We present here the initial results of a new study of massive star yields of
Fe-peak elements. We have compiled from the literature a database of carefully
determined solar neighborhood stellar abundances of seven iron-peak elements,
Ti, V, Cr, Mn, Fe, Co, and Ni and then plotted [X/Fe] versus [Fe/H] to study
the trends as functions of metallicity. Chemical evolution models were then
employed to force a fit to the observed trends by adjusting the input massive
star metallicity-sensitive yields of Kobayashi et al. Our results suggest that
yields of Ti, V, and Co are generally larger as well as anticorrelated with
metallicity, in contrast to the Kobayashi et al. predictions. We also find the
yields of Cr and Mn to be generally smaller and directly correlated with
metallicity compared to the theoretical results. Our results for Ni are
consistent with theory, although our model suggests that all Ni yields should
be scaled up slightly. The outcome of this exercise is the computation of a set
of integrated yields, i.e., stellar yields weighted by a slightly flattened
time-independent Salpeter initial mass function and integrated over stellar
mass, for each of the above elements at several metallicity points spanned by
the broad range of observations. These results are designed to be used as
empirical constraints on future iron-peak yield predictions by stellar
evolution modelers. Special attention is paid to the interesting behavior of
[Cr/Co] with metallicity -- these two elements have opposite slopes -- as well
as the indirect correlation of [Ti/Fe] with [Fe/H]. These particular trends, as
well as those exhibited by the inferred integrated yields of all iron-peak
elements with metallicity, are discussed in terms of both supernova
nucleosynthesis and atomic physics.Comment: 27 pages, 6 figures; Accepted for Publication in the Astrophysical
Journa