6,775 research outputs found
Photoemission Spectra from Reduced Density Matrices: the Band Gap in Strongly Correlated Systems
We present a method for the calculation of photoemission spectra in terms of
reduced density matrices. We start from the spectral representation of the
one-body Green's function G, whose imaginary part is related to photoemission
spectra, and we introduce a frequency-dependent effective energy that accounts
for all the poles of G. Simple approximations to this effective energy give
accurate spectra in model systems in the weak as well as strong correlation
regime. In real systems reduced density matrices can be obtained from reduced
density-matrix functional theory. Here we use this approach to calculate the
photoemission spectrum of bulk NiO: our method yields a qualitatively correct
picture both in the antiferromagnetic and paramagnetic phases, contrary to
mean-field methods, in which the paramagnet is a metal
Adjustment of Recall Errors in Duration Data Using SIMEX
It is widely accepted that due to memory failures retrospective survey questions tend to be prone to measurement error. However, the proportion of studies using such data that attempt to adjust for the measurement problem is shockingly low. Arguably, to a great extent this is due to both the complexity of the methods available and the need to access a subsample containing either a gold standard or replicated values. Here I suggest the implementation of a version of SIMEX capable of adjusting for the types of multiplicative measurement errors associated with memory failures in the retrospective report of durations of life-course events. SIMEX is a method relatively simple to implement and it does not require the use of replicated or validation data so long as the error process can be adequately specified. To assess the effectiveness of the method I use simulated data. I create twelve scenarios based on the combinations of three outcome models (linear, logit and Poisson) and four types of multiplicative errors (non-systematic, systematic negative, systematic positive and heteroscedastic) affecting one of the explanatory variables. I show that SIMEX can be satisfactorily implemented in each of these scenarios. Furthermore, the method can also achieve partial adjustments even in scenarios where the actual distribution and prevalence of the measurement error differs substantially from what is assumed in the adjustment, which makes it an interesting sensitivity tool in those cases where all that is known about the error process is reduced to an educated guess
Techniques for obtaining regional radiation budgets from satellite radiometer observations, phase 4 and phase 5
A scheme was developed which divides the earth-atmosphere system into 2060 elemental areas. The regions previously described are defined in terms of these elemental areas which are fixed in size and position as the satellite moves. One method, termed the instantaneous technique, yields values of the radiant emittance (We) and the radiant reflectance (Wr) which the regions have during the time interval of a single satellite pass. The number of observations matches the number of regions under study and a unique solution is obtained using matrix inversion. The other method (termed the best fit technique), yields time averages of We and Wr for large time intervals (e.g., months, seasons). The number of observations in this technique is much greater than the number of regions considered, and an approximate solution is obtained by the method of least squares
Stochastic evaluation of sewer inlet capacity on urban pluvial flooding
In this paper we present an innovative methodology to stochastically assess the impact of sewer inlet conditions on urban pluvial flooding. The results showed that sewer inlet capacity can have a large impact on the occurrence of urban pluvial flooding. The methodology is a useful tool for dealing with uncertainties in sewer inlet operational conditions and contribute to comprehensive assessment of urban pluvial risk assessment
Techniques for computing regional radiant emittances of the earth-atmosphere system from observations by wide-angle satellite radiometers, phase 3
Radiometers on earth orbiting satellites measure the exchange of radiant energy between the earth-atmosphere (E-A) system and space at observation points in space external to the E-A system. Observations by wideangle, spherical and flat radiometers are analyzed and interpreted with regard to the general problem of the earth energy budget (EEB) and to the problem of determining the energy budget of regions smaller than the field of view (FOV) of these radiometers
Collapse prediction and creep effects
The recent collapse of famous historical constructions attributed mainly to the
time-dependent behaviour of masonry has driven the attention of the technical
community over this issue. Numerical analyses in which units and mortar are
individually represented have proven to be of great interest to understand the
phenomena at the level of the masonry constituents. Nevertheless, before
analysing the influence of long-term effects, it is important that numerical
models are able to adequately reproduce the behaviour under short-term
compression as it provides a solid basis to correctly capture the response under
sustained stresses. Reproduction of short-term behaviour remains, however,
unresolved in literature. A contribution is given in the present paper by
considering a standard continuum model and a discrete particle model to
represent units and mortar. The particle model has showed clear advantages. In
addition, the results of an experimental investigation on the creep behaviour of
regular ancient masonry including both short-term and long-term creep tests are
provided together with a careful discussion of the results
Weak ergodicity breaking of receptor motion in living cells stemming from random diffusivity
Molecular transport in living systems regulates numerous processes underlying
biological function. Although many cellular components exhibit anomalous
diffusion, only recently has the subdiffusive motion been associated with
nonergodic behavior. These findings have stimulated new questions for their
implications in statistical mechanics and cell biology. Is nonergodicity a
common strategy shared by living systems? Which physical mechanisms generate
it? What are its implications for biological function? Here, we use single
particle tracking to demonstrate that the motion of DC-SIGN, a receptor with
unique pathogen recognition capabilities, reveals nonergodic subdiffusion on
living cell membranes. In contrast to previous studies, this behavior is
incompatible with transient immobilization and therefore it can not be
interpreted according to continuous time random walk theory. We show that the
receptor undergoes changes of diffusivity, consistent with the current view of
the cell membrane as a highly dynamic and diverse environment. Simulations
based on a model of ordinary random walk in complex media quantitatively
reproduce all our observations, pointing toward diffusion heterogeneity as the
cause of DC-SIGN behavior. By studying different receptor mutants, we further
correlate receptor motion to its molecular structure, thus establishing a
strong link between nonergodicity and biological function. These results
underscore the role of disorder in cell membranes and its connection with
function regulation. Due to its generality, our approach offers a framework to
interpret anomalous transport in other complex media where dynamic
heterogeneity might play a major role, such as those found, e.g., in soft
condensed matter, geology and ecology.Comment: 27 pages, 5 figure
- …
