1,417 research outputs found

    Relative Riemann-Zariski spaces

    Full text link
    In this paper we study relative Riemann-Zariski spaces attached to a morphism of schemes and generalizing the classical Riemann-Zariski space of a field. We prove that similarly to the classical RZ spaces, the relative ones can be described either as projective limits of schemes in the category of locally ringed spaces or as certain spaces of valuations. We apply these spaces to prove the following two new results: a strong version of stable modification theorem for relative curves; a decomposition theorem which asserts that any separated morphism between quasi-compact and quasi-separated schemes factors as a composition of an affine morphism and a proper morphism. (In particular, we obtain a new proof of Nagata's compactification theorem.)Comment: 30 pages, the final version, to appear in Israel J. of Mat

    Optical properties of an ensemble of G-centers in silicon

    Full text link
    We addressed the carrier dynamics in so-called G-centers in silicon (consisting of substitutional-interstitial carbon pairs interacting with interstitial silicons) obtained via ion implantation into a silicon-on-insulator wafer. For this point defect in silicon emitting in the telecommunication wavelength range, we unravel the recombination dynamics by time-resolved photoluminescence spectroscopy. More specifically, we performed detailed photoluminescence experiments as a function of excitation energy, incident power, irradiation fluence and temperature in order to study the impact of radiative and non-radiative recombination channels on the spectrum, yield and lifetime of G-centers. The sharp line emitting at 969 meV (\sim1280 nm) and the broad asymmetric sideband developing at lower energy share the same recombination dynamics as shown by time-resolved experiments performed selectively on each spectral component. This feature accounts for the common origin of the two emission bands which are unambiguously attributed to the zero-phonon line and to the corresponding phonon sideband. In the framework of the Huang-Rhys theory with non-perturbative calculations, we reach an estimation of 1.6±\pm0.1 \angstrom for the spatial extension of the electronic wave function in the G-center. The radiative recombination time measured at low temperature lies in the 6 ns-range. The estimation of both radiative and non-radiative recombination rates as a function of temperature further demonstrate a constant radiative lifetime. Finally, although G-centers are shallow levels in silicon, we find a value of the Debye-Waller factor comparable to deep levels in wide-bandgap materials. Our results point out the potential of G-centers as a solid-state light source to be integrated into opto-electronic devices within a common silicon platform

    Ancient Yersinia pestis genomes from across Western Europe reveal early diversification during the First Pandemic (541–750)

    No full text
    The first historically documented pandemic caused by Yersinia pestis began as the Justinianic Plague in 541 within the Roman Empire and continued as the so-called First Pandemic until 750. Although paleogenomic studies have previously identified the causative agent as Y. pestis, little is known about the bacterium’s spread, diversity, and genetic history over the course of the pandemic. To elucidate the microevolution of the bacterium during this time period, we screened human remains from 21 sites in Austria, Britain, Germany, France, and Spain for Y. pestis DNA and reconstructed eight genomes. We present a methodological approach assessing single-nucleotide polymorphisms (SNPs) in ancient bacterial genomes, facilitating qualitative analyses of low coverage genomes from a metagenomic background. Phylogenetic analysis on the eight reconstructed genomes reveals the existence of previously undocumented Y. pestis diversity during the sixth to eighth centuries, and provides evidence for the presence of multiple distinct Y. pestis strains in Europe. We offer genetic evidence for the presence of the Justinianic Plague in the British Isles, previously only hypothesized from ambiguous documentary accounts, as well as the parallel occurrence of multiple derived strains in central and southern France, Spain, and southern Germany. Four of the reported strains form a polytomy similar to others seen across the Y. pestis phylogeny, associated with the Second and Third Pandemics. We identified a deletion of a 45-kb genomic region in the most recent First Pandemic strains affecting two virulence factors, intriguingly overlapping with a deletion found in 17th- to 18th-century genomes of the Second Pandemic. © 2019 National Academy of Sciences. All rights reserved

    Big Line Bundles over Arithmetic Varieties

    Full text link
    We prove a Hilbert-Samuel type result of arithmetic big line bundles in Arakelov geometry, which is an analogue of a classical theorem of Siu. An application of this result gives equidistribution of small points over algebraic dynamical systems, following the work of Szpiro-Ullmo-Zhang. We also generalize Chambert-Loir's non-archimedean equidistribution

    Characterization of Flexible RF Microcoil Dedicated to Surface Mri

    Get PDF
    In Magnetic Resonance Imaging (MRI), to achieve sufficient Signal to Noise Ratio (SNR), the electrical performance of the RF coil is critical. We developed a device (microcoil) based on the original concept of monolithic resonator. This paper presents the used fabrication process based on micromoulding. The dielectric substrates are flexible thin films of polymer, which allow the microcoil to be form fitted to none-plane surface. Electrical characterizations of the RF coils are first performed and results are compared to the attempted values. Proton MRI of a saline phantom using a flexible RF coil of 15 mm in diameter is performed. When the coil is conformed to the phantom surface, a SNR gain up to 2 is achieved as compared to identical but planar RF coil. Finally, the flexible coil is used in vivo to perform MRI with high spatial resolution on a mouse using a small animal dedicated scanner operating at in a 2.35 T.Comment: Submitted on behalf of TIMA Editions (http://irevues.inist.fr/tima-editions

    Summer Temperature Trend Over the Past Two Millennia Using Air Content in Himalayan Ice

    Get PDF
    Two Himalayan ice cores display a factor-two decreasing trend of air content over the past two millennia, in contrast to the relatively stable values in Greenland and Antarctica ice cores over the same period. Because the air content can be related with the relative frequency and intensity of melt phenomena, its variations along the Himalayan ice cores provide an indication of summer temperature trend. Our reconstruction point toward an unprecedented warming trend in the 20th century but does not depict the usual trends associated with Medieval Warm Period (MWP), or Little Ice Age (LIA)

    Regulator constants and the parity conjecture

    Full text link
    The p-parity conjecture for twists of elliptic curves relates multiplicities of Artin representations in p-infinity Selmer groups to root numbers. In this paper we prove this conjecture for a class of such twists. For example, if E/Q is semistable at 2 and 3, K/Q is abelian and K^\infty is its maximal pro-p extension, then the p-parity conjecture holds for twists of E by all orthogonal Artin representations of Gal(K^\infty/Q). We also give analogous results when K/Q is non-abelian, the base field is not Q and E is replaced by an abelian variety. The heart of the paper is a study of relations between permutation representations of finite groups, their "regulator constants", and compatibility between local root numbers and local Tamagawa numbers of abelian varieties in such relations.Comment: 50 pages; minor corrections; final version, to appear in Invent. Mat

    Analytic curves in algebraic varieties over number fields

    Full text link
    We establish algebraicity criteria for formal germs of curves in algebraic varieties over number fields and apply them to derive a rationality criterion for formal germs of functions, which extends the classical rationality theorems of Borel-Dwork and P\'olya-Bertrandias valid over the projective line to arbitrary algebraic curves over a number field. The formulation and the proof of these criteria involve some basic notions in Arakelov geometry, combined with complex and rigid analytic geometry (notably, potential theory over complex and pp-adic curves). We also discuss geometric analogues, pertaining to the algebraic geometry of projective surfaces, of these arithmetic criteria.Comment: 55 pages. To appear in "Algebra, Arithmetic, and Geometry: In Honor of Y.i. Manin", Y. Tschinkel & Yu. Manin editors, Birkh\"auser, 200
    corecore