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Abstract. We prove existence and uniqueness results for periodic and quasiperiodic travelling
waves of Fermi-Pasta-Ulam (FPU) type lattice maps. We also study quasiperiodic solutions of
difference equations on Banach algebras as a natural generalizations of the FPU stationary lattice
equations.
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1. INTRODUCTION

Dynamical systems on infinite lattices play an important role in applications to
natural sciences. There are several well-known types of lattice equations such as
sine-Gordon, Frenkel-Kontorova model, Klein-Gordon, Toda, discrete Schrodinger,
Ablowitz-Ladik nonlinear Schrodinger, Fermi-Pasta-Ulam and discrete Nagumo equa-
tions. We refer the reader to the huge literature [1-4,7,8, 10,12, 15,16, 18,21,22].
Some of these lattice models are derived by spatial discretization of corresponding
partial differential equations. In any case, they are defined as an infinite number of
coupled nonlinear oscillators where the theory of ordinary differential equations in
infinite dimensions can be applied [9, 17]. Of course, the dynamics of such systems
is extremely rich. There are three important types of solutions: stationary ones, spa-
tially localized ones, the so called breathers and the travelling waves.

This paper is devoted to the study of discrete FPU type lattices. The FPU model
consists of a chain of particles connected by nonlinear springs

lin =¢Un+1—Up) +P(Un—1—un), ne”Z (1.1

for a smooth and odd function ¢. Most of results are connected with Hamiltonian case
presented by (1.1). But motivated by [13, 14], we consider in [11] a 1D (possible)
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damped FPU lattice forced by a travelling wave field:

ln = WUpy1 +up—1—2uy) + P(Unt1 —Mn)3 + Bun—1 —un)3

. (1.2)
—yun + f cos(wt + pn),

where « >0, >0,y >0, w >0, p#0, f # 0 are parameters. Analytical and
numerical methods are used. This paper is a continuation of [1 1] in the sense that we
also discretize (1.2) in time. Moreover, we consider general analytical nonlinearities
(see (2.1) and (2.3)). First in Section 2, we study forced periodic and quasiperiodic
travelling waves of such FPU lattice maps. We also mention a few words on their sta-
tionary solutions. Then in Section 3, we extend our method to nonlocal interactions.
In Section 4, we end this paper with the investigation of general difference equations
on Banach algebras, which are generalizations of stationary lattice equations. Proofs
of our results are based on a majorant method [19]. Two illustrative examples are
given as well.

2. 1D FORCED FPU LATTICE MAPS WITH LOCAL INTERACTIONS

In this section, we consider a discrete version of the following 1-dimensional dam-
ped FPU lattice forced by a travelling wave field (see [13, 14]):

lin = a(Unt1—2Un +uUn—1) + @1 (Un+1 —Un) + @2(Un—1 —Upn) .
—yu, + f cos(wt + pn), ’

where o >0,y >0,w >0, p #0, f # 0 are parameters and ¢1, ¢ are odd analytic
functions with radius of convergence p1, p2, respectively, such that

D¢1,2(0) = 0. (2.2)

Equation (2.1) of the form (1.2) is studied in [11]. We substitute the differentiation
by the symmetric difference, i.e.

Up(t) > un(t+1/2)—uy(t—1/2), Up(t) > uy+1)—2uy(t) +u,(t—1).
So we study the travelling waves of the system
(4 1) = 21 (6) + 1t (¢ — 1) = @1 (6) = 20 () + -1 (2))
01 (Un+1(0) —un (1)) + @2(Un—1(1) —un (1)) (2.3)
—y(un(t +1/2) =1 (t — 1/2)) + f cos(wt + pn).
Putting u, () = U(wt + pn) for U(z + ) = —=U(z) in (2.3), we get
U(z+w)—-2U(z)+U(z—w) =a(U(z+ p)—2U(z) + U(z — p))

+o1(U(z+ p) = U(2)) + p2(U(z — p) —U(2)) (2.4)
—y(U(z+w/2)—U(z—w/2))+ fcosz
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with z = wt 4+ pn. We take Banach spaces

W:=3UeCRR)|UR) =) dped. > |di| < oo} ,
keZ keZ
X:={UeCRR)|UE) =Y ez ¥ || < oo}

keZ keZ
with the norms

U0 =" ldel. MU= ekl

keZ kez
respectively. Obviously, X C W.
The following lemma is clear.

Lemma 1. If Uy, Uy € W then U1Us € W and ||U Uy || < ||UL||||U2||. For each
ke N, lfUl,Uz,...,Uzk+1 € X then U1U2...U2k+1 € X.

By setting

KU(z) =U(z+w)-2U@)+U(z—w)—a(U(z+ p)—2U(z) + U(z — p))

+yU(z+w/2)—U(z—w/2)),
FWU, f)z2):=p1(U(z+p)—U(2)) + 92(U(z — p) —U(2)) + f cosz,
equation (2.4) has the form
KU =F U, f).

Denote po := min{p1,p2} and B(po) :={U € X | [|U|| < po}-

We have the next result.

Lemma 2. Function ¥ : B(po/2) x R — X fulfils

o0 Dk 0 Dk 0
||J7(U,f)||52| @1( )IZ-!| @2(0)]

k=3
|7 (U, f)=F (U2, )l

21U F +1 71, (2.5)

) k k k—1
D 0)|+ D 0 ; i (2.6)
k=3 ) i=0
¥ U, f1))=F U, )|l <|fi— fal (2.7)
forany U,Uy,Us € B(po/2) C X and f, f1, f» € R.
Proof. Since cosz = elz"'zeﬂz , we get ||cosz| = 1 and (2.7) easily follows. Next
we derive

U+p)-U@R) =) (ei(2k+1)lp _ 1) c@k+1)iz
keZ
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forany U € X with U(2) = ) pez Ck e(k+11z §o we obtain

UG p)=U@I = Y lexl | XD —1| <2)U] 2.:8)
kezZ
forany U € X. For U € B(po) we estimate the Taylor series

Dk i (0
||¢Z<U)||<Z' 2Oy < 00

for i = 1,2. Note that since ¢1, @, are odd, their even Taylor coefficients are zero.
Then combining these estimates with (2.8) and Lemma 1, we arrive at (2.5).
Next arguing like for (2.8), we obtain

[U1(z = p) —U1(2) — (U2(z £ p) — U2(2)|| = 2||U1 — U2 (2.9)

for any U;,U; € X. Then we apply Lemma 1, estimates (2.8), (2.9) and the formula
a*— bk = (@—b)@* ' +d*2b 4+ bFTY (2.10)

for any a,b € C, odd k € N to obtain property (2.6). The proof is finished. O

Nextif U € X with U(2) = ) pez Ck e(k+101z thepn

2k +1 2k +1 2k +1
KU(z) = Z (4ozsin2 T—Fp—4sm2 5 o + 21y sin 2+ a)) cr o(k+1)iz
keZ

(2.11)
and so K € L(X) with
||JC||L(X) < 40l+4+2)/.

If
2k +1 2k+1 \? 2k +1
O := inf 4(xsin2—+p—4sin2 R + 4y2sin? =0 (2.12)
kez 2 2
for a constant ® depending on a, p,w,y, then KX ~! € L(X) is such that
1
K1 <—. 2.13
[ leeo =5 (2.13)

Now we can prove the following existence result on (2.4) when all parameters
except f are fixed.

Theorem 1. Assume (2.12) along with

FARSIV/T (2.14)
for fi satisfying

k k
Ay — O Z DO DOl s,

DA(r) =0 (2.16)



FORCED FERMI-PASTA-ULAM LATTICE MAPS 67

for some r € (0,p9/2). Then (2.4) has a unique solution U(f) € B(py) in a closed
ball where py < po/2 is a smallest positive root of A(r) = | f|. Moreover, U(f) can
be approximated by an iteration process. Finally, it holds

IU(f1) - U(f2)||<|f1 /2|
X 1_l§:|D"¢1(O)I+|D"<p2(0)| e -1 (2.17)
® (k—1)! Pt i1

for any f1, f> € R satisfying (2.14).
Proof. We rewrite (2.4) as a parametrized fixed point problem
U=RWU. f)=X"FU.f)

in B(po/2) C X. We already know that R : B(pp/2) x R — X is continuous and by
(2.5), (2.13) such that

k010 0
IR P < L (Z [D g1 ( )|+|D 02(0)]

25U |F + Ifl).

Next, if there is 0 < py < po/2 such that

Alpr) =111, (2.18)

then R(-, f) maps B(py) into itself. So it remains to study (2.18). In order to find
the largest f; for which (2.18) has a solution ps, > 0, we need to solve A(r) = | f|
together with (2.16) for r € (0, pg/2). This implies (2.14). Note that

¢1(0)| + |Dk§02(0)|2krk—l
k—1)!

+DA(r) =+OF Y

k=3
for r € (0,p0/2), £r < %py,, and lim, _,y,/2)- DA(r) = —oo (see Sections 7.21,
7.22 and 7.31 of [20]). Hence py, is uniquely determined by (2.16). Moreover,
continuity of A(r) with A(0) =0, A(ps) = | f;| yield that 0 < pr < ps, whenever
0<|fl<|fil.i.e. DA(ps) > 0. So assuming (2.12), (2.14) and by (2.2), we know
that (2.18) has a positive solution pr < pg/2. We take the smallest one. So R(:, f)

maps B(py) into itself and, moreover, by (2.6), (2.13)

¢1(0)] + |Dk(/)2(0)|2k k—1
k—1)! Pr

>DA(ps,) =0

|UL = Us|| < DX
IR )= RW2. )] < 75—
k=3

for any Uy, U, € B(py). Hence, R (-, f) is a contraction on B(ps) with a contraction
constant

1 i DX 1 Q)] + D @2 e -1 _ ©=DAlpy) _ ©—=DAlpy)

k—1)! Pr 2} 6
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The proof of the existence and uniqueness is finished by the Banach fixed point the-
orem [5]. Next, let f1, f> € R satisfy (2.14), then U(f;) € B(py;) C B(py,) for
i = 1,2 and f3 := max{| f1|,|/f2|}. Note f3 satisfies (2.14). By (2.6), (2.7) and
(2.13), we derive

1U(f1) =U(2)l = [|RWU(f1), f1) = RWU(f2), 2
< [|RU(f1), f1) = RU(f2), fOI + | RWU(f2), f1) = RWU(f2), f2)l

_ UG - U 5 1D 01 ()] + [DF92(0)] i /i — /ol
= o 2. *k—1)! 2

which implies (2.17). O

Remark 1.
1.If y > 0 and
2011+ 1

weQ:= {

then (2.12) holds and for @ = 2 ;+
14 2y

) (2k+12[1—|—1 )
sin b4 sin— | > —

7T|ll,12€IN},

® > 2y inf >2
=iz 2 1 R T N

since sinx > 2x/m for x € [0,71/2]. So we can replace & with 2y /[, in the above

considerations.

2. Clearly, if we change p <> —p, ® remains the same and Theorem 1 holds as
20 +1
T

well. Thus we can assume p > 0. Next, each element 7 of O can be chosen
such that 2/; 4 1,/ are relatively prime (their only common divisor is 1). In the next
steps we always consider this form.

If p= 2k]é2+171 € Q, then we know (cf. [6]) that there are integers a,b such
that a(2k; + 1) = 1 + 2bk,. Obviously, a is odd. So there exists k € Z such that
2k + 1 = a(1 + 2k,). Consequently,

2k +1)(2k1 +1) =2bka(1 +2ky)+2ks +1 =1 (mod 2k5),
i.e. for such k it holds
sin? 2k+l sin? 7
T
In addition, on setting [; ;=i +k +2ki fori = 1,...,k, — 1 we get
CL+ADCki+1)=QRi+1)Rk+1)2k1+1)=2i+1 (mod 2k3)
foreachi =1,...,ko — 1. Therefore,

2k +1
sin? +

km
} {sm %|k—13 2k —1

2k1+1

for fixed p = ==—m € Q. Same discussion for w € Q yields:
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pr — 2k12+1 — 2/1+1

L€ Q are such that

k l
asinZ% |k = 1,3,...,2k2—1} ﬂ%sininz 1,3,...,212—1} =g,

o km S 1
asin? — —sin® —

=: 0 >0.
2k, 21, !

®>2 min
k=1,3,...,.2ko—1
1=1,3,...21,—1

Thus for such p and w we can replace ® with ®; in the above considerations.
3. One can investigate a discretization of equation (2.1) with more than one forcing
which are of different periods, i.e.

Up =c(Upt1—2uUp +up—1) +01(Un+1 —Un) +02(Un—1 —Uup)
—yuy + frcos(wit 4 pin) + facos(wat 4 pan)

by assuming U(z1 + 7,22 + w) = —U(21,22) with u, () = U(w1it + p1n,wat +
p2n), and introducing Banach spaces

W= qUeCR®R)|U@R)= Y dge'®1H2) %" jdy| <oot,
k,leZ k,leZ

X={UeCRR U= Y cue®t@ 3 g <oo
k+le2Z+1 k,e2Z+1

WUl= D" ldul. U= >0 el

k,leZ k,le2Z+1

with the norms

respectively.
The other possibility is to consider forcing by a composed travelling wave field,
ie.
lin = a(Un+1—2un +up—1) + @1 (Unt+1—tn) + @2(Un—1 —Un)
—Yn + f cos(wit + pin)cos(wat + pan)
with o1, 02 € R, 2* ¢ Q, by assuming U(z1 +7,22) = —U(z21.22) = U(z1.22+7)
where u, (1) = U(w1t + p1n,wat + pan). In this case, one takes Banach spaces

W :={U e C(R%R) |U(z) = Z dklel(kZ'+lZ2), Z ldiki| < o0 p,
k,leZ k,leZ

X:={UeCR:R) | U(z) = Z e @kt Dizi+@l+izs Z lekr] < 00
k,leZ k,leZ
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with the norms
U= Y ldwl U= Y lewls
k,leZ k,leZ

respectively.
4. If up in (2.1) is independent of 7, i.e. u,(t) = u, for all t € R, equation (2.3)
becomes a nonlinear difference equation

0=0a(Unt1—2un +un—1) + @1 (Unt+1—Un) + @2(Un—1 —upn) + f cos pn (2.19)

and by adding another forcing with different period, one can study the existence of
quasiperiodic solution {u, },cz of the infinite system of equations

0=0a@nr1—2un +un—1) +@1(Un+1—tn) +@2(n—1—un)
(2.20)
+ ficospin+ frcospon, neZ
with % ¢ Q.
Example 1. Consider equation
Uz+w)-2U(@2)+U(z+w)=a(U(z+p)+Uz—p)—-2U(2))
+B(U(z + p) = U(@)* + B(U(z = p) —U(2))? (2.21)
—y(U(z+w/2)—-U(z—w/2))+ fcosz
with parameters o > 0, 8 >0,y > 0,0 >0, p #£0, f #0.

Corollary 1. Assuming (2.12) and

@3
WARS \/—108/3, (2.22)

equation (2.21) has a unique solution U(f) € B(ps) C X where

pr = ‘/%sin (% arcsin (|f| 1((3)—8;3)) . (2.23)

Moreover, U( f) can be approximated by an iteration process. Finally, it holds

UG~ U < U
® (l — 4sin? (% arcsin (max{|f1|, | 21} l(é%ﬂ)))
forany f1, f> € R satisfying (2.22).

Proof. In this case pg = oo and the corollary follows directly from Theorem 1.
The smallest positive root ps of equation

A(ps) = Ops —16Bp7 = | f|
is know to have a form of (2.23) [0]. O
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3. 1D FORCED FPU LATTICE MAPS WITH NONLOCAL INTERACTIONS

In this section, we consider a discretization of 1-dimensional damped FPU lattice
forced by a travelling wave field with nonlocal interactions:

lin = Zaj (un-i-j _un) + Z‘/’j(un-l-j —Up) —Yyln + f cos(wt + pn), (3.1)
JEZ jeZ

where oj = a—; >0, 29 = 0 and

E o; <00,

jeN

Yy >0, w>0, p#0, f # 0 are parameters and ¢; is odd analytic function with
radius of convergence p; for j € Z\{0}, po = 0 such that

= inf p; >0, Dg;(0)=0,;eZ\{0
) jez\{o}pj ®; (0) J \10}

and

[ee) k.
Z Z|D <]/;1'(0)|rk<oo

jeZ\{0} k=3

for all r € (0, p0/2).
As in the previous section, we apply symmetric difference and study the equation

Up(t+1)=2u,(t)+u,(t—1) = Zozj(un+j(t) —2un(t) +up—j(t))
jeN
+ 57 0 g 1 (0) = un () + 9 (n (1) =un (1)) (32)
jeN
—y(up(t+1/2)—uy(t—1/2))+ f cos(wt + pn).

Putting u, (1) = U(wt + pn), U(z + ) = =U(z) for U € B(py/2) in (3.2), we
get

Uz+0)—2U(2) + Uz —w) = Y aj(U(z+ pj) —2U(2) + U(z— pj))
jeN
+ Y 0 (UG+p)—UQ@) +e-;Uz—pj)—U(z)) (3-3)
jeN
—y(U(z+w/2)—U(z—w/2))+ fcosz
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with z = wt + pn. By setting
FU) =U(z+w)-2U(z)+U(z —w)

=Y iUz +pj)—2U(2) + UGz — pj) + YUz + ©/2) — Uz — /2)).
JeN
G(U. [)(2) =Y ¢jUz+ pj)—UE) +¢-;(U(z— pj)—U(2)) + f cosz,
JEN
equation (3.3) has the form
JU =5(U. f).

Following the proof of Lemma 2, we have the following result.
Lemma 3. Function'§ : B(po/2) x R — X satisfies

- e DFg; (0)| + [DFg_; (0
5.y < 3 Bl OLE Do) ©)

k=3
1€ (Ur. )= ¢ U2, )

O 5 en DK@ (0)] + [DFp_j(0)] A=t .

N J J i

—Uy| Y =S px S 1A [ 177y
’ i=0

1€, f1)=8W, )| <I|f1— /2l
forany U,Uy,Us € B(po/2) and f, f1, f € R
Nextif U € X with U(z) = Y jez ck €2¥ T2, then

U %+ £1,

<|U1

k=3

2k +1 2k +1 2k +1
JU(z) = Z 4Zajsin2 2+ pj—4sinzT+a)+2zysin 2+ w
keZ JjeN

XCk e(2k+1)zz‘

Hence § € L(X) with
IFlLc <4 +4+2y.
jeN
Moreover, assuming

2
2k +1 2k +1 2k +1
r :=kir€1£ 4201]' sin? 2+ pj —4sin? T+a) + 4y25sin? + >0,
JjeN

(3.4)

g~1: X — X is such that

_ 1
1g e < =

r
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Summarising, we arrive at the following result.

Theorem 2. Suppose (3.4). By replacing
ID¥@1(0)] < ) " ID¥g;(0).  [DFpa(0)] & D IDFe_;(0)). O T
JEN jeN
foreachk =1,2,..., the statements of Theorem 1 are valid for (3.3).

Remark 1.1. remains true with I” instead of ®&.

4. QUASIPERIODIC SOLUTIONS OF DIFFERENCE EQUATIONS

Motivated by stationary FPU lattice equations (2.19) and (2.20), in this section, we
study the existence of quasiperiodic solutions of a general nonlinear difference equa-
tion with a quasiperiodic perturbation. We take coefficients from Banach complex
algebra V' and introduce Banach space

W= 1c={ciphpez | ckp €V.Yk.p €Z, Y |lcgpll < 00
k,peZ

with the norm
lel:== D" llexpl-
k,peZ
‘We shall seek the solutions in

k,peZ
For each U € Sy, 0, there may be many different ¢ € W such that

U, = Z ckpe(w1k+w2p)zn.
k,peZ

Therefore, we denote U = U(c) = {Uy }nez = {Un(c)}nez to emphasize which co-
efficients are considered. Moreover, we write ||U(c)| = ||c|| (= [|Un(c)|). On the
other side, if ||U || = a, then there exist coefficients ¢ € W such that U = U(c) and
|c|| = a. For the set Sy, 4, We have the next statement which can be easily verified.

Lemma 4. Let X(x),Y(y) € Sw,w,- Then the following holds true:
(D) X)) < o0,
(2) forall o, € C: Z = aX(x)+ BY(Y) € Sw,w, and there exist coefficients
z € W suchthat Z = Z(z) and zy, = axgp + Bykp for each k,p € Z,
3) Z ={Zn}nez ={XnYn}nez € Sw,w, and there exists z € W such that Z =
Z(z) and | 2| =[xyl
(4) if j € Z is arbitrary and fixed, then Z = {Zy}nez = {Xn+j}nez € Swiw>-
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Let w1, w2 € R be such that % ¢ Q and j € N be fixed. Consider the following
nonlinear difference equation

@)X =Y +F(X), (L0)Xpn=Yn+Fa(Xn).YneZ)  (4.1)

where X = {Xu}nez.Y = {Yulnez € Swiw:> £(0)  Sw,0r = Swiw, 1S a linear
difference operator given by

£(0) = a0’ o106/ a0+
with shift operator o (6™ (X,) = X, +m) and constants «,...,a; € C, i.e.
L(0)Xn = a0 Xn+; +ar1Xn+j—1+ - +aj—1Xn+1 +0; X,

and F : Sy, w0, — Sw,w, 18 a given nonlinear function such that

o0
F,(2) = Z(aj +bje' " +¢; elw2m) 7
=0
with coefficients a;,b;,c; € C for each j = 0,1,2,..., which is analytic with ra-
dius of convergence p, for each n € Z such that inf,cz p, > 0. Let the radius of
convergence p of function

o0
v(r) =Y (laj| + |bj| + lej D/
=0
be positive. Obviously, p < inf,ez pn. Denoting B(p) :={X € Sp,w, | | X < p}
and £ (X,Y) :=Y 4+ F(X) or equivalently ¥, (Xy, Yy) := Y, + F,(Xy) for each
n € Z, equation (4.1) has the form

L)X =F(X,Y), (£(0)Xn =Fn(Xn,Yn), VR e Z) 4.2)
and we have the following result.

Lemma 5. Function ¥ : B(p) x B(p) = Sw,w, fulfils

o0
1% (X Yo) | < 1Yull+ > (laj |+ 1+ lej 1) | Xnll (4.3)
j=0

1 Fn(Xn. Yn) = Fn(Zn. Yn)l

00 j—1 ‘ (4 4)
<1 Xn=Znl D (laj 1+ 11+ e ) D 1 Xl 1Zall/ 771,
Jj=1 =0
1Fn (X Yn) = Fu (X, Z) | < 1Yn = Za | (4.5)

foreachn € Z and X,Y,Z € B(p) C Sw,w,-

Proof. The first and the last statements are trivial. The second one uses formula
(2.10). 0
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Next, if X(x) € Sw,w,»1-€. Xn =Dk pez Xkp el@tk+@2p)in then

£(0) X, =
Z Xkp <a0 c(@ik+twap)j o dajog e(@ik+wap) +aj) e(@ik+wap)in
k,peZ
= Z &L (e(w1k+wzp)1) Xkp e(@ik+wrp)in
k,peZ
and so

J
1LO)L(Sw ) < Dl
1=0

If

®:= inf |£('%)|>0, (4.6)
a€[0,27]

then £(0)~! € L(Sw,w,) is such that

1£©0) ™ LSy = 5 (4.7)

Now we state the sufficient condition for the existence of a quasiperiodic solution
of equation (4.1) with given Y and function F. Note that it does not imply the
uniqueness of the solution due to non-uniqueness of the coefficients y.

Theorem 3. Let Y =Y (y) € Sw,w, e fixed and condition (4.6) be fulfilled. If
there exists 0 <7 <'p such that

1Y +v() -5 Du(7)
® - O
then there exists at least one solution X € B(r) C Sy, 0, of equation (4.1), i.e. there

is x € W satisfying ||x|| <7 and X = X(x). This solution can be approximated by
an iteration process.

<1, 4.8)

Proof. We formulate equation (4.2) as a parametrized fixed point problem
X =R(X,Y):=%>0)'F(X.Y)
in B(p) C Sw,w,- By (4.7) and (4.3) we know that
Y[+ v(r)
[RX, V)| < T
if || X|| <7. Hence, if the first condition in (4.8) is satisfied, function R(-,Y") maps
B(7) into itself. The second condition in (4.8) establishes the contractivity of R(-,Y),
since by (4.4)

1X-2Z|| & o
=2 (gl + 1B+ e ) D Ix 112

j=1 =0

[R(X.Y)=R(Z.Y)| =<
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Dv(r)

IX=Z]

for all X, Z € B(¥). The rest follows from Banach fixed point theorem. (]
Example 2. Consider equation
Xni2+aXnt1+ Xn = djcos/2n +dysin3n + bX (4.9)

for each n € Z with parameters a € R, |a| > 2, b,d1,d» € C.

In this case, we have w1 = V2, wy =3, L(0) = 0% +ao+0o°,

W=l =1{c={ckplrpez | ckp €EC.Vhk.peZ, > lcxpl <00y,
k,peZ

Y, = d1cosv/2n +dosin3n = Z Ykp e(V2k+3p)in
k,peZ

with y11,0 = d1/2, yo,1 = —y0,—1 = d2/2 and yi, = 0 for each (k, p)
€ Z%\{(%£1,0),(0,£1)}, and F,(X,) = bX2. Hence v(r) = |b|r3 for any r > 0,
|Y|| = |di]| + |d2| and we seek the solution X in space

Swla)z =3U ={Un}nez | Up = Z Ckp e(ﬁk+3p)m’ ceW,Vne”Z
k,peZ
Corollary 2. If
4(jal-2)° 2)3
d dr| < 4.10
|d1]+ |da| O (4.10)

then equation (4.9) has at least one quasiperiodic solution X € B(r) C Sy, w, in the
closed ball with radius

= %bl)sm (5 arcsin <(|d1| +|d2]) 4(|2T|b|2)3)) 4.11)
Proof. For £ we have
| L(e")| = [e¥* +ae' +1]
=|(a+2cosa)cosa +1(a +2cosa)sina| = |a +2cosq|
and so @ = |a| —2 > 0. Next, v(r) = |b|r3 and conditions (4.8) are equivalent to
dil+ldal + 1D . 3P

I"
|a| -2 © lal-

Moreover, the smaller 7 satisfying these conditions, the more precise X. Thus from
the first one it follows that 7 has to be a positive real root of function A(r) :=
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|dy| + |d2| —r(la| —2) + |b|r3. The second one implies, it is the smallest one and
nondegenerate. Assumption (4.10) is a necessary condition for A(r) to have two

distinct positive real roots. Finally, from [6] we know that 7 is given by (4.11). [
Remark 2.
1. The theory derived in this section can be extended to arbitrary number g > 2 of
angle speeds w1, ..., wy assuming Z)Tj ¢ Q foreachi,j=1,...,q,i # J.

2. Example 2 is a very special application of the theory of Section 4. More gene-
rally, in (4.9) one can take dq,d> € L(CN ,CN ),i.e. N x N complex-valued matri-
ces. Then coefficient space V' is a Banach complex algebra of N x N matrices.
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