1,383 research outputs found

    Sub-lunar Tap-Yielding eXplorer, STYX

    Get PDF
    To diversify the idea pool that NASA has to draw from for future manned and unmanned missions to the Moon and Mars, a design/build competition has been posed to collegiate teams across the country. The challenge is to reach, extract, and purify underground ice reserves in a setting analogous to mars. Along the way, teams will be collecting telemetry to mimic prospecting objectives on the moon. The Sublunar Tap-Yielding eXplorer, STYX, is the team’s proposed design for the 2020 NASA RASC-AL competition. Some novel design features STYX will use are a rotary tool changer with swappable tools, a sleeve driving mode, and a pivoting heating probe. The STYX drill head will translate on two axes, use a rotary hammer drill to bore holes, sleeve boreholes with pipe to prevent collapse, and deliver water via a peristaltic pump and a two stage filtration system. Several of these design elements are innovative and conceptually proven through preliminary testing. These efforts are expected to net increased performance and differentiate STYX from other prototype submissions

    The r-Process Enriched Low Metallicity Giant HD 115444

    Full text link
    New high resolution, very high signal-to-noise spectra of ultra-metal-poor (UMP) giant stars HD 115444 and HD 122563 have been gathered with the High-Resolution Echelle Spectrometer of the McDonald Observatory 2.7m Telescope. With these spectra, line identification and model atmosphere analyses have been conducted, emphasizing the neutron-capture elements. Twenty elements with Z > 30 have been identified in the spectrum of HD 115444. This star is known to have overabundances of the neutron-capture elements, but it has lacked a detailed analysis necessary to compare with nucleosynthesis predictions. The new study features a line-by-line differential abundance comparison of HD 115444 with the bright, well-studied halo giant HD 122563. For HD 115444, the overall metallicity is [Fe/H]~ -3.0. The abundances of the light and iron-peak elements generally show the same pattern as other UMP stars (e.g. overdeficiencies of manganese and chromium, overabundances of cobalt), but the differential analysis indicates several nucleosynthesis signatures that are unique to each star.Comment: To Appear in the Astrophysical Journa

    Empirically Derived Integrated Stellar Yields of Fe-Peak Elements

    Full text link
    We present here the initial results of a new study of massive star yields of Fe-peak elements. We have compiled from the literature a database of carefully determined solar neighborhood stellar abundances of seven iron-peak elements, Ti, V, Cr, Mn, Fe, Co, and Ni and then plotted [X/Fe] versus [Fe/H] to study the trends as functions of metallicity. Chemical evolution models were then employed to force a fit to the observed trends by adjusting the input massive star metallicity-sensitive yields of Kobayashi et al. Our results suggest that yields of Ti, V, and Co are generally larger as well as anticorrelated with metallicity, in contrast to the Kobayashi et al. predictions. We also find the yields of Cr and Mn to be generally smaller and directly correlated with metallicity compared to the theoretical results. Our results for Ni are consistent with theory, although our model suggests that all Ni yields should be scaled up slightly. The outcome of this exercise is the computation of a set of integrated yields, i.e., stellar yields weighted by a slightly flattened time-independent Salpeter initial mass function and integrated over stellar mass, for each of the above elements at several metallicity points spanned by the broad range of observations. These results are designed to be used as empirical constraints on future iron-peak yield predictions by stellar evolution modelers. Special attention is paid to the interesting behavior of [Cr/Co] with metallicity -- these two elements have opposite slopes -- as well as the indirect correlation of [Ti/Fe] with [Fe/H]. These particular trends, as well as those exhibited by the inferred integrated yields of all iron-peak elements with metallicity, are discussed in terms of both supernova nucleosynthesis and atomic physics.Comment: 27 pages, 6 figures; Accepted for Publication in the Astrophysical Journa

    Adiabatic decaying vacuum model for the universe

    Full text link
    We study a model that the entropy per particle in the universe is constant. The sources for the entropy are the particle creation and a lambda decaying term. We find exact solutions for the Einstein field equations and show the compatibilty of the model with respect to the age and the acceleration of the universe.Comment: 10 pages, 2 figure

    A Declarative Framework for Specifying and Enforcing Purpose-aware Policies

    Full text link
    Purpose is crucial for privacy protection as it makes users confident that their personal data are processed as intended. Available proposals for the specification and enforcement of purpose-aware policies are unsatisfactory for their ambiguous semantics of purposes and/or lack of support to the run-time enforcement of policies. In this paper, we propose a declarative framework based on a first-order temporal logic that allows us to give a precise semantics to purpose-aware policies and to reuse algorithms for the design of a run-time monitor enforcing purpose-aware policies. We also show the complexity of the generation and use of the monitor which, to the best of our knowledge, is the first such a result in literature on purpose-aware policies.Comment: Extended version of the paper accepted at the 11th International Workshop on Security and Trust Management (STM 2015

    Detection of low Eu abundances in extremely metal-poor stars and the origin of r-process elements

    Full text link
    We report abundance analyses of three extremely metal-poor stars with [Fe/H] 3\lesssim -3, using the Subaru High Dispersion Spectrograph (HDS). All are found to have sub-solar values of [Eu/Fe]. Comparison with our chemical evolution model of the Galactic halo implies the dominant source of Eu to be the low-mass end of the supernova mass range. Future studies of stars with low Eu abundances will be important to determine the r-process site.Comment: 7 pages, 2 figures, accepted for publication in the Astrophysical Journal Letter

    A GLIMPSE into the Nature of Galactic Mid-IR Excesses

    Full text link
    We investigate the nature of the mid-IR excess for 31 intermediate-mass stars that exhibit an 8 micron excess in either the Galactic Legacy Infrared Mid-Plane Survey Extraordinaire or the Mid-Course Space Experiment using high resolution optical spectra to identify stars surrounded by warm circumstellar dust. From these data we determine projected stellar rotational velocities and estimate stellar effective temperatures for the sample. We estimate stellar ages from these temperatures, parallactic distances, and evolutionary models. Using MIPS [24] measurements and stellar parameters we determine the nature of the infrared excess for 19 GLIMPSE stars. We find that 15 stars exhibit Halpha emission and four exhibit Halpha absorption. Assuming that the mid-IR excesses arise in circumstellar disks, we use the Halpha fluxes to model and estimate the relative contributions of dust and free-free emission. Six stars exhibit Halpha fluxes that imply free-free emission can plausibly explain the infrared excess at [24]. These stars are candidate classical Be stars. Nine stars exhibit Halpha emission, but their Halpha fluxes are insufficient to explain the infrared excesses at [24], suggesting the presence of a circumstellar dust component. After the removal of the free-free component in these sources, we determine probable disk dust temperatures of Tdisk~300-800 K and fractional infrared luminosities of L(IR)/L(*)~10^-3. These nine stars may be pre-main-sequence stars with transitional disks undergoing disk clearing. Three of the four sources showing Halpha absorption exhibit circumstellar disk temperatures ~300-400 K, L(IR)/L(*)~10^-3, IR colors K-[24]< 3.3, and are warm debris disk candidates. One of the four Halpha absorption sources has K-[24]> 3.3 implying an optically thick outer disk and is a transition disk candidate.Comment: 17 figures. Accepted for publication in Ap

    Welding fume nanoparticles from solid and flux-cored wires: Solubility, toxicity, and role of fluorides

    Get PDF
    Welding fume particles are hazardous. Their toxicity likely depends on their composition and reactivity. This study aimed at exploring the role of sodium or other fluorides (NaF), which are intentionally added to flux-cored wire electrodes for stainless steel welding, on the solubility (in phosphate buffered saline) and toxicity of the generated welding fume particles. A multi-analytical particle characterization approach along with in-vitro cell assays was undertaken. The release of Cr(VI) and Mn from the particles was tested as a function of fluoride solution concentration. The welding fume particles containing NaF released significantly higher amounts of Cr(VI) compared with solid wire reference fumes, which was associated with increased cytotoxicity and genotoxicity in-vitro. No crystalline Na or potassium (K) containing chromates were observed. Cr(VI) was incorporated in an amorphous mixed oxide. Solution-added fluorides did not increase the solubility of Cr(VI), but contributed to a reduced Mn release from both solid and flux-cored wire fume particles and the reduction of Cr(VI) release from solid wire fume particles. Chemical speciation modeling suggested that metal fluoride complexes were not formed. The presence of NaF in the welding electrodes did not have any direct, but possibly an indirect, role in the Cr(VI) solubility of welding fumes

    Analyzing model uncertainty and economies of scale of the Swedish national freight model to changes in transport demand

    Get PDF
    The purpose of the paper is to analyze model uncertainty and economies of scale of the Swedish national freight transport model system Samgods to changes in its zone-to-zone base matrices. Even though economies of scale is an important factor in freight transport, there are few studies that analyze model uncertainty and economies of scale at a national level. Compared to many large scale network-based freight models working on aggregated transport flows, an important feature in the Samgods model is that it contains a logistics module that simulates logistics behavior at a disaggregated firm level. The paper studies effects on total tonne- and vehicle-kilometre, modal split, consolidation and logistics costs when the zone-to-zone-matrices are scaled up and down and estimates the economies of scale for Swedish freight transports in Sweden. The results indicate that the logistics model can find new logistics solutions for larger demand volumes, mainly by shifting freight to sea transport. If transport volume increases with one percent, the logistics cost per tonne is on average reduced by about 0.5 percent. Part of the cost reduction comes from increased consolidation of shipments due to larger transport volumes. The results derived in the paper can serve as a reference for empirical validation and comparisons with other large scale freight models. The paper is a first contribution that tries to fill the knowledge gap on the impact of base matrices on transport model outcomes, such as economies of scale, in the context of a full-fledged real-world freight transport model
    corecore