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Abstract. We show when a nonsingular closed subvariety Y of a nonsingular affine real
variety X is contained in a nonsingular hypersurface. We also solve this problem in a holo-
morphic case.

1. Introduction

Let Xn be a nonsingular affine variety (of dimension n) over an algebraically closed
field k. It was proved in [4] (see also [7]), that any closed nonsingular subvariety
Yr ⊂ Xn with n ≥ 2r + 1 is contained in a nonsingular hypersurface. Recall that
a subvariety H ⊂ X is a hypersurface if its ideal I (H) ⊂ k[X ] is generated by a
single polynomial. Our aim is to prove similar results in the real algebraic case and
in the complex analytic case.

Let X be a real algebraic variety ( as in [1]). We say that a subvariety H of X
is a hypersurface if the ideal

I (H) = { f ∈ R(X) | f|H = 0}
is principal. Here R(X) denotes the ring of regular functions on X. We show:

Theorem 1.1. Let Xn be a nonsingular real affine variety and let Y r be a closed
nonsingular subvariety of X. Assume that either

(i) 2r + 1 ≤ n, or
(ii) 2r = n and Y has no compact connected components.

Then there exists a nonsingular hypersurface H in X with Y ⊂ H.

If X = R
n , point (ii) can be extended:
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Theorem 1.2. Let Y r be a compact nonsingular subvariety of R
2r . If Y is ori-

entable (as C∞ manifold), then there exists a nonsingular hypersurface H in R
2r

with Y ⊂ H.

We also have the following holomorphic version of Theorem 1.1:

Theorem 1.3. Let Xn be a Stein manifold and let Y r be a closed submanifold of
X. If (3r + 1)/2 ≤ n, then there exists a nonsingular hypersurface H in X with
Y ⊂ H.

By definition, in the complex analytic case, H is a hypersurface in X , if the
ideal of all holomorphic functions on X vanishing on H is principal.

2. Real case

In this section we work with affine real varieties (as in [1]). For the sake of com-
pleteness, we record the following fact.

Lemma 2.1. Let Y ⊂ X be nonsingular affine real varieties and let s, g1, . . . , gr be
regular functions on X such that dys �= 0 for every y ∈ Y and I (Y ) = (g1, . . . , gr ).
Then the hypersurface V (s + ∑r

i=1 βi g2i ) in X is nonsingular for generic βi ∈ R.

Proof. Note that 0 ∈ R is a regular value of the regular function

X × R
r � (x, (β1, . . . , βr )) 	→ s(x) +

r∑

i=1

βi gi (x)
2 ∈ R.

Hence the assertion follows from the parametric transversality theorem (see [5],
p. 68). ��

We make use of Lemma 2.1 in the following:

Theorem 2.2. Let Y ⊂ X be nonsingular real affine varieties. Then Y is contained
in some nonsingular hypersurface V ( f ) ⊂ X if and only if the normal bundle of
Y contains a one-dimensional trivial summand i.e.,

NX/Y = T ⊕ E1,

where E1 denotes a trivial line bundle.

Proof. Assume that there is a nonsingular hypersurface H = V ( f ) ⊂ X which
contains Y . We have

TY ⊂ T H ⊂ T X,

and hence

NX/Y = NH/Z ⊕ NX/H |Y .

However, the normal bundle of the nonsingular hypersurface H = V ( f ) is trivial
(in fact the class of f is a generator of the conormal bundle of H ).
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Conversely, assume that

NX/Y = T ⊕ E1.

Hence also

N∗
X/Y = T∗ ⊕ E1.

This means that the conormal bundle N∗
X/Y has a nowhere vanishing section s ∈

�(Y,N∗
X/Y ). But �(Y,N∗

X/Y ) = I (Y )/I (Y )2, where I (Y ) ⊂ R(X) denotes the
ideal of the subvariety Y . Hence s corresponds to a regular function s ∈ I (X)

such that the class of s is s. Take a point a ∈ Y and a system of local coordinates
(u1, . . . , un) at a such thatY is described by the local equations u1 = 0, . . . , ut = 0
(t = codim Y ) near a. Since u1, . . . ,ut freely generate the bundle N∗

X/Y near the
point a, we have

s =
t∑

i=1

αiui , (1)

where αi ∈ R(Ua) (Ua denotes some Zariski open neighborhood of a in Y ). Since
the section s nowhere vanishes, the αi do not vanish simultaneously at any point of
Ua . Let us compute the derivative dys at the point y ∈ Ua .

After shrinking X and Y we can assume that (1) holds in Y . Moreover we can
assume that all αi are defined on X . We have

s =
t∑

i=1

αi ui mod I (Y )2,

hence there are regular functions f j , h j ∈ I (Y ), j = 1, . . . ,m, such that

s =
t∑

i=1

αi ui +
m∑

j=1

f j h j .

Now we easily see that for y ∈ Y we have

dys =
t∑

i=1

αi dyui .

Since dyui , i = 1, . . . , n, are linearly independent and not all αi vanish at y,
we have dys �= 0. Let I (Y ) = (g1, . . . , gr ). By Lemma 2.1, the hypersurface
V (s + ∑r

i=1 βi g2i ) is nonsingular for generic βi ∈ R. Hence we can take f =
s + ∑r

i=1 βi g2i . ��
In the sequel we need the following:

Lemma 2.3. Let X be a nonsingular real affine variety and letF be a real algebraic
vector bundle on X. If rank F > dimX, then F has a one-dimensional trivial
summand i.e.,

F = T ⊕ E1.
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Proof. The category of algebraic real vector bundles on X is equivalent with
the category of finitely generated projective R(X)-modules ([1], p. 305). Hence
Lemma 2.3 is a special case of Serre’s splitting theorem (see [10]). ��

Lemma 2.4. Let X be a nonsingular real affine variety and let F be an algebraic
real vector bundle on X with rank F = dim X. If X has no compact connected
components, then F has a one-dimensional trivial summand.

Proof. Let d = dim X and let f : X → Gd(R
n) be a regular map with F ∼=

f ∗�d(R
n), whereGd(R

n) is theGrassmannian of d−dimensional vector subspaces
of Rn and �d(R

n) is the tautological vector bundle on Gd(R
n). By Hironaka’s

theorem on resolutions of singularities, wemay assume that X is an open subvariety
of a compact nonsingular variety X . We regard f : X− → Gd(R

n) as a rational
map. According to Hironaka’s theorem on resolution of points of indeterminacy,
there exists a regular map π : X ′ → X such that π is the composite of finitely many
blowups with nonsingular centers, π induces a biregular isomorphism between
π−1(X) and X , and the rational map f ◦ π : X ′ → Gd(R

n) is actually regular. In
particular, F′ := ( f ◦ π)∗�d(R

n) is an algebraic vector bundle on X ′. In order to
simplify notation, we identify X with π−1(X). Then F′|X = F. It suffices to find an
algebraic section s : X ′ → F′ with Z(s) ⊂ X ′ \ X , where Z(s) = {x ∈ X ′ | s(x) =
0}.

Case 1. Suppose that dim X ≥ 2. We may assume that for each connected
component C of X ′, the set C \ X is infinite ( if necessary, blow up X ′ at a point
in C \ X). Let u : X ′ → F′ be a C∞ section transverse to the zero section. Then
the zero locus Z(u) of u is a finite set. Clearly, there exists a C∞ diffeomorphism
h : X ′ → X ′, homotopic to the identity map, such that h−1(Z(u)) ⊂ X ′ \ X .
The pullback section h∗u : X ′ → h∗F′ is transverse to the zero section and
Z(h∗u) = h−1(Z(u)). Since h is homotopic to idX , the vector bundles h∗F′ and F′
are C∞ isomorphic. Consequently, we can find a smooth section v : X ′ → F′ which
is transverse to the zero section and satisfies Z(v) ⊂ X ′ \ X . By [1, pp. 309, 321],
v can be approximated in the C∞ topology by an algebraic section s : X ′ → F′
with s|Z(v) = 0. If s is sufficiently close to v, then Z(s) = Z(v) ⊂ X ′ \ X .

Case 2. Suppose that dim X = 1. Each connected component of X ′ is diffeo-
morphic to a circle. Thus there exists a smooth section v : X ′ → F′ which is
transverse to the zero section and satisfies Z(v) ⊂ X ′ \ X . Now we get s as in Case
1. ��

Proof of Theorem 1.1. Point (i) follows fromTheorem2.2 andLemma2.3,whereas
(ii) is a consequence of Theorem 2.2 and Lemma 2.4. ��

Proof of Theorem 1.2. If Yr is orientable (as C∞ manifold), then the normal bundle
of Yr in R2r has a nowhere zero C∞ section [11], and hence in view of [1, p.309],
it has an algebraic one-dimensional summand. Consequently, Yr is contained in a
nonsingular hypersurface in R2r .

The orientability of Yr is essential here. Indeed, we have:
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Example 2.5. Let f : P2(R) → R
4 be an algebraic embedding given by the formula

f ((x1 : x2 : x3)) = 1

x21 + 2x22 + 3x23
(x21 + x22 + x23 , x1x2, x1x3, x2x3).

It is easy to see that Y = f (P2(R)) is a nonsingular affine variety. According
to [11], the normal bundle of any embedding of P2(R) in R

4 does not have a
nowhere vanishing C∞ section. According to Theorem 2.2, Y is not contained in
any nonsingular hypersurface in R

4.

In the general case the orientability ofY does not help. Let X2m be a nonsingular
variety and let Ym be a nonsingular orientable subvariety of X2m . We show that
in general there does not exist a nonsingular hypersurface H ⊂ X2m , such that
Yn ⊂ H . Indeed we have:

Example 2.6. Letm be an even number and let Sm be anm-dimensional sphere. Let
F = TSm be the tangent bundle of the sphereSn . Now let X2m denote the total space
of this vector bundle. Then Sm ⊂ X2m (as the zero-section) and NX2m/Sm ∼= F. It
is well-known that the bundle F does not have a one-dimensional trivial summand.
In particular Sm is not contained in any nonsingular hypersurface in X2m (see
Theorem 2.2).

3. Holomorphic case

Nowwe prove a similar result in the holomorphic setting. Let X be a Stein manifold
with the sheaf O of holomorphic functions. If Y is a Stein submanifold of X , then
the ideal I (Y ) = { f ∈ O(X) : f|Y = 0} is finitely generated ( see [3], Theorem
7.5.4). If I (Y ) is principal we say that Y is a hypersurface. For Stein manifolds,
Lemma 2.1 takes the following form:

Lemma 3.1. Let Y ⊂ X be Stein manifolds and let s, g1, . . . , gr be holomorphic
functions on X such that dys �= 0 for every y ∈ Y and I (Y ) = (g1, . . . , gr ). Then
the hypersurface V (s + ∑r

i=1 βi g2i ) in X is nonsingular for generic βi ∈ C.

Proof. Let f : X → C be a holomorphic function. Then 0 ∈ C is a regular value
of f if and only if 0 ∈ R

2 ∼= C is a regular value of f regarded as real C∞ map.
This allows us to conclude arguing as in the proof of Lemma 2.1. ��

Wehave the following counterpart of Theorem2.2,with a completely analogous
proof:

Theorem 3.2. Let Y ⊂ X be Stein manifolds. Then Y is contained in some nonsin-
gular Stein hypersurface V ( f ) ⊂ X if and only if the normal bundle of Y contains
a one-dimensional trivial summand i.e.,

NX/Y = T ⊕ E1,

where E1 denotes a trivial line bundle.



412 Z. Jelonek, W. Kucharz

It is well-known that an n-dimensional Stein manifold has the homotopy type
of a (real) n-dimensional CW complex ( see [8]). Complex vector bundles on such
CW complexes have the following nice property:

Theorem 3.3. ([6], p. 111) Let Y be an r-dimensional CW complex and let F be a
complex vector bundle on Y of rank k. If r ≤ 2k − 1, then F has a one-dimensional
trivial summand.

Proof of Theorem 1.3. Wewill make use of Grauert’s theorem on the Oka principle
for vector bundles which says that on Stein spaces the holomorphic and topological
classifications coincide (see for example [2]). Therefore we can use the topologi-
cal theory of complex vector bundles. Moreover, since every n-dimensional Stein
manifold has a homotopy type of a (real) n-dimensional CW complex, if we study
vector bundles on X , we can assume that X itself is a n-dimensional CW complex.

The normal bundle F = NX/Y has rank n − r . By Theorem 3.3 it has a trivial
one-dimensional summand if r ≤ 2(n − r) − 1, i.e., if (3r + 1)/2 ≤ n. ��

Now we show that the assumption (3r + 1)/2 ≤ n is sharp.

Example 3.4. Consider the variety �5 = {(x, y) ∈ C
3 × C

3 : ∑3
i=1 xi yi = 1}. By

the Raynaud Theorem (see [9]) the holomorphic vector bundle F on � given by
the unimodular row (x1, x2, x3) is not free. Since every stably trivial line bundle
is trivial and rank F = 2, we see that the vector bundle F does not have a one-
dimensional trivial summand.

Now let X7 denote the total space of this vector bundle. Then � ⊂ X (as the
zero-section) and NX/�

∼= F. As we observed the bundle F does not have a one-
dimensional trivial summand. In particular � is not contained in any nonsingular
hypersurface in X (see Theorem 3.2). Hence the inequality (3r + 1)/2 ≤ n cannot
be replaced by the inequality (3r + 1)/2 ≤ n + 1.
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