1,100 research outputs found

    Schottky-based band lineups for refractory semiconductors

    Get PDF
    An overview is presented of band alignments for small-lattice parameter, refractory semiconductors. The band alignments are estimated empirically through the use of available Schottky barrier height data, and are compared to theoretically predicted values. Results for tetrahedrally bonded semiconductors with lattice constant values in the range from C through ZnSe are presented. Based on the estimated band alignments and the recently demonstrated p-type dopability of GaN, we propose three novel heterojunction schemes which seek to address inherent difficulties in doping or electrical contact to wide-gap semiconductors such as ZnO, ZnSe, and ZnS

    Distributed and parallel Ada and the Ada 9X recommendations

    Get PDF
    Recently, the DoD has sponsored work towards a new version of Ada, intended to support the construction of distributed systems. The revised version, often called Ada 9X, will become the new standard sometimes in the 1990s. It is intended that Ada 9X should provide language features giving limited support for distributed system construction. The requirements for such features are given. Many of the most advanced computer applications involve embedded systems that are comprised of parallel processors or networks of distributed computers. If Ada is to become the widely adopted language envisioned by many, it is essential that suitable compilers and tools be available to facilitate the creation of distributed and parallel Ada programs for these applications. The major languages issues impacting distributed and parallel programming are reviewed, and some principles upon which distributed/parallel language systems should be built are suggested. Based upon these, alternative language concepts for distributed/parallel programming are analyzed

    Operationally Efficient Propulsion System Study (OEPPS)

    Get PDF
    A description is presented, through view graphs, of the problems encountered in today's launch vehicles and how these problems have adversely affected the ability to achieve serviceability, reliability, and operability. The need is emphasized to recognize and understand the operations problems and the effort that must be made to avoid them in future designs. Technology areas that will enhance operations requirements are also presented

    Macroscopic polarization and band offsets at nitride heterojunctions

    Full text link
    Ab initio electronic structure studies of prototypical polar interfaces of wurtzite III-V nitrides show that large uniform electric fields exist in epitaxial nitride overlayers, due to the discontinuity across the interface of the macroscopic polarization of the constituent materials. Polarization fields forbid a standard evaluation of band offsets and formation energies: using new techniques, we find a large forward-backward asymmetry of the offset (0.2 eV for AlN/GaN (0001), 0.85 eV for GaN/AlN (0001)), and tiny interface formation energies.Comment: RevTeX 4 pages, 2 figure

    The interacting roles of climate, soils, and plant production on soil microbial communities at a continental scale

    Get PDF
    Soil microbial communities control critical ecosystem processes such as decomposition, nutrient cycling, and soil organic matter formation. Continental scale patterns in the composition and functioning of microbial communities are related to climatic, biotic, and edaphic factors such as temperature and precipitation, plant community composition, and soil carbon, nitrogen, and pH. Although these relationships have been well explored individually, the examination of the factors that may act directly on microbial communities vs. those that may act indirectly through other ecosystem properties has not been well developed. To further such understanding, we utilized structural equation modeling (SEM) to evaluate a set of hypotheses about the direct and indirect effects of climatic, biotic, and edaphic variables on microbial communities across the continental United States. The primary goals of this work were to test our current understanding of the interactions among climate, soils, and plants in affecting microbial community composition, and to examine whether variation in the composition of the microbial community affects potential rates of soil enzymatic activities. A model of interacting factors created through SEM shows several expected patterns. Distal factors such as climate had indirect effects on microbial communities by influencing plant productivity, soil mineralogy, and soil pH, but factors related to soil organic matter chemistry had the most direct influence on community composition. We observed that both plant productivity and soil mineral composition were important indirect influences on community composition at the continental scale, both interacting to affect organic matter content and microbial biomass and ultimately community composition. Although soil hydrolytic enzymes were related to the moisture regime and soil carbon, oxidative enzymes were also affected by community composition, reflected in the abundance of soil fungi. These results highlight that soil microbial communities can be modeled within the context of multiple interacting ecosystem properties acting both directly and indirectly on their composition and function, and this provides a rich and informative context with which to examine communities. This work also highlights that variation in climate, microbial biomass, and microbial community composition can affect maximum rates of soil enzyme activities, potentially influencing rates of decomposition and nutrient mineralization in soils

    Carbon Fluxes and Microbial Activities From Boreal Peatlands Experiencing Permafrost Thaw

    Get PDF
    Permafrost thaw in northern ecosystems may cause large quantities of carbon (C) to move from soil to atmospheric pools. Because soil microbial communities play a critical role in regulating C fluxes from soils, we examined microbial activity and greenhouse gas production soon after permafrost thaw and ground collapse (into collapse‐scar bogs), relative to the permafrost plateau or older thaw features. Using multiple field and laboratory‐based assays at a field site in interior Alaska, we show that the youngest collapse‐scar bog had the highest CH4 production potential from soil incubations, and, based upon temporal changes in porewater concentrations and 13C‐CH4 and 13C‐CO2, had greater summer in situ rates of respiration, methanogenesis, and surface CH4 oxidation. These patterns could be explained by greater C and N availability in the young bog, while alternative terminal electron accepting processes did not play a significant role. Field diffusive CH4 fluxes from the young bog were 4.1 times greater in the shoulder season and 1.7–7.2 times greater in winter relative to older bogs, but not during summer. Greater relative CH4 flux rates in the shoulder season and winter could be due to reduced CH4 oxidation relative to summer, magnifying the importance of differences in production. Both the permafrost plateau and collapse‐scar bogs were sources of C to the atmosphere due in large part to winter C fluxes. In collapse scar bogs, winter is a critical period when differences in thermokarst age translates to differences in surface fluxes. Plain Language Summary Permafrost thaw is occurring in Alaska which may result in a positive feedback to climate warming, due to the release of greenhouse gases such as CO2 and CH4 from soils. Here we examined greenhouse gas production along a gradient of “time since thaw,” hypothesizing that fluxes and microbial activities would be highest soon after thaw, and then decline. We observed highest rates of microbial activities, particularly methanogenesis, soon after thaw, coinciding with less decomposed organic matter and higher concentrations of dissolved carbon and nitrogen in soil, possibly of permafrost origin. However, field fluxes were higher in the young thaw site, compared to the older sites, in winter and not summer, a phenomenon that is currently not well understood

    What Responsible Businesses can Learn from Social Innovation

    Get PDF
    This chapter presents initiatives and success stories from the realm of social innovation with the aim of identifying elements of Responsible Innovation (RI) and their significance. The motivation behind selecting social innovation to highlight the positive impact of RI practices is twofold. Focusing on social innovation provides, primarily, an opportunity to investigate the business perspective, by looking into cases where businesses have reconnected with the community through shifting their focus towards serving society, as a means to become more successful. Often this leads to immediate benefits for the business but also sets the framework for a long-term strategy that goes beyond well-known corporate social innovation activities, to encompass further activities that potentially initiate and support both social and environmental change. In addition, the focus on social innovation allows a better view of the community perspective, by considering the public as important business stakeholders, i.e. consumers and customers. As such, the public increasingly demands that business practices are handled in a more ethical way. As societies become more vulnerable due to economic instabilities, resource crises and political changes, the public demands adoption of new ways of thinking, and it is often implied that the road to a successful economic, and often cultural, transformation needs to go through social innovation. Undoubtedly, the goal of social innovation is to provide socially beneficial solutions that drive economic growth, but the task is not an easy one. Therefore, RI is essential for driving society forward, especially when it comes to the key aspects of employment, education and social inclusion

    A Nomadic Testbed for Teaching Computer Architecture

    Get PDF
    A nomadic laboratory or testbed, based on Raspberry Pi 3 computers and Arduino microcontrollers, has been developed in order to teach subjects related to computer architecture. The testbed can be transported to the classroom. Students can access it through the available network, which can be a wireless LAN, wired LAN o a custom network. The student can access without constraints to the platforms, therefore there are a wide range of possible experiments. This laboratory was used during 2017 for practical works in the course Introduction to Technology, and during 2018 in the course Computers Architecture at Universidad Nacional of Cuyo. Some of the experiments that are been carried out by students are: to explore and analyse the architecture of the computers through Linux commands, write and run programs on different programing languages, input and output operations through memory mapped addressing and isolated addressing, write interrupt service routines in order to service interrupts, multithreading programing, explore memory maps, CPU features, etc. This paper describes the testbed architecture, experiments performed by students in the mentioned subjects, present the students feedback, and describes the possible methods in order to integrate it to a remote laboratory.XVII Workshop Tecnología Informática Aplicada en Educación (WTIAE)Red de Universidades con Carreras en Informática (RedUNCI

    Nonlinear Dynamics and Interpersonal Correlates of Verbal Turn-Taking Patterns in a Group Therapy Session

    Get PDF
    Interpersonal processes and dynamics are ubiquitous topics in psychotherapy, yet they are difficult to study and are theoretically fragmented across therapeutic subdisciplines. The current study tests an integrative model of interpersonal dynamics in small groups using nonlinear dynamical systems theory. The conversation of one group therapy session (with six adolescent sex offenders) is analyzed using orbital decomposition, which allows for the identification of patterns in categorical time series data. The results show evidence of selforganizing social patterns, based on formal measures of turbulence (Lyapunov dimension), information novelty (Shannon\u27s entropy), and complexity (fractal dimension). The degree of patterning in turn taking is significantly correlated with measurements of control, closeness, and conflict among group members. Clinical implications and directions for future research are discussed
    corecore