4,182 research outputs found

    Enhancing the Accuracy of Microwave Element Models by Artificial Neural Networks

    Get PDF
    In the recent PSpice programs, five types of the GaAs FET model have been implemented. However, some of them are too sophisticated and therefore very difficult to measure and identify afterwards, especially the realistic model of Parker and Skellern. In the paper, simple enhancements of one of the classical models are proposed first. The resulting modification is usable for the accurate modeling of both GaAs FETs and pHEMTs. Moreover, its updated capacitance function can serve as an accurate representation of microwave varactors, which is also important. The precision of the updated models can be strongly enhanced using the artificial neural networks. In the paper, both using an exclusive neural network without an analytic model and cooperating a corrective neural network with the updated analytic model will be discussed. The accuracy of the analytic models, the models based on the exclusive neural network, and the models created as a combination of the updated analytic model and the corrective neural network will be compared

    Nonlinear Resistor with Polynomial AV Characteristics and Its Application in Chaotic Oscillator

    Get PDF
    This paper shows the realization of two terminal devices with an arbitrary polynomial nonlinearity up to the fifth order. The proposed design procedure is completely systematic using minimum of components. The very heart of our conception is four-channel four-quadrant analog multiplier MLT04. The implementation of synthesized nonlinear resistor as a general nonlinearity in chaotic oscillator is also presented and experimentally verified

    Electrochemical Carbonylation of Organoiron Methyl Complex: A Study of Reaction Intermediates

    Get PDF
    The one-electron reduction of CpFe(CO)2CH3 has been investigated by voltammetry and Fourier transform IR spectroelectrochemistry. The reduction initiates the insertion of CO ligand in the FeCH3 bond. The dissociation of a CO group proceeds in a parallel reaction. Reaction intermediates, the acyl derivative and released CO, form the radical anion of a complex CpFe(CO)2(COCH3) which is able to reduce the parent compound. The reversible redox potential − 1.8 V of CpFe(CO)2(COCH3) allows the regeneration of its radical anion which drives a catalytic cycle. The lifetime of intermediates is shortened by side reactions, one of which is the migration of the acyl group from the central atom to the cyclopentadienyl ring. This explains the apparent discrepancy between products observed in preparative scale electrolysis and the absence of catalytic effects in routine voltammetric experiments

    Fluids of hard ellipsoids: Phase diagram including a nematic instability from Percus-Yevick theory

    Full text link
    An important aspect of molecular fluids is the relation between orientation and translation parts of the two-particle correlations. Especially the detailed knowledge of the influence of orientation correlations is needed to explain and calculate in detail the occurrence of a nematic phase. The simplest model system which shows both orientation and translation correlations is a system of hard ellipsoids. We investigate an isotropic fluid formed of hard ellipsoids with Percus-Yevick theory. Solving the Percus-Yevick equations self-consistently in the high density regime gives a clear criterion for a nematic instability. We calculate in detail the equilibrium phase diagram for a fluid of hard ellipsoids of revolution. Our results compare well with Monte Carlo Simulations and density functional theory.Comment: 7 pages including 4 figure

    Forced Fermi-Pasta-Ulam lattice maps

    Get PDF

    Magnetic anisotropy in van-der-Waals ferromagnet VI3

    Get PDF
    A comprehensive study of magnetocrystalline anisotropy of a layered van-der-Waals ferromagnet VI3 was performed. We measured angular dependences of the torque and magnetization with respect to the direction of the applied magnetic field within the "ac" plane perpendicular to and within the basal ab plane, respectively. A two-fold butterfly-like signal was detected by magnetization in the perpendicular "ac" plane. This signal symmetry remains conserved throughout all magnetic regimes as well as through the known structural transition down to the lowest temperatures. The maximum of the magnetization signal and the resulting magnetization easy axis is significantly tilted from the principal c axis by ~40{\deg}. The close relation of the magnetocrystalline anisotropy to the crystal structure was documented. In contrast, a two-fold-like angular signal was detected in the paramagnetic region within the ab plane in the monoclinic phase, which transforms into a six-fold-like signal below the Curie temperature TC. With further cooling, another six-fold-like signal with an angular shift of ~30{\deg} grows approaching TFM. Below TFM, in the triclinic phase, the original six-fold-like signal vanishes, being replaced by a secondary six-fold-like signal with an angular shift of ~30{\deg}.Comment: 14 pages, 10 figure
    corecore