Abstract

The p-parity conjecture for twists of elliptic curves relates multiplicities of Artin representations in p-infinity Selmer groups to root numbers. In this paper we prove this conjecture for a class of such twists. For example, if E/Q is semistable at 2 and 3, K/Q is abelian and K^\infty is its maximal pro-p extension, then the p-parity conjecture holds for twists of E by all orthogonal Artin representations of Gal(K^\infty/Q). We also give analogous results when K/Q is non-abelian, the base field is not Q and E is replaced by an abelian variety. The heart of the paper is a study of relations between permutation representations of finite groups, their "regulator constants", and compatibility between local root numbers and local Tamagawa numbers of abelian varieties in such relations.Comment: 50 pages; minor corrections; final version, to appear in Invent. Mat

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 14/02/2019