95 research outputs found

    Better Baltic Sea wave forecasts: improving resolution or introducing ensembles?

    Get PDF
    The performance of short-range operational forecasts of significant wave height (SWH) in the Baltic Sea is evaluated. Forecasts produced by a base configuration are intercompared with forecasts from two improved configurations: one with improved horizontal and spectral resolution and one with ensembles representing uncertainties in the physics of the forcing wind field and the initial conditions of this field. Both of the improved forecast classes represent an almost equal increase in computational costs. Therefore, the intercomparison addresses the question of whether more computer resources would be more favorably spent on enhancing the spatial and spectral resolution or, alternatively, on introducing ensembles. The intercomparison is based on comparisons with hourly observations of significant wave height from seven observation sites in the Baltic Sea during the 3-year period from 2015 to 2017. We conclude that for most wave measurement sites, the introduction of ensembles enhances the overall performance of the forecasts, whereas increasing the horizontal and spectral resolution does not. These sites represent offshore conditions, in that they are well exposed from all directions, are a large distance from the nearest coast and in deep water. Therefore, there is the a priori expectation that a detailed shoreline and bathymetry will not have any impact. Only at one site do we find that increasing the horizontal and spectral resolution significantly improves the forecasts. This site is situated in nearshore conditions, close to land and a nearby island, and is therefore shielded from many directions. Consequently, this study concludes that to improve wave forecasts in offshore areas, ensembles should be introduced. For near shore areas, in comparison, the study suggests that additional computational resources should be used to increase the resolution.</p

    Allocation of nutrients during the reproductive cycle of Ophidiaster ophidianus (Echinodermata: Asteroidea)

    Get PDF
    Copyright © 2011 Taylor & Francis.The reproductive cycle of Ophidiaster ophidianus (strictly protected status) from Sa˜o Miguel Island, in the Azorean Archipelago was studied. The reproductive strategy; the energy allocation of each sex during the reproductive cycle and the nutritional condition of the population were analyzed. Gonadal index (GI) showed a clear seasonal pattern with spawning between August and October but histological examination revealed that gamete release can occur throughout the entire year. The pyloric caeca index (PCI) showed little annual variation but with an inverse relationship with the GI. Allocation of energy to the gonads and to the pyloric caeca reflected the seasonal reproductive strategy of this species. Individuals were able to simultaneously develop gonads, pyloric caeca, and quickly regenerate lost arms. There was a major expenditure of energy by females compared to males but, sexual size dimorphism was not observed. The reproductive pattern observed in O. ophidianus combining rich food availability and seawater temperatures characteristic of a temperate zone may be the key to the success of this species in the Azorean oceanic Island.Portuguese Foundation for Science and Technology (FCT)

    Development of a Population Pharmacokinetic Model To Describe Azithromycin Whole-Blood and Plasma Concentrations over Time in Healthy Subjects

    Get PDF
    ABSTRACT Azithromycin (AZI), a broad-spectrum antibiotic, accumulates in polymorphonuclear cells and peripheral blood mononuclear cells. The distribution of AZI in proinflammatory cells may be important to the anti-inflammatory properties. Previous studies have described plasma AZI pharmacokinetics. The objective of this study was to describe the pharmacokinetics of AZI in whole blood (concentration in whole blood [ C b ]) and plasma (concentration in plasma [ C p ]) of healthy subjects. In this study, 12 subjects received AZI (500 mg once a day for 3 days). AZI C b and C p were quantified in serial samples collected up to 3 weeks after the last dose and analyzed using noncompartmental and compartmental methods. After the last dose, C b was greater than C p . Importantly, C b , but not C p , was quantifiable in all but one subject at 3 weeks. The blood area under the curve during a 24-h dosing interval (AUC 24 ) was ∼2-fold greater than the plasma AUC 24 , but simulations suggested that C b was not at steady state by day 3. Upon exploration of numerous models, an empirical 3-compartment model adequately described C p and C b , but C p was somewhat underestimated. Intercompartmental clearance (CL; likely representing cells) was lower than apparent oral CL (18 versus 118 liters/h). Plasma, peripheral, and cell compartmental volumes were 439 liters, 2,980 liters, and 3,084 liters, respectively. Interindividual variability in CL was low (26.2%), while the volume of distribution variability was high (107%). This is the first report to describe AZI C b in healthy subjects, the distribution parameters between C p and C b , and AZI retention in blood for up to 3 weeks following 3 daily doses. The model can be used to predict C b from C p for AZI under various dosing regimens. (This study has been registered at ClinicalTrials.gov under registration no. NCT01026064.

    Rapid response of Helheim Glacier in Greenland to climate variability over the past century

    Get PDF
    Author Posting. © The Author(s), 2011. This is the author's version of the work. It is posted here by permission of Nature Publishing Group for personal use, not for redistribution. The definitive version was published in Nature Geoscience 5 (2012): 37-41, doi:10.1038/ngeo1349.During the early 2000s the Greenland Ice Sheet experienced the largest ice mass loss observed on the instrumental record1, largely as a result of the acceleration, thinning and retreat of major outlet glaciers in West and Southeast Greenland2-5. The quasi-simultaneous change in the glaciers suggests a common climate forcing and increasing air6 and ocean7-8 temperatures have been indicated as potential triggers. Here, we present a new record of calving activity of Helheim Glacier, East Greenland, extending back to c. 1890 AD. This record was obtained by analysing sedimentary deposits from Sermilik Fjord, where Helheim Glacier terminates, and uses the annual deposition of sand grains as a proxy for iceberg discharge. The 120 year long record reveals large fluctuations in calving rates, but that the present high rate was reproduced only in the 1930s. A comparison with climate indices indicates that high calving activity coincides with increased Atlantic Water and decreased Polar Water influence on the shelf, warm summers and a negative phase of the North Atlantic Oscillation. Our analysis provides evidence that Helheim Glacier responds to short-term (3-10 years) large-scale oceanic and atmospheric fluctuations.This study has been supported by Geocenter Denmark in financial support to the SEDIMICE project. CSA was supported by the Danish Council for Independent Research│Nature and Universe (Grant no. 09-064954/FNU). FSt was supported by NSF ARC 0909373 and by WHOI’s Ocean and Climate Change Institute and MHRI was supported by the Danish Agency for Science, Technology and Innovation.2012-06-1

    Heterogeneous nanofluids: natural convection heat transfer enhancement

    Get PDF
    Convective heat transfer using different nanofluid types is investigated. The domain is differentially heated and nanofluids are treated as heterogeneous mixtures with weak solutal diffusivity and possible Soret separation. Owing to the pronounced Soret effect of these materials in combination with a considerable solutal expansion, the resulting solutal buoyancy forces could be significant and interact with the initial thermal convection. A modified formulation taking into account the thermal conductivity, viscosity versus nanofluids type and concentration and the spatial heterogeneous concentration induced by the Soret effect is presented. The obtained results, by solving numerically the full governing equations, are found to be in good agreement with the developed solution based on the scale analysis approach. The resulting convective flows are found to be dependent on the local particle concentration φ and the corresponding solutal to thermal buoyancy ratio N. The induced nanofluid heterogeneity showed a significant heat transfer modification. The heat transfer in natural convection increases with nanoparticle concentration but remains less than the enhancement previously underlined in forced convection case

    The EC-Earth3 Earth system model for the Coupled Model Intercomparison Project 6

    Get PDF
    The Earth system model EC-Earth3 for contributions to CMIP6 is documented here, with its flexible coupling framework, major model configurations, a methodology for ensuring the simulations are comparable across different high-performance computing (HPC) systems, and with the physical performance of base configurations over the historical period. The variety of possible configurations and sub-models reflects the broad interests in the EC-Earth community. EC-Earth3 key performance metrics demonstrate physical behavior and biases well within the frame known from recent CMIP models. With improved physical and dynamic features, new Earth system model (ESM) components, community tools, and largely improved physical performance compared to the CMIP5 version, EC-Earth3 represents a clear step forward for the only European community ESM. We demonstrate here that EC-Earth3 is suited for a range of tasks in CMIP6 and beyond

    Lava field evolution and emplacement dynamics of the 2014–2015 basaltic fissure eruption at Holuhraun, Iceland

    Get PDF
    The 6-month long eruption at Holuhraun (August 2014–February 2015) in the Bárðarbunga-Veiðivötn volcanic system was the largest effusive eruption in Iceland since the 1783–1784 CE Laki eruption. The lava flow field covered ~84 km2 and has an estimated bulk (i.e., including vesicles) volume of ~1.44 km3. The eruption had an average discharge rate of ~90 m3/s making it the longest effusive eruption in modern times to sustain such high average flux. The first phase of the eruption (August 31, 2014 to mid-October 2014) had a discharge rate of ~350 to 100 m3/s and was typified by lava transport via open channels and the formation of four lava flows, no. 1–4,which were emplaced side by side. The eruption began on a 1.8 km long fissure, feeding partly incandescent sheets of slabby pāhoehoe up to 500 m wide. By the following day the lava transport got confined to open channels and the dominant lava morphology changed to rubbly pāhoehoe and ‘a’ā. The latter became the dominating morphology of lava flows no. 1–8. The second phase of the eruption (Mid-October to end November) had a discharge of ~100–50 m3/s. During this time the lava transport system changed, via the formation of a b1 km2 lava pond ~1 km east of the vent. The pond most likely formed in a topographical low created by a the pre-existing Holuhraun and the newHoluhraun lava flow fields. This pond became themain point of lava distribution, controlling the emplacement of subsequent flows (i.e. no. 5–8). Towards the end of this phase inflation plateaus developed in lava flowno. 1. These inflation plateaus were the surface manifestation of a growing lava tube system, which formed as lava ponded in the open lava channels creating sufficient lavastatic pressure in the fluid lava to lift the roof of the lava channels. This allowed new lava into the previously active lava channel lifting the channel roof via inflation. The final (third) phase, lasting from December to end-February 2015 had a mean discharge rate of ~50 m3/s. In this phase the lava transport was mainly confined to lava tubes within lava flows no. 1–2, which fed breakouts that resurfaced N19 km2 of the flow field. The primary lava morphology from this phase was spiny pāhoehoe, which superimposed on the ‘a’ā lava flows no. 1–3 and extended the entire length of the flow field (i.e. 17 km). Thismade the 2014–2015 Holuhraun a paired flow field,where both lava morphologies had similar length. We suggest that the similar length is a consequence of the pāhoehoe is fed from the tube systemutilizing the existing ‘a’ā lava channels, and thereby are controlled by the initial length of the ‘a’ā flows.The work was financed with crisis response funding from the Icelandic Government along with European Community's Seventh Framework Programme Grant No. 308377 (Project FUTUREVOLC) and along with the Icelandic Research fund, Rannis, Grant of Excellence No. 152266-052 (Project EMMIRS). Furthermore, Vinur Vatnajökuls are thanked for support.Peer Reviewe

    Predicting Missing Links via Local Information

    Get PDF
    Missing link prediction of networks is of both theoretical interest and practical significance in modern science. In this paper, we empirically investigate a simple framework of link prediction on the basis of node similarity. We compare nine well-known local similarity measures on six real networks. The results indicate that the simplest measure, namely common neighbors, has the best overall performance, and the Adamic-Adar index performs the second best. A new similarity measure, motivated by the resource allocation process taking place on networks, is proposed and shown to have higher prediction accuracy than common neighbors. It is found that many links are assigned same scores if only the information of the nearest neighbors is used. We therefore design another new measure exploited information of the next nearest neighbors, which can remarkably enhance the prediction accuracy.Comment: For International Workshop: "The Physics Approach To Risk: Agent-Based Models and Networks", http://intern.sg.ethz.ch/cost-p10
    corecore