanet (Foreman-Mackey et al. 2021a,b) and its dependencies (Agol et al. 2020; Kumar et al. 2019; Astropy Collaboration 2013, 2018; Kipping 2013; Luger et al. 2019; Salvatier et al. 2016; Theano Development Team 2016). Additional use of software packages AstroImageJ (Collins et al. 2017) and TAPIR (Jensen 2013).Context. Thanks to the relative ease of finding and characterizing small planets around M-dwarf stars, these objects have become cornerstones in the field of exoplanet studies. The current paucity of planets in long-period orbits around M dwarfs makes such objects particularly compelling as they provide clues about the formation and evolution of these systems. Aims. In this study we present the discovery of TOI-2257 b (TIC 198485881), a long-period (35 d) sub-Neptune orbiting an M3 star at 57.8 pc. Its transit depth is about 0.4%, large enough to be detected with medium-size, ground-based telescopes. The long transit duration suggests the planet is in a highly eccentric orbit (e similar to 0.5), which would make it the most eccentric planet known to be transiting an M-dwarf star. Methods. We combined TESS and ground-based data obtained with the 1.0-meter SAINT-EX, 0.60-meter TRAPPIST-North, and 1.2-meter FLWO telescopes to find a planetary size of 2.2 R-circle plus and an orbital period of 35.19 days. In addition, we make use of archival data, high-resolution imaging, and vetting packages to support our planetary interpretation. Results. With its long period and high eccentricity, TOI-2257 b falls into a novel slice of parameter space. Despite the planet's low equilibrium temperature (similar to 256 K), its host star's small size (R-* = 0.311 +/- 0.015) and relative infrared brightness (K-mag = 10.7) make it a suitable candidate for atmospheric exploration via transmission spectroscopy.Swiss National Science Foundation (SNSF)European Commission PP00P2-163967 PP00P2-190080MIT's Kavli InstituteEuropean Space Agency European CommissionMinistry of Science and Higher Education of the Russian Federation 075-15-2020-780 (N13.1902.21.0039)Heising-Simons FoundationFrench Community of BelgiumDGAPAPrograma de Apoyo a Proyectos de Investigacion e Innovacion Tecnologica (PAPIIT) Universidad Nacional Autonoma de Mexico BG-101321TESS Guest Investigator Program 80NSSC19K1727NASA Exoplanet Research Program 18-2XRP18_2-0136Centre for Space and Habitability (CSH) of the University of BernSwiss National Science Foundation (SNSF)European Research Council (ERC) 336480Actions de Recherche Concertee (ARC) grant - Wallonia-Brussels FederationUK Research & Innovation (UKRI)Science & Technology Facilities Council (STFC)Science and Technology Development Fund (STDF) ST/S00193X/1Fonds de la Recherche Scientifique - FNRS T010920FSimons Foundation 327127MERAC foundationFonds de la Recherche Scientifique - FNRS PDR T.0120.21Swiss National Science Foundation (SNSF)National Science Foundation (NSF)NASA Exoplanet Exploration Program NASA's Science Mission DirectorateEuropean Research Council (ERC) 679030 803193/BEBOPBalzan Prize Foundation BEL-SPO/BRAIN2.0 research program (PORTAL project

    A large sub-Neptune transiting the thick-disk M4 V TOI-2406

    Get PDF
    We thank the anonymous referee for their corrections and help in improving the paper. We warmly thank the entire technical staff of the Observatorio Astronomico Nacional at San Pedro Martir in Mexico for their unfailing support to SAINT-EX operations, namely: E. Cadena, T. Calvario, E. Colorado, B. Garcia, G. Guisa, A. Franco, L. Figueroa, B. Hernandez, J. Herrera, E. Lopez, E. Lugo, B. Martinez, J. M. Nunez, J. L. Ochoa, M. Pereyra, F. Quiroz, T. Verdugo, I. Zavala. B.V.R. thanks the Heising-Simons Foundation for support. Y.G.M.C acknowledges support from UNAM-PAPIIT IG-101321. B.-O. D. acknowledges support from the Swiss National Science Foundation (PP00P2-163967 and PP00P2-190080). R.B. acknowledges the support from the Swiss National Science Foundation under grant P2BEP2_195285. M.N.G. acknowledges support from MIT's Kavli Institute as a Juan Carlos Torres Fellow. A.H.M.J.T acknowledges funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (grant agreement nffi 803193/BEBOP), from the MERAC foundation, and from the Science and Technology Facilities Council (STFC; grant nffi ST/S00193X/1). T.D. acknowledges support from MIT's Kavli Institute as a Kavli postdoctoral fellow Part of this work received support from the National Centre for Competence in Research PlanetS, supported by the Swiss National Science Foundation (SNSF). The research leading to these results has received funding from the ARC grant for Concerted Research Actions, financed by the Wallonia-Brussels Federation. TRAPPIST is funded by the Belgian Fund for Scientific Research (Fond National de la Recherche Scientifique, FNRS) under the grant FRFC 2.5.594.09.F, with the participation of the Swiss National Science Fundation (SNF). M.G. and E.J. are F.R.S.-FNRS Senior Research Associate. This publication benefits from the support of the French Community of Belgium in the context of the FRIA Doctoral Grant awarded to MT. We acknowledge the use of public TESS data from pipelines at the TESS Science Office and at the TESS Science Processing Operations Center. We acknowledge the use of public TESS Alert data from pipelines at the TESS Science Office and at the TESS Science Processing Operations Center. Resources supporting this work were provided by the NASA High-End Computing (HEC) Program through the NASA Advanced Supercomputing (NAS) Division at Ames Research Center for the production of the SPOC data products. Funding for the TESS mission is provided by NASA's Science Mission Directorate. This research has made use of the Exoplanet Follow-up Observation Program website, which is operated by the California Institute of Technology, under contract with the National Aeronautics and Space Administration under the Exoplanet Exploration Program. This paper includes data collected by the TESS mission that are publicly available from the Mikulski Archive for Space Telescopes (MAST). We thank the TESS GI program G03274 PI, Ryan Cloutier, for proposing the target of this work for 2-min-cadence observations in Sector 30. This work is based upon observations carried out at the Observatorio Astronomico Nacional on the Sierra de San Pedro Martir (OAN-SPM), Baja California, Mexico. This work makes use of observations from the LCOGT network. Part of the LCOGT telescope time was granted by NOIRLab through the Mid-Scale Innovations Program (MSIP). MSIP is funded by NSF. This work includes data collected at the Vatican Advanced Technology Telescope (VATT) on Mt. Graham. This paper includes data taken on the EDEN telescope network. We acknowledge support from the Earths in Other Solar Systems Project (EOS) and Alien Earths (grant numbers NNX15AD94G and 80NSSC21K0593), sponsored by NASA. Some of the observations in the paper made use of the High-Resolution Imaging instrument Zorro (Gemini program GS-2020B-LP-105). Zorro was funded by the NASA Exoplanet Exploration Program and built at the NASA Ames Research Center by Steve B. Howell, Nic Scott, Elliott P. Horch, and Emmett Quigley. Zorro was mounted on the Gemini South telescope of the international Gemini Observatory, a program of NSF's OIR Lab, which is managed by the Association of Universities for Research in Astronomy (AURA) under a cooperative agreement with the National Science Foundation. on behalf of the Gemini partnership: the National Science Foundation (United States), National Research Council (Canada), Agencia Nacional de Investigacion y Desarrollo (Chile), Ministerio de Ciencia, Tecnologia e Innovacion (Argentina), Ministerio da Ciencia, Tecnologia, Inovacoes e Comunicacoes (Brazil), and Korea Astronomy and Space Science Institute (Republic of Korea). This research has made use of the NASA Exoplanet Archive, which is operated by the California Institute of Technology, under contract with the National Aeronautics and Space Administration under the Exoplanet Exploration Program. This work made use of the following Python packages: astropy (Astropy Collaboration 2013, 2018), lightkurve (Lightkurve Collaboration 2018), matplotlib (Hunter 2007), pandas (Wes McKinney 2010), seaborn (Waskom & The Seaborn Development team 2021), scipy (Virtanen et al. 2020) and numpy (Harris et al. 2020).Context. Large sub-Neptunes are uncommon around the coolest stars in the Galaxy and are rarer still around those that are metal-poor. However, owing to the large planet-to-star radius ratio, these planets are highly suitable for atmospheric study via transmission spectroscopy in the infrared, such as with JWST. Aims. Here we report the discovery and validation of a sub-Neptune orbiting the thick-disk, mid-M dwarf star TOI-2406. The star's low metallicity and the relatively large size and short period of the planet make TOI-2406 b an unusual outcome of planet formation, and its characterisation provides an important observational constraint for formation models. Methods. We first infer properties of the host star by analysing the star's near-infrared spectrum, spectral energy distribution, and Gaia parallax. We use multi-band photometry to confirm that the transit event is on-target and achromatic, and we statistically validate the TESS signal as a transiting exoplanet. We then determine physical properties of the planet through global transit modelling of the TESS and ground-based time-series data. Results. We determine the host to be a metal-poor M4 V star, located at a distance of 56 pc, with properties T-eff = 3100 +/- 75 K, M-* = 0.162 +/- 0.008M(circle dot), R-* = 0.202 +/- 0.011R(circle dot), and [Fe/H] = -0.38 +/- 0.07, and a member of the thick disk. The planet is a relatively large sub-Neptune for the M-dwarf planet population, with R-p = 2.94 +/- 0.17R(circle plus) and P= 3.077 d, producing transits of 2% depth. We note the orbit has a non-zero eccentricity to 3 sigma, prompting questions about the dynamical history of the system. Conclusions. This system is an interesting outcome of planet formation and presents a benchmark for large-planet formation around metal-poor, low-mass stars. The system warrants further study, in particular radial velocity follow-up to determine the planet mass and constrain possible bound companions. Furthermore, TOI-2406 b is a good target for future atmospheric study through transmission spectroscopy. Although the planet's mass remains to be constrained, we estimate the S/N using amass-radius relationship, ranking the system fifth in the population of large sub-Neptunes, with TOI-2406 b having a much lower equilibrium temperature than other spectroscopically accessible members of this population.Heising-Simons FoundationPrograma de Apoyo a Proyectos de Investigacion e Innovacion Tecnologica (PAPIIT)Universidad Nacional Autonoma de Mexico IG-101321Swiss National Science Foundation (SNSF)European Commission PP00P2-163967 PP00P2-190080 P2BEP2_195285MIT's Kavli Institute as a Juan Carlos Torres FellowEuropean Research Council (ERC) nffi 803193/BEBOPMERAC foundationUK Research & Innovation (UKRI)Science & Technology Facilities Council (STFC)Science and Technology Development Fund (STDF) nffi ST/S00193X/1MIT's Kavli Institute as a Kavli postdoctoral fellowSwiss National Science Foundation (SNSF)Australian Research CouncilFonds de la Recherche Scientifique - FNRS FRFC 2.5.594.09.FSwiss National Science Foundation (SNSF)French Community of Belgium in the context of the FRIA Doctoral GrantNASA High-End Computing (HEC) Program through the NASA Advanced Supercomputing (NAS) Division at Ames Research CenterNASA's Science Mission DirectorateNational Aeronautics and Space Administration under the Exoplanet Exploration ProgramTESS GI program G03274National Science Foundation (NSF)Earths in Other Solar Systems Project (EOS)Alien Earths - NASA NNX15AD94G 80NSSC21K0593High-Resolution Imaging instrument Zorro (Gemini program) GS-2020B-LP-105NASA Exoplanet Exploration ProgramNational Aeronautics & Space Administration (NASA)National Science Foundation (NSF

    A super-Earth and a sub-Neptune orbiting the bright, quiet M3 dwarf TOI-1266

    Get PDF
    We report the discovery and characterisation of a super-Earth and a sub-Neptune transiting the bright (K=8.8K=8.8), quiet, and nearby (37 pc) M3V dwarf TOI-1266. We validate the planetary nature of TOI-1266 b and c using four sectors of TESS photometry and data from the newly-commissioned 1-m SAINT-EX telescope located in San Pedro M\'artir (Mexico). We also include additional ground-based follow-up photometry as well as high-resolution spectroscopy and high-angular imaging observations. The inner, larger planet has a radius of R=2.370.12+0.16R=2.37_{-0.12}^{+0.16} R_{\oplus} and an orbital period of 10.9 days. The outer, smaller planet has a radius of R=1.560.13+0.15R=1.56_{-0.13}^{+0.15} R_{\oplus} on an 18.8-day orbit. The data are found to be consistent with circular, co-planar and stable orbits that are weakly influenced by the 2:1 mean motion resonance. Our TTV analysis of the combined dataset enables model-independent constraints on the masses and eccentricities of the planets. We find planetary masses of MpM_\mathrm{p} = 13.59.0+11.013.5_{-9.0}^{+11.0} M\mathrm{M_{\oplus}} (<36.8<36.8 M\mathrm{M_{\oplus}} at 2-σ\sigma) for TOI-1266 b and 2.21.5+2.02.2_{-1.5}^{+2.0} M\mathrm{M_{\oplus}} (<5.7<5.7 M\mathrm{M_{\oplus}} at 2-σ\sigma) for TOI-1266 c. We find small but non-zero orbital eccentricities of 0.090.05+0.060.09_{-0.05}^{+0.06} (<0.21<0.21 at 2-σ\sigma) for TOI-1266 b and 0.04±0.030.04\pm0.03 (<0.10<0.10 at 2-σ\sigma) for TOI-1266 c. The equilibrium temperatures of both planets are of 413±20413\pm20 K and 344±16344\pm16 K, respectively, assuming a null Bond albedo and uniform heat redistribution from the day-side to the night-side hemisphere. The host brightness and negligible activity combined with the planetary system architecture and favourable planet-to-star radii ratios makes TOI-1266 an exquisite system for a detailed characterisation

    Discovery and mass measurement of the hot, transiting, Earth-sized planet, GJ 3929 b

    Get PDF
    We report the discovery of GJ 3929 b, a hot Earth-sized planet orbiting the nearby M3.5 V dwarf star, GJ 3929 (G 180-18, TOI-2013). Joint modelling of photometric observations from TESS sectors 24 and 25 together with 73 spectroscopic observations from CARMENES and follow-up transit observations from SAINT-EX, LCOGT, and OSN yields a planet radius of Rb = 1.150 ± 0.040 R⊕, a mass of Mb = 1.21 ± 0.42 M⊕, and an orbital period of Pb = 2.6162745 ± 0.0000030 d. The resulting density of ρb = 4.4 ± 1.6 g cm−3 is compatible with the Earth’s mean density of about 5.5 g cm−3. Due to the apparent brightness of the host star (J = 8.7 mag) and its small size, GJ 3929 b is a promising target for atmospheric characterisation with the JWST. Additionally, the radial velocity data show evidence for another planet candidate with P[c] = 14.303 ± 0.035 d, which is likely unrelated to the stellar rotation period, Prot = 122 ± 13 d, which we determined from archival HATNet and ASAS-SN photometry combined with newly obtained TJO data

    TOI-2257 b : a highly eccentric long-period sub-Neptune transiting a nearby M dwarf

    Get PDF
    Context. Thanks to the relative ease of finding and characterizing small planets around M-dwarf stars, these objects have become cornerstones in the field of exoplanet studies. The current paucity of planets in long-period orbits around M dwarfs makes such objects particularly compelling as they provide clues about the formation and evolution of these systems. Aims. In this study we present the discovery of TOI-2257 b (TIC 198485881), a long-period (35 d) sub-Neptune orbiting an M3 star at 57.8 pc. Its transit depth is about 0.4%, large enough to be detected with medium-size, ground-based telescopes. The long transit duration suggests the planet is in a highly eccentric orbit (e ~ 0.5), which would make it the most eccentric planet known to be transiting an M-dwarf star. Methods. We combined TESS and ground-based data obtained with the 1.0-meter SAINT-EX, 0.60-meter TRAPPIST-North, and 1.2-meter FLWO telescopes to find a planetary size of 2.2 R⊕ and an orbital period of 35.19 days. In addition, we make use of archival data, high-resolution imaging, and vetting packages to support our planetary interpretation. Results. With its long period and high eccentricity, TOI-2257 b falls into a novel slice of parameter space. Despite the planet’s low equilibrium temperature (~256 K), its host star’s small size (R* = 0.311 ± 0.015) and relative infrared brightness (Kmag = 10.7) make it a suitable candidate for atmospheric exploration via transmission spectroscopy

    Two temperate super-Earths transiting a nearby late-type M dwarf

    Full text link
    peer reviewedIn the age of JWST, temperate terrestrial exoplanets transiting nearby late-type M dwarfs provide unique opportunities for characterising their atmospheres, as well as searching for biosignature gases. We report here the discovery and validation of two temperate super-Earths transiting LP 890-9 (TOI-4306, SPECULOOS-2), a relatively low-activity nearby (32 pc) M6V star. The inner planet, LP 890-9b, was first detected by TESS (and identified as TOI-4306.01) based on four sectors of data. Intensive photometric monitoring of the system with the SPECULOOS Southern Observatory then led to the discovery of a second outer transiting planet, LP 890-9c (also identified as SPECULOOS-2c), previously undetected by TESS. The orbital period of this second planet was later confirmed by MuSCAT3 follow-up observations. With a mass of 0.118±0.002 M⊙, a radius of 0.1556±0.0086 R⊙, and an effective temperature of 2850±75 K, LP 890-9 is the second-coolest star found to host planets, after TRAPPIST-1. The inner planet has an orbital period of 2.73 d, a radius of 1.320+0.053−0.027 R⊕, and receives an incident stellar flux of 4.09±0.12 S⊕. The outer planet has a similar size of 1.367+0.055−0.039 R⊕ and an orbital period of 8.46 d. With an incident stellar flux of 0.906 ± 0.026 S⊕, it is located within the conservative habitable zone, very close to its inner limit. Although the masses of the two planets remain to be measured, we estimated their potential for atmospheric characterisation via transmission spectroscopy using a mass-radius relationship and found that, after the TRAPPIST-1 planets, LP 890-9c is the second-most favourable habitable-zone terrestrial planet known so far. The discovery of this remarkable system offers another rare opportunity to study temperate terrestrial planets around our smallest and coolest neighbours

    Improved measurement of the neutron absorption cross section for very low velocities

    Get PDF
    The absorption cross section of natural Gd and isotopic enriched 157Gd for ultra-cold neutrons (UCN) as a function of the velocity has been measured within a time-of-flight-experiment. Particular attention is paid to small velocities in the region of a few m/s. This is intended to determine the validity of the 1/v-law governing absorption cross sections in this region and the resulting divergence at v=0. The experiment does not show any significant violation of 1/v for v>3 m/s

    A super-Earth and a sub-Neptune orbiting the bright, quiet M3 dwarf TOI-1266

    No full text
    © 2020 ESO. We report the discovery and characterisation of a super-Earth and a sub-Neptune transiting the bright (K = 8.8), quiet, and nearby (37 pc) M3V dwarf TOI-1266. We validate the planetary nature of TOI-1266 b and c using four sectors of TESS photometry and data from the newly-commissioned 1-m SAINT-EX telescope located in San Pedro Mártir (México). We also include additional ground-based follow-up photometry as well as high-resolution spectroscopy and high-angular imaging observations. The inner, larger planet has a radius of R = 2.37-0.12+0.16 R and an orbital period of 10.9 days. The outer, smaller planet has a radius of R = 1.56-0.13+0.15 R on an 18.8-day orbit. The data are found to be consistent with circular, co-planar and stable orbits that are weakly influenced by the 2:1 mean motion resonance. Our TTV analysis of the combined dataset enables model-independent constraints on the masses and eccentricities of the planets. We find planetary masses of Mp = 13.5-9.0+11.0 M (<36.8 M at 2-σ) for TOI-1266 b and 2.2-1.5+2.0 M (<5.7 M at 2-σ) for TOI-1266 c. We find small but non-zero orbital eccentricities of 0.09-0.05+0.06 (<0.21 at 2-σ) for TOI-1266 b and 0.04 ± 0.03 (< 0.10 at 2-σ) for TOI-1266 c. The equilibrium temperatures of both planets are of 413 ± 20 and 344 ± 16 K, respectively, assuming a null Bond albedo and uniform heat redistribution from the day-side to the night-side hemisphere. The host brightness and negligible activity combined with the planetary system architecture and favourable planet-to-star radii ratios makes TOI-1266 an exquisite system for a detailed characterisation
    corecore