19 research outputs found

    Activation of sub-3 nm organic particles in the particle size magnifier using humid and dry conditions

    Get PDF
    The accurate measurement of aerosol particles and clusters smaller than 3 nm in diameter is crucial for the understanding of new particle formation processes. The particle counters used for measuring these particles are typically calibrated with metal or salt particles under dry conditions, which does not always represent the field conditions where these instruments are later used. In this study, we calibrated the All nano Condensation Nucleus Counter (nCNC), consisting of the PSM (Particle Size Magnifier) and a laminar flow butanol based CPC (Condensational Particle Counter), with well-defined biogenic oxidation products from beta-caryophyllene oxidation and compared it to a calibration with tungsten oxide under the same conditions. The organic particles were detected less efficiently than the inorganic ones. This resulted in a higher cut-off size for beta-caryophyllene oxidation products than for tungsten oxide. At the same PSM settings, the cut-off size for tungsten oxide was 1.2 nm and for beta-caryophyllene oxidation products 1.9 nm. However, repeating the calibration of the biogenic particles at 13% relative humidity at 31 degrees C, increased their detection efficiency in the PSM, increasing the cut-off diameter to 1.6 nm. Additionally, we present a comparison of the ion concentrations measured with the PSM and the NAIS (Neutral Cluster and Air Ion Spectrometer) during new particle formation experiments in the CLOUD (Cosmics Leaving Outdoors Droplets) chamber. In these experiments, we produced particles from different organic precursors, such as alpha-pinene, beta-caryophyllene and isoprene, as well as iodine. This way, we could determine the shift in cut-off diameter of the PSM for several different atmospherically relevant chemical compounds and compare it to the laboratory calibrations. We saw a diameter shift for the organic precursors of +0.3 nm in the PSM compared to the NAIS. These two approaches agreed well with each other and show that it is important to know the chemical composition of the measured particles to determine the exact size distribution using a supersaturation scanning method.Peer reviewe

    Role of iodine oxoacids in atmospheric aerosol nucleation

    Get PDF
    Iodic acid (HIO3) is known to form aerosol particles in coastal marine regions, but predicted nucleation and growth rates are lacking. Using the CERN CLOUD (Cosmics Leaving Outdoor Droplets) chamber, we find that the nucleation rates of HIO3 particles are rapid, even exceeding sulfuric acid-ammonia rates under similar conditions. We also find that ion-induced nucleation involves IO3- and the sequential addition of HIO3 and that it proceeds at the kinetic limit below +10 degrees C. In contrast, neutral nucleation involves the repeated sequential addition of iodous acid (HIO2) followed by HIO3, showing that HIO2 plays a key stabilizing role. Freshly formed particles are composed almost entirely of HIO3, which drives rapid particle growth at the kinetic limit. Our measurements indicate that iodine oxoacid particle formation can compete with sulfuric acid in pristine regions of the atmosphere.Peer reviewe

    Rapid growth of new atmospheric particles by nitric acid and ammonia condensation

    Get PDF
    New-particle formation is a major contributor to urban smog1,2^{1,2}, but how it occurs in cities is often puzzling3^{3}. If the growth rates of urban particles are similar to those found in cleaner environments (1–10 nanometres per hour), then existing understanding suggests that new urban particles should be rapidly scavenged by the high concentration of pre-existing particles. Here we show, through experiments performed under atmospheric conditions in the CLOUD chamber at CERN, that below about +5 degrees Celsius, nitric acid and ammonia vapours can condense onto freshly nucleated particles as small as a few nanometres in diameter. Moreover, when it is cold enough (below −15 degrees Celsius), nitric acid and ammonia can nucleate directly through an acid–base stabilization mechanism to form ammonium nitrate particles. Given that these vapours are often one thousand times more abundant than sulfuric acid, the resulting particle growth rates can be extremely high, reaching well above 100 nanometres per hour. However, these high growth rates require the gas-particle ammonium nitrate system to be out of equilibrium in order to sustain gas-phase supersaturations. In view of the strong temperature dependence that we measure for the gas-phase supersaturations, we expect such transient conditions to occur in inhomogeneous urban settings, especially in wintertime, driven by vertical mixing and by strong local sources such as traffic. Even though rapid growth from nitric acid and ammonia condensation may last for only a few minutes, it is nonetheless fast enough to shepherd freshly nucleated particles through the smallest size range where they are most vulnerable to scavenging loss, thus greatly increasing their survival probability. We also expect nitric acid and ammonia nucleation and rapid growth to be important in the relatively clean and cold upper free troposphere, where ammonia can be convected from the continental boundary layer and nitric acid is abundant from electrical storms4,5^{4,5}

    Enhanced growth rate of atmospheric particles from sulfuric acid

    Get PDF
    In the present-day atmosphere, sulfuric acid is the most important vapour for aerosol particle formation and initial growth. However, the growth rates of nanoparticles (<10 nm) from sulfuric acid remain poorly measured. Therefore, the effect of stabilizing bases, the contribution of ions and the impact of attractive forces on molecular collisions are under debate. Here, we present precise growth rate measurements of uncharged sulfuric acid particles from 1.8 to 10 nm, performed under atmospheric conditions in the CERN (European Organization for Nuclear Research) CLOUD chamber. Our results show that the evaporation of sulfuric acid particles above 2 nm is negligible, and growth proceeds kinetically even at low ammonia concentrations. The experimental growth rates exceed the hard-sphere kinetic limit for the condensation of sulfuric acid. We demonstrate that this results from van der Waals forces between the vapour molecules and particles and disentangle it from charge–dipole interactions. The magnitude of the enhancement depends on the assumed particle hydration and collision kinetics but is increasingly important at smaller sizes, resulting in a steep rise in the observed growth rates with decreasing size. Including the experimental results in a global model, we find that the enhanced growth rate of sulfuric acid particles increases the predicted particle number concentrations in the upper free troposphere by more than 50 %

    High Gas-Phase Methanesulfonic Acid Production in the OH-Initiated Oxidation of Dimethyl Sulfide at Low Temperatures

    Get PDF
    Dimethyl sulfide (DMS) influences climate via cloud condensation nuclei (CCN) formation resulting from its oxidation products (mainly methanesulfonic acid, MSA, and sulfuric acid, H2_{2}SO4_{4}). Despite their importance, accurate prediction of MSA and H2_{2}SO4_{4} from DMS oxidation remains challenging. With comprehensive experiments carried out in the Cosmics Leaving Outdoor Droplets (CLOUD) chamber at CERN, we show that decreasing the temperature from +25 to −10 °C enhances the gas-phase MSA production by an order of magnitude from OH-initiated DMS oxidation, while H2_{2}SO4_{4} production is modestly affected. This leads to a gas-phase H2_{2}SO4_{4}-to-MSA ratio (H2_{2}SO4_{4}/MSA) smaller than one at low temperatures, consistent with field observations in polar regions. With an updated DMS oxidation mechanism, we find that methanesulfinic acid, CH3_{3}S(O)OH, MSIA, forms large amounts of MSA. Overall, our results reveal that MSA yields are a factor of 2–10 higher than those predicted by the widely used Master Chemical Mechanism (MCMv3.3.1), and the NOx_{x} effect is less significant than that of temperature. Our updated mechanism explains the high MSA production rates observed in field observations, especially at low temperatures, thus, substantiating the greater importance of MSA in the natural sulfur cycle and natural CCN formation. Our mechanism will improve the interpretation of present-day and historical gas-phase H2_{2}SO4_{4}/MSA measurements

    Role of iodine oxoacids in atmospheric aerosol nucleation

    Get PDF
    Iodic acid (HIO₃) is known to form aerosol particles in coastal marine regions, but predicted nucleation and growth rates are lacking. Using the CERN CLOUD (Cosmics Leaving Outdoor Droplets) chamber, we find that the nucleation rates of HIO₃ particles are rapid, even exceeding sulfuric acid–ammonia rates under similar conditions. We also find that ion-induced nucleation involves IO₃⁻ and the sequential addition of HIO₃ and that it proceeds at the kinetic limit below +10°C. In contrast, neutral nucleation involves the repeated sequential addition of iodous acid (HIO₂) followed by HIO₃, showing that HIO₂ plays a key stabilizing role. Freshly formed particles are composed almost entirely of HIO₃, which drives rapid particle growth at the kinetic limit. Our measurements indicate that iodine oxoacid particle formation can compete with sulfuric acid in pristine regions of the atmosphere

    Measurement of the collision rate coefficients between atmospheric ions and multiply charged aerosol particles in the CERN CLOUD chamber

    Get PDF
    Aerosol particles have an important role in Earth's radiation balance and climate, both directly and indirectly through aerosol–cloud interactions. Most aerosol particles in the atmosphere are weakly charged, affecting both their collision rates with ions and neutral molecules, as well as the rates by which they are scavenged by other aerosol particles and cloud droplets. The rate coefficients between ions and aerosol particles are important since they determine the growth rates and lifetimes of ions and charged aerosol particles, and so they may influence cloud microphysics, dynamics, and aerosol processing. However, despite their importance, very few experimental measurements exist of charged aerosol collision rates under atmospheric conditions, where galactic cosmic rays in the lower troposphere give rise to ion pair concentrations of around 1000 cm−3. Here we present measurements in the CERN CLOUD chamber of the rate coefficients between ions and small (&lt;10 nm) aerosol particles containing up to 9 elementary charges, e. We find the rate coefficient of a singly charged ion with an oppositely charged particle increases from 2.0 (0.4–4.4) × 10−6 cm3 s−1 to 30.6 (24.9–45.1) × 10−6 cm3 s−1 for particles with charges of 1 to 9 e, respectively, where the parentheses indicate the ±1σ uncertainty interval. Our measurements are compatible with theoretical predictions and show excellent agreement with the model of Gatti and Kortshagen (2008).</p

    High Gas-Phase Methanesulfonic Acid Production in the OH-Initiated Oxidation of Dimethyl Sulfide at Low Temperatures

    Get PDF
    Dimethyl sulfide (DMS) influences climate via cloud condensation nuclei (CCN) formation resulting from its oxidation products (mainly methanesulfonic acid, MSA, and sulfuric acid, H2SO4). Despite their importance, accurate prediction of MSA and H2SO4from DMS oxidation remains challenging. With comprehensive experiments carried out in the Cosmics Leaving Outdoor Droplets (CLOUD) chamber at CERN, we show that decreasing the temperature from +25 to -10 °C enhances the gas-phase MSA production by an order of magnitude from OH-initiated DMS oxidation, while H2SO4production is modestly affected. This leads to a gas-phase H2SO4-to-MSA ratio (H2SO4/MSA) smaller than one at low temperatures, consistent with field observations in polar regions. With an updated DMS oxidation mechanism, we find that methanesulfinic acid, CH3S(O)OH, MSIA, forms large amounts of MSA. Overall, our results reveal that MSA yields are a factor of 2-10 higher than those predicted by the widely used Master Chemical Mechanism (MCMv3.3.1), and the NOxeffect is less significant than that of temperature. Our updated mechanism explains the high MSA production rates observed in field observations, especially at low temperatures, thus, substantiating the greater importance of MSA in the natural sulfur cycle and natural CCN formation. Our mechanism will improve the interpretation of present-day and historical gas-phase H2SO4/MSA measurements.Peer reviewe
    corecore