76 research outputs found
Infrared Emission by Dust Around lambda Bootis Stars: Debris Disks or Thermally Emitting Nebulae?
We present a model that describes stellar infrared excesses due to heating of
the interstellar (IS) dust by a hot star passing through a diffuse IS cloud.
This model is applied to six lambda Bootis stars with infrared excesses.
Plausible values for the IS medium (ISM) density and relative velocity between
the cloud and the star yield fits to the excess emission. This result is
consistent with the diffusion/accretion hypothesis that lambda Bootis stars (A-
to F-type stars with large underabundances of Fe-peak elements) owe their
characteristics to interactions with the ISM. This proposal invokes radiation
pressure from the star to repel the IS dust and excavate a paraboloidal dust
cavity in the IS cloud, while the metal-poor gas is accreted onto the stellar
photosphere. However, the measurements of the infrared excesses can also be fit
by planetary debris disk models. A more detailed consideration of the
conditions to produce lambda Bootis characteristics indicates that the majority
of infrared-excess stars within the Local Bubble probably have debris disks.
Nevertheless, more distant stars may often have excesses due to heating of
interstellar material such as in our model.Comment: 10 pages, 5 figures, 4 tables, accepted by ApJ, emulateap
The Physical Conditions in Starbursts Derived from Bayesian Fitting of Mid-IR SEDS: 30 Doradus as a Template
To understand and interpret the observed Spectral Energy Distributions (SEDs)
of starbursts, theoretical or semi-empirical SED models are necessary. Yet,
while they are well-founded in theory, independent verification and calibration
of these models, including the exploration of possible degeneracies between
their parameters, are rarely made. As a consequence, a robust fitting method
that leads to unique and reproducible results has been lacking. Here we
introduce a novel approach based on Bayesian analysis to fit the Spitzer-IRS
spectra of starbursts using the SED models proposed by Groves et al. (2008). We
demonstrate its capabilities and verify the agreement between the derived best
fit parameters and actual physical conditions by modelling the nearby,
well-studied, giant HII region 30 Dor in the LMC. The derived physical
parameters, such as cluster mass, cluster age, ISM pressure and covering
fraction of photodissociation regions, are representative of the 30 Dor region.
The inclusion of the emission lines in the modelling is crucial to break
degeneracies. We investigate the limitations and uncertainties by modelling
sub-regions, which are dominated by single components, within 30 Dor. A
remarkable result for 30 Doradus in particular is a considerable contribution
to its mid-infrared spectrum from hot ({\simeq} 300K) dust. The demonstrated
success of our approach will allow us to derive the physical conditions in more
distant, spatially unresolved starbursts.Comment: 17 pages, 10 figures. Accepted por publication in the Astrophysical
Journa
The Debris Disk Around HR 8799
We have obtained a full suite of Spitzer observations to characterize the
debris disk around HR 8799 and to explore how its properties are related to the
recently discovered set of three massive planets orbiting the star. We
distinguish three components to the debris system: (1) warm dust (T ~150 K)
orbiting within the innermost planet; (2) a broad zone of cold dust (T ~45 K)
with a sharp inner edge, orbiting just outside the outermost planet and
presumably sculpted by it; and (3) a dramatic halo of small grains originating
in the cold dust component. The high level of dynamical activity implied by
this halo may arise due to enhanced gravitational stirring by the massive
planets. The relatively young age of HR 8799 places it in an important early
stage of development and may provide some help in understanding the interaction
of planets and planetary debris, an important process in the evolution of our
own solar system.Comment: emulateapj format, 13 pages, 10 figures, accepted to Ap
The Photometric LSST Astronomical Time-series Classification Challenge PLAsTiCC: Selection of a Performance Metric for Classification Probabilities Balancing Diverse Science Goals
Classification of transient and variable light curves is an essential step in using astronomical observations to develop an understanding of the underlying physical processes from which they arise. However, upcoming deep photometric surveys, including the Large Synoptic Survey Telescope (LSST), will produce a deluge of low signal-to-noise data for which traditional type estimation procedures are inappropriate. Probabilistic classification is more appropriate for such data but is incompatible with the traditional metrics used on deterministic classifications. Furthermore, large survey collaborations like LSST intend to use the resulting classification probabilities for diverse science objectives, indicating a need for a metric that balances a variety of goals. We describe the process used to develop an optimal performance metric for an open classification challenge that seeks to identify probabilistic classifiers that can serve many scientific interests. The Photometric LSST Astronomical Time-series Classification Challenge (PLAsTiCC) aims to identify promising techniques for obtaining classification probabilities of transient and variable objects by engaging a broader community beyond astronomy. Using mock classification probability submissions emulating realistically complex archetypes of those anticipated of PLAsTiCC, we compare the sensitivity of two metrics of classification probabilities under various weighting schemes, finding that both yield results that are qualitatively consistent with intuitive notions of classification performance. We thus choose as a metric for PLAsTiCC a weighted modification of the cross-entropy because it can be meaningfully interpreted in terms of information content. Finally, we propose extensions of our methodology to ever more complex challenge goals and suggest some guiding principles for approaching the choice of a metric of probabilistic data products
Recommended from our members
Variations of the Ism Compactness Across the Main Sequence of Star Forming Galaxies: Observations and Simulations
The majority of star-forming galaxies follow a simple empirical correlation in the star formation rate (SFR) versus stellar mass (M∗) plane, usually referred to as the star formation Main Sequence (MS). Here we combine a set of hydro-dynamical simulations of interacting galactic disks with state-of-the-art radiative transfer codes to analyze how the evolution of mergers is reflected upon the properties of the MS. We present \textsc{Chiburst}, a Markov Chain Monte Carlo (MCMC) Spectral Energy Distribution (SED) code that fits the multi-wavelength, broad-band photometry of galaxies and derives stellar masses, star formation rates, and geometrical properties of the dust distribution. We apply this tool to the SEDs of simulated mergers and compare the derived results with the reference output from the simulations. Our results indicate that changes in the SEDs of mergers as they approach coalescence and depart from the MS are related to an evolution of dust geometry in scales larger than a few hundred parsecs. This is reflected in a correlation between the specific star formation rate (sSFR), and the compactness parameter , that parametrizes this geometry and hence the evolution of dust temperature (Tdust) with time. As mergers approach coalescence, they depart from the MS and increase their compactness, which implies that moderate outliers of the MS are consistent with late-type mergers. By further applying our method to real observations of Luminous Infrared Galaxies (LIRGs), we show that the merger scenario is unable to explain these extreme outliers of the MS. Only by significantly increasing the gas fraction in the simulations are we able to reproduce the SEDs of LIRGs.Astronom
Recommended from our members
Optical spectroscopic observations of gamma-ray blazars candidates I: preliminary results
A significant fraction (~30%) of the γ-ray sources listed in the second Fermi/LAT (2FGL) catalog is still of unknown origin, being not yet associated with counterparts at lower energies. Using the available information at lower energies and optical spectroscopy on the selected counterparts of these γ-ray objects, we can pinpoint their exact nature. Here, we present a pilot project pointing to assess the effectiveness of the several classification methods developed to select γ-ray blazar candidates. To this end, we report optical spectroscopic observations of a sample of five γ-ray blazar candidates selected on the basis of their infrared Wide-field Infrared Survey Explorer (WISE) colors or of their low-frequency radio properties. Blazars come in two main classes, BL Lac objects and FSRQs, showing similar optical spectra except for the stronger emission lines of the latter. For three of our sources, the almost featureless optical spectra obtained confirm their BL Lac nature, while for the source WISEJ022051.24+250927.6 we observe emission lines with equivalent width EW ~ 31 Å, identifying it as a FSRQ with z = 0.48. The source WISEJ064459.38+603131.7, although not featuring a clear radio counterpart, shows a blazar-like spectrum with weak emission lines with EW ~ 7 Å, yielding a redshift estimate of z = 0.36. In addition, we report optical spectroscopic observations of four WISE sources associated with known γ-ray blazars without a firm classification or redshift estimate. For the latter sources, we confirm a BL Lac classification, with a tentative redshift estimate for the source WISEJ100800.81+062121.2 of z = 0.65.Anthropolog
- …