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PREFACE

The present report contains results of an investigation of critical

problems related to the interpretation of observations by satellite radio-

meters for the purpose of monitoring the long-term earth energy budget (EEB).

This work was performed under Langley Research Center Contract No. NAS1-11871

for the National Aeronautics and Space Administration.

This research study, performed by Drexel University, is one part of a

much larger effort by several institutions, including Colorado State

University, The University of Wisconsin, Virginia Polytechnic Institute and

State University, Link Temco Vought, National Oceanic and Atmospheric

Administration, NASA Goddard Space Flight Center, as well as cognizant

personnel at NASA Langley Research Center. This team is studying the Earth

Radiation Budget Satellite System (ERBSS) for performing long-term measure-

ments over geographical regions, zonal belts, hemispheres, and the entire

earth for periods of 10 to 30 years.

This document is the Ph.D. dissertation of Dr. Jos£ F. Pina who has

been associated with the ERBSS problem for several years at Drexel University.

His thesis concerns the development of techniques for obtaining regional

radiation budgets from observation by wide—angle, broad—band radiometers on

satellites.

The current investigation was performed during the twenty one month

period 1 January 1975 through 30 September 1976. This period includes

Phase IV and a portion of Phase V efforts of the subject contract above.

The expressed purpose of these efforts are outlined in the statements of

work as follows:



Phase IV Effort

1. Determine potential methods of inverting wide-field of view observations
to enhance the spatial resolution of the measurements.

2. Develop quantitative criteria for determining accuracy of data retrived
by methods in (1).

3. Develop a computer program for dividing a spherical earth into area
increments that is adequate for determining matrix elements, required by
all inversion methods in (1).

4. Conduct a study to determine the optimum method of inverting EEB obser-
vations, using criteria in (2) and matrices in (3).

5. Incorporate a limb-darkening model in the inversion method (4) for
optimal estimation of radiant emittance distributions of the earth-
atmospheric system.

6. Incorporate a bi-directional reflectance model in the inversion method
(4) for optimal estimation of albedo distribution of the earth-
atmospheric system.

Phase V Effort

4. Extend the analysis of the matrix inversion technique to include the
inverting of wide-field of view, shortwave radiation measurements to
enhance their spatial resolution over a spherical earth.

The bulk of the thesis addresses the six items in the Phase IV effort.

Chapter 5 specifically concerns Item 4 of the Phase V effort.

Other reports under this Contract that are related to the overall

ERBSS effort are: "An Investigation of ESSA VII Radiation Data for Use in

Long-term Earth Energy Experiments," published as NASA CR-132623;

"Our Contaminated Atmosphere - The Danger of Climate Change," published as

NASA CR-132625; "Steady-state Solution to the Conduction Problem of a

Spherical Balloon Radiometers," published as NASA CR-132624, and "Techniques

for Computing Regional Radiant Emittances of the Earth - Atmosphere System

from Observations by Wide-angle Satellite Radiometers," published as NASA

CR-145011.
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ABSTRACT

TECHNIQUES FOR OBTAINING

REGIONAL RADIATION BUDGETS FROM

SATELLITE RADIOMETER OBSERVATIONS

AUTHOR: Jose Fermin Pina

SUPERVISOR: Frederick B. House

(Associate Professor)

Two methods have been developed for obtaining regional radiation

budgets from wide field of view satellite radiometer measurements.

The two fundamental assumptions of these methods are: (a) the earth-

atmosphere system can be divided into regions having homogeneous

emitting and reflecting characteristics; (b) the angular functions

which describe the emitted longwave and reflected shortwave radiation

fields are available from previous or simultaneous observations.

In order to carry out the numerical integrations required in the

two techniques, a scheme was developed which divides the earth-

atmosphere system into 2060 elemental areas. The regions previously

described are then defined in terms of these elemental areas which

are fixed in size and position as the satellite moves.

One of the methods, termed the instantaneous technique, yields

values of the radiant emittance (We) and the radiant reflectance (Wr)
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which the regions have during the time interval of a single satellite

pass. In this technique, the number of observations matches the number

of regions under study and a unique solution is obtained using matrix

inversion. The other method (termed the best fit technique), yields

time averages of We and Wr for large time intervals (e.g., months,

seasons). The number of observations in this technique is much greater

than the number of regions considered, and an approximate solution is

obtained by the method of least squares.

The inverse matrix obtained in the instantaneous technique is in

general unstable due to insufficient coverage of all regions studied

by the field of view of the radiometer. This instability results in

large magnification of Gaussian instrumental errors. A matrix stabili-

zation technique was developed which diminished the errors in the

result by about a factor of ten in several cases. Furthermore, a pre-

diction scheme based solely on the structure of the configuration

factor matrix was developed which successfully predicts the regions

that will have acceptable results. The average values of We and Wr

obtained with the best fit technique were found acceptable for all

regions.

Both of the techniques developed isolate in space the problem of

determining the regional values of We and Wr, that is, only data

derived from the regions themselves are used in the determinations of

these quantities. Furthermore, application of these techniques is

independent of the ellipticity of the satellite orbit.

Even though the instantaneous technique presupposes that the

regions observed have fairly homogeneous emitting and reflecting



xiv

characteristics, several cases where a region was split into two sub-

regions with different We values were successfully handled without

taking the extra power measurement required for matching the new num-

ber of regions. Furthermore, an evaluation parameter was derived

which indicates those cases when the split region has too large a dif-

ference between the We values of its two subregions. In these cases,

the extra observation required to match the new number of regions must

be included in order to obtain an accurate solution.



CHAPTER I. INTRODUCTION

Motivation

The imbalance between the solar radiation absorbed and the

terrestrial radiation emitted by different regions of the earth-

atmosphere (E-A) system constitutes the thermal driving force

primarily responsible for the atmospheric and oceanic circulations.

The spatial variation of this imbalance is also responsible for zonal

and regional climates.

The radiation imbalance of a region can be expressed in terms of

the quantity Q known as the net radiation or radiation balance. It

is defined as the difference between the radiation absorbed and emitted

by a region at the top of the atmosphere. Mathematically, it is

defined as

Q = Hs(l-A) - We (1-1)

where Hs is the irradiance due to direct (incoming) solar energy,

A is the albedo which represents the fraction of Hs that is reflected,

and We is the radiant emittance due to terrestrial radiation. By

using the radiant reflectance Wr = AHs which represents the amount of

Hs reflected, Eq.(l-l) is written in terms of the fluxes Hs, Wr, and

We , as

Q = Hs - Wr - We C1"2)

or

Q = H cos C - Wr - We ^'^

where H is the solar irradiance for zero solar zenith angle, and £

is the solar zenith angle.



The gradient of Q is the primary cause for the existing climate

zones and energy transports described above. Observations indicate

that the magnitude of Q averaged over all longitudes and seasons is

positive in the equatorial regions, negative in the polar regions,

and zero at approximately lat 40 of either hemisphere. Regional

variations of Q within given latitudinal zones can also be signifi-

cant, especially in the tropical zones. The possible relationship of

these variations to meteorological phenomena is of practical importance.

The power intercepted by a satellite radiometer due to emitted

long-wave radiation (LWE.) and reflected short-wave radiation (SWR) are

denoted by Pe and Pr, respectively. The reflected SWR lies in the

spectral interval between 0.2 and 5y, while the emitted LWR is between

5 and lOOy (Kondratyev, 1969). The radiometers are able to discrimi-

nate between these two types of radiation by the use of special coatings

and/or filters. Interpretation of these radiometer data constitutes

the fundamental problem in obtaining the fluxes We and Wr.

It is essentially this problem of data interpretation which was

pursued in this investigation and techniques for determining regional

values of We and Wr were developed. From these values, Q can be calcu-

lated by using Eq.(l-2), once Hs has been determined.

There is not much difficulty in determining the value of Hs of a

region. This is easily calculated from the following equation.

Hs = H cos 5 d-4)
o

where cos £ is the weighted average of cos £ within the given region,

and H is the solar irradiance at the satellite. It is preferable



to measure H as often as needed rather than to treat the solar con-
o

stant as actually being a constant. It is clear then that the value

of Hs in Eq.(l-2) is easily obtained and hence, it is unnecessary to

develop a computational technique in this thesis for determining this

quantity.

The determination of We in Eq.(l-2) however, is more problematic

than that of Hs. The angular dependence of the radiation emitted by

a region must be known in order to deduce the value of We from observa-

tions of that region by satellite radiometers. One way of determining

this angular dependence is to measure the radiance N simultaneously

from every possible direction in space. From a practical point of view,

this is an impossible task. An alternative approach to this .problem

is to describe the angular distribution of N with an angular function

previously obtained or determined simultaneously with a scanning narrow

field of view (NFOV) radiometer.

The determination of the reflected SWR flux in Eq.(l-2) poses an

even more complex problem than that of We. One has to contend here

with two angular dependences; that due to the sun's position and that

due to the satellite's position.

The angular distribution of the radiance Nr (of the reflected SWR)

of a region must be known for each position of the sun for which an ob-

servation is made. The value of Wr for each of these sun positions

can then be calculated. However, measuring Nr from all possible angles

for each position of the sun is an insurmountable observational problem.

Nevertheless, as in the case of We, an alternative approach is to use

an angular model based on previous observations or on measurements

made simultaneously with scanning, narrow FOV radiometers.



In the past, techniques for computing We and Wr have been

obtained by making simplifying assumptions concerning the character-

istics of the radiation field. The area within the field of view

(FOV) has been assumed to emit LWR isotropically, and to reflect the

solar SWR diffusively. In addition, both radiation fields We and Wr

have been assumed to be homogeneous throughout the FOV. The method by

which these homogeneous values of We and Wr have been calculated in

the past will be illustrated for the case of LWR.

ISO
The isotropic radiance N is related to the corresponding

value of We by

We = TT N1S° (1-5)

The power Pe intercepted by a horizontal flat plate radiometer (of

unit cross-sectional area) due to LWR emitted by the E-A system is

given by

Pe = / dijj / N'(a,ijj')sin a cos a da (1-6)
o o

where a and ^' are the nadir and azimuthal angles, respectively, N'

is the radiance when expressed in terms of a and ii' and a is thev ' max

maximum value that a can attain. For the case of a spherical radio-

meter, the cos a factor reduces to one. By the assumptions made above,

N' is isotropic and homogeneous over the entire FOV and hence, inde-

pendent of a and i|/ . Then, Eq.(l-6) results in

Pe = TT Nis° sin2 a = We sin2 a (1"7)
max max

Similarly, Pr is given by

2
Pr = Wr sin a (1-8)



Although the above values of We and Wr are assumed to be the same

for all points within the FOV, researchers assigned them only to the sub-

satellite points (SSP) . Subsequently, maps of We and Wr were con-

structed by joining with isopleths those points having equal values.

Similarly, the solar irradiance Hs is assumed to be the same through-

out the FOV and equal to the weighted average of the actual values of

Hs throughout the FOV. This average value is then assigned only to

the SSP as in the case of We and Wr. Then, the Q value of each SSP is

computed from the corresponding values of Hs, Wr, and We. Maps of Q

have also been constructed by joining with isopleths points having

equal values of Q.

The above procedure leads to inaccuracies in the determination

of regional values of Q. Two main difficulties have been pointed out:

(a) the value of Q of a given region is determined by including the

radiation contributed by neighboring regions, (b) the angular distribu-

tion of N and Nr are completely neglected.

Considerable effort has been directed for some time at finding

improved methods for determining the individual radiation budgets of

regions observed by wide field of view (WFOV) radiometers. The emit-

ting and reflecting characteristics of adjacent regions may be signifi-

cantly different due to variations in topography, temperature, and

cloud coverage. It is almost impossible to view only one region totally

while excluding all others during a single observation. Hence, practically

all observations by WFOV radiometers include several portions of

regions that may have significantly different Q values. Therefore, it

is important to develop techniques which yield the flux values of We



and Wr for the different homogeneous regions within the FOV. Then,

the corresponding Q values of these regions can be easily calculated

by use of Eq.(1-2).

The need for the types of techniques just described provided the

main motivation for undertaking the present investigation during

which two such techniques were developed. These two techniques provide

a more accurate solution to the problem of determining the regional

fluxes We and Wr.



Outline of problem solution and results

This section presents an outline of the methods developed for

obtaining regional radiation budgets from WFOV radiometer measurements.

These methods include: (a) a technique for determining the instan-

taneous values of We and Wr, (b) a best fit technique for obtaining

time averages of these fluxes. In addition, a matrix stabilization

scheme and a data quality prediction technique were developed in

order to supplement the instantaneous technique.

The instantaneous and best fit techniques will be described

while applying them to the case of determining the flux We.

Eq.(l-6) gives the LWR power Pe that a horizontal flat plate

radiometer intercepts. This equation is solved numerically by divid-

ing the E-A system into a finite number of elemental areas. Each

region of the E-A system having approximately homogeneous emitting

and reflecting characteristics is defined in terms of these elemental

areas. Then, by adding up the power increments contributed by those

elemental areas of a region k which are within the FOV of the jth

observation, the power P is obtained. This is the power contributed
jk

by the kth region to the jth observation. Then, the total power P.

intercepted by the jth observation is the sum of the contributions

of all the K regions within the FOV, that is,

K
P = E P (1-9)
J k=l Jk

which is the power represented by Pe in Eq. (1-6).

The power P., contributed by the kth region can be represented
jk

by F We where F is the configuration factor of the kth region
JK K JK



and jth observation, and We, is the value that We has in the kth

region. Then, Eq.(l-9) results in

P. - Z F., We, (1-10)
J k=l Jk k

The configuration factor F represents the fraction of the
JK-

LWR flux emitted by the kth region which is intercepted by the radio-

meter in the jth observation. This factor includes any function used

to describe the angular distribution of N, such as a limb darkening

function (LDF). In this investigation, a LDF model and an isotropic

radiation model were used.

There is an Eq.(l-lO) for each observation made of the K regions

under study, and the essential difference between the two techniques

developed lies in the number of observations or equations used to

solve the problem.

In the instantaneous technique, the number of observations J

matches the number of regions K investigated and a unique solution

is obtained. In the best fit technique J»K, that is, the system is

overdetermined and an approximate solution is found by the method of

least squares.

The results that the instantaneous technique yield are ob-

tained from data collected during a single pass of the satellite.

This is the reason for naming this technique instantaneous. The

results of the best fit technique are time averages obtained from

data collected during many satellite passes.

There are J=K equations of the form of Eq.(l-lO) in the instan-

taneous technique. These equations can be written in matrix form as

F {We} = {P} (1-11)



where F is the K x K configuration factor matrix of elements F., ,
J*1

and {We} and {?} are the column matrices made up of the We and P

values.

By inverting F and operating with the resulting inverse matrix

F on {P} one obtains {We1}, that is,

F'1 {P} = {We1} (1-12)

If there are no instrumental errors included in the power measure-

ments P (that is, if the P values are exact),{We'} = {We} and the

problem has been solved. Unfortunately, the situation is not this

simple;the powers P' usually include systematic as well as Gaussian

random uncertainties 6P. Furthermore, in general the satellite

positions are such that insufficiently large portions of all regions

are observed. The latter causes F to be unstable and the random

errors 6P appearing in the power measurements P' = P + <$P are in some

cases highly magnified making some of the results entirely unreliable.

It was possible, however, to develop a technique for stabilizing

the inverse matrix F . This technique consists in removing the

smallest elements of the original ill-conditioned matrix F and adding

them to the diagonal elements in the corresponding rows. This tech-

nique renders well-conditioned the original matrix F. Magnification

of the 6P errors was dramatically reduced. Nevertheless, as explained

previously, since sufficiently large sections of some of the regions

were not observed, the solutions for these regions still contained

significant errors.

It became necessary to develop a technique based solely on the

structure of the new well-conditioned configuration factor matrix
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F to predict which regions would have reliable data and which
we r

would not. Each column of the matrix F corresponds to a diffe-
wc

rent region. The ratio of the diagonal element of each column of

F to the average shape factor of the total FOV is multiplied by

the sum of the elements in the corresponding column. The result

is a prediction parameter that should be greater than a predeter-

mined value in order for the data of the corresponding region to

be acceptable. Otherwise, the solution for the region is considered

unreliable.

By selecting a set of satellite positions such that their FOV's

include sufficiently large portions of all regions under study, it

was shown that even when the powers include instrumental errors, all

of the results are acceptable. Hence, under these circumstances,

there is no need to apply either the matrix stabilization technique

or the data quality prediction technique.

As stated previously, in the best fit technique the number of

observations J is much greater than the number of regions K, result-

ing in J equations of the form of Eq.(l-lO), and hence the system can

be considered overdetermined. The method of least squares is used

to find an approximate solution. The results obtained with this

technique represent time averages of the We values existing during

the time interval (e.g., month, season) that the measurements were

taken. All of the results obtained with this technique are found

acceptable even when changes of scene (i.e., changes of the regional

values of We) are introduced after each satellite pass.

Application of the instantaneous and best fit techniques to

the case of reflected SWR is slightly more complex than that of the
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emitted LWR. The reason is that the radiance N in the LWR case

depends on the angular position of the satellite only, while the

radiance Nr in the case of reflected SWR depends on the angular

position of the sun as well as on the angular position of the

satellite.

The definition of a region is also more complex in the case

of reflected SWR than in the case of LWR. In the latter, a region

is defined as an area having a uniform value of We - the radiant

emittance. In the reflected SWR case, the radiant reflectance

Wr(̂ ) can not be used for defining a region since this quantity

is dependent upon the zenith angle of the sun. This angle varies

within a region due to the curvature of the earth. Nevertheless,

by selecting a particular sun zenith angle t, , the homogeneous

reflecting characteristics of a region can be represented by a uni-

form value of Wr(C ). Arbitrarily, the value £ =0 was chosen, and
o o

a region was defined as an area having a uniform value of Wr(0). Th,is

definition is very similar to that used in the LWR case. This means

that all the techniques previously applied to the case of obtaining

We are also applicable to the case of obtaining Wr(0), and an equa-

tion similar to Eq.(l-lO) is obtained for each observation, namely

Pj = Jl Fjk Wr°k U-13'

where Wro = Wr(0) is used in order to simplify the notation.

The factor F., in Eq.(l-lO) includes an angular function which
J K

depends only on the position of the satellite, while the angular

function in the F., factor of Eq.(l-13) depends on the angular
Jk

positions of the sun and the satellite. A bidirectional reflec-
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tance model and a diffuse reflection model were used in this inves-

tigation.

The results obtained in the case of Wro with the instantaneous

and best fit techniques, as well as with the stabilization and pre-

diction techniques were almost identical to those obtained in the

case of We.

Once the values of Wro were obtained, the average values of

Wr(c) for each region are calculated from the following equation.

Wrok< R-^C) cos 5 >fc (1-14)

where <Wr(?)>, is the spatial average of Wr(?) for the kth region,

Wro, is the value of Wro determined previously for the kth region, and
K.

the last factor is the average of R,(?) cos C, for the kth region.

The parameter RI (?) is given by

d-15)

where r(£) is the directional reflectance for t, solar zenith angle,

and r(0) is the value of the same function at C=0.

Since the position of the sun affects the results in the case

of Wr(c), then the average values of Wr(£) obtained with the best fit

technique are dependent on the times at which the observations are

made. For example, if the observations considered in the determina-

tion of the <Wr(C)>Is are all taken at approximately the same local

time, then the results will be representative of the conditions at

that local time. If on the other hand, the observations selected

were made at all possible daylight local times, then the results

represent an average condition for all the sun positions included.
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Some of the results obtained can be summarized in terms of ras's

of the <5We" and <SWr" errors computed for those regions found accept-

able according to the prediction technique developed. These errors

are the results of systematic, Gaussian random, and combinations

of both of these uncertainties. It is assumed in this discussion

that the correct angular distribution function is used during

data interpretation, and that the regions are fairly homogeneous

as required. It was found that the rms's of the errors in the LWR

2
case were all below 5 W/m , while those in the case of reflected

2
SWR were below 7 W/m .

Furthermore, the instantaneous technique produces acceptable

results in many cases where a region is split into two subregions

of almost equal size and having different values of We. Of course,

in these cases, one of the fundamental assumptions of the instan-

taneous technique is not met, namely, that the number of observa-

tions J must be equal to the number of regions K. This condition

is required in order to have a unique solution. It was found that

the values of We in the two subregions can differ by as much as

2 2
AWe = 10 W/m with a resulting 6We" error below 6 W/m . Moreover,

in two cases, the difference AWe between the two subregions was as

2
much as 50 W/m and the results obtained were: (a) -13.3 and 15.7

2
W/m for the sphere and plate, respectively, in one case; (b) 18.7

2
and 20.0 W/m for the sphere and plate, respectively, in the other

case. The results in the first case are still considered accept-

2
able (the acceptable limit is understood to be 15 W/m , as is explain-

ed later), while those in the second case are not. An evaluation

parameter (derived for this purpose) is used to detect unacceptable
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results in the instantaneous technique. These findings also apply

to the case of Wr(0) for SWR flux since the treatments of We and Wr(0)

are almost identical as explained later.

The results obtained with the best fit technique were all

acceptable. Even those regions exhibiting the worst results had
2

errors in the fluxes which were below 12 W/m in both cases, LWR

and SWR.

All of the results discussed above are presented in detail

in Chapter 4 for the case of LWR, and in Chapter 5 for the SWR case.

On the basis of the excellent results obtained with the two

techniques developed, it can be concluded that these techniques

represent dependable methods for obtaining the instantaneous as

well as time averaged values of Q for regions smaller than the FOV

of low spatial resolution radiometers.
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CHAPTER II. HISTORICAL BACKGROUND

The continuous evolution of. satellite technology has provided the

scientific community with more advanced satellite systems which are

larger, more reliable, have longer life expectancies, larger power

sources, as well as better data storage and telemetry systems. The

radiometers on board these satellites have also become more versatile

and sophisticated. In the meantime, the atmospheric scientist has been

endeavoring to develop improved methods of data interpretation and to

determine the effects that satellite orbits and the angular dependence

of radiation may have on this data interpretation.

This chapter presents some historical developments which are per-

tinent to the vital problem of determining the net radiation of the

E-A system. The chapter is divided into four sections: (1) satellite

radiometers, (2) data interpretation, (3) optimum satellite orbits,

(4) angular dependence of radiation.

»
Satellite radiometers

H. Wexler of the U. S. Weather Bureau (Van Allen, 1958) suggested

the first experiment intended to measure the radiation budget of the

E-A system from an artificial satellite. This experiment was one of

four chosen for the earth satellite program of the International Geophy-

sical Year (IGY).

Suomi (in collaboration with Parent) of the University of Wisconsin

proposed the use of specially coated titanium spheres (about the size

of ping pong balls) to accomplish the above task (Van Allen, 1958).

Spherical sensors were selected because of their omni-directional char-

acteristics which make the measurements independent of the orientation
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of the satellite.

The net radiation of the E-A system depends on the magnitude of

the three radiation fluxes Hs, Wr, and We in Eq.(l-2). These fluxes

can be measured by using spherical radiation sensors attached to the

radio antennas of the satellite (Suomi, 1958).

Two of the satellites of the IGY program carried instruments

designed for radiation measurements (Ruttenberg, Ed., 1959). Instrumen-

tation for observing cloud cover using an infrared detector was developed

by the U. S. Army Signal Engineering and Development Laboratories, and

carried on board Vanguard II (1959 Alpha), launched February 17, 1959.

Explorer VII (1959 Iota), launched October 13, 1959, carried six sensors

developed at the University of Wisconsin for measuring the radiation

budget of the earth.

The radiometers on Explorer VII used to measure the three flux

components of the radiation budget (Hs, Wr, and We) consisted of silver

bolometers designed as hemispherical shells (Suomi, 1961). These hemi-

spherical shells were mounted on insulating posts attached to plane

mirrors. Such a mirror- hemisphere combination is partially equivalent

to the spherical sensors originally proposed by Suomi as previously

mentioned. Two of the hemispheres were painted black to absorb equally

the three radiation fluxes mentioned above. A third hemisphere was

coated white to make it more sensitive to LWR than to SWR. The fourth

hemisphere had a gold metal coating to make it respond more to SWR than

to LWR. A black sphere was used to determine deterioration of the mirror

surfaces by comparison with the black hemispherical detectors. In addi-

tion, a small Tabor-coated hemisphere was protected with a shade from

direct sunlight and used to measure the reflected sunlight when the
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satellite's axis pointed toward the earth.

All of the radiometers described so far fall in the class known as

WFOV radiometers, or as low spatial resolution (LSR) radiometers. There

is essentially one significant difference between a spherical radiometer

and a hemispherical one mounted on a mirror. The former, regardless of

its orientation, detects radiation impinging on it from a 4ir steradians

solid angle, while the latter detects that radiation which would fall

on a sphere only from the 2ir steradians solid angle on the side of the

mirror. Hence, the hemisphere-mirror combination has the advantage of

not being contaminated by radiation emitted by the carrying spacecraft.

The above WFOV or LSR radiometers are of the utmost importance in

the discussion of the techniques developed in the present investigation

for We and Wr. These techniques were designed primarily for interpre-

ting data gathered by WFOV radiometers in order to obtain the above

fluxes. However, it should be pointed out that they are also applicable

to restricted field of view (RFOV) and NFOV radiometers.

The Explorer VII radiometers were analyzed using a theoretical

model developed by Littan (1961). The heating and cooling trends obtained

from this model agreed satisfactorily with empirical data obtained from

Explorer VII.

The TIROS I (Television and InfraRed Observation Satellite) satel-

lite launched April 1, 1960, was the first of a new generation of satel-

lites which initiated weather observation on a much larger scale, rou-

tinely collecting previously unavailable information (Hubert and Lehr,

1967). Some of the TIROS satellites carried radiometers to measure the

fluxes of LWR and SWR as discussed below.

TIROS II was launched in November, 1960. It carried two television
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cameras and two radiometers. A radiation budget measurement was con-

ducted with the low resolution radiometer (Hanel and Wark, 1961) . The

other radiometer on board TIROS II was a scanning type of medium reso-

lution. The spatial resolution of this radiometer was about a 40 mile

square area centered at the nadir point. The FOV of the LSR radiometer

previously mentioned was a circle, centered at the nadir point, having

a diameter of approximately 450 miles (Bandeen, et al., 1961). The

altitudes of TIROS II at perigee and apogee were, respectively, 385.6

and 454.5 statute miles.

As will be discussed later, data collected by TIROS II, III, IV,

and VII were used by several investigators for studying the character-

istics of the radiation fluxes emitted and reflected by the E-A system.

The first Nimbus satellite, launched on August 28, 1964, functioned

successfully for 27 days. At this time, a failure in the mechanism

that rotated its solar paddles terminated its operation (Hubert and

Lehr, 1967). This satellite had on board an advanced vidicon camera

system (AVCS), an automatic picture transmission (APT) camera, and a

high resolution infrared radiometer (HRIR). The FOV of this radiometer

is about six miles.

The Nimbus satellite's camera and radiation detectors always are

directed toward the earth as the satellite travels in a retrograde

orbit of about 100° inclination (Hubert and Lehr, 1967).

Nimbus II, launched May 15, 1966, provided almost continuous

global observations of meteorological phenomena (Nordberg, et al., 1966).

Its almost polar sun synchronous orbit had an inclination of 100.3°.

This satellite had a HRIR with an angular FOV of 7.8 x 7.8 milliradians.

It also carried a Medium Resolution Infrared Radiometer (MRIR) with an
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angular FOV of 50 x 50 milliradians. This is equivalent to an area of

2
approximately 60 x 60 km at the satellite subpoint.

The Nimbus II satellite provided for the first time data on the

emitted LWR and reflected SWR by the polar regions (Raschke, et al.,

1967). Some of the analysis results of the data gathered by this satel-

lite will be discussed later.

The Nimbus III satellite, launched April 14, 1969, included a five-

channel MRIR experiment which consisted of a cross-track scanning unit

of the type carried on Nimbus II. For the first time, it became pos-

sible to make estimates of the annual global radiation budget on the

basis of measurements by scanning radiometers (Raschke, et al., 1973).

Nimbus III also carried the first Satellite Infrared Spectrometer

(SIRS-A) with a FOV of 200-km square in order to measure the spectra

of the radiances in seven spectral channels (Winston, et al., 1972).

The ESSA III, V, VII, and IX satellites carried WFOV flat plate

radiometers, as well as RFOV conical shaped radiometers. One sensor

of each type was coated black to absorb radiation of all wavelengths,

and one of each type was coated white to absorb preferentially the LWR.

The Earth Radiation Budget (ERB) experiment on board Nimbus 6

consists of a set of 22 optical channel instruments (Smith, et al.,

1975). Ten channels detect direct solar SWR; four WFOV channels look

at the earth. There are eight NFOV channels that measure radiation in

different spectral intervals. Four of these channels yield the angular

distribution of the LWR emitted by the E-A system, and four measure the

solar SWR reflected by the E-A system. The FOV of each scanning chan-

nel is approximately 500-km square (Jacobowitz, et al., 1975).
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Data interpretation

Interpretation of the data collected by satellite radiometers in

order to determine the fluxes emitted and reflected by the E-A system

represents one of the most challenging problems in satellite radiometry.

The following descriptions of methods investigated and/or used to accom-

plish this data interpretation illustrate the considerable effort and

time invested by several investigators in this field in order to develop

improved techniques.

One of the earliest techniques used for computing We and Wr from

WFOV radiometer data is based on the assumption that these two radia-

tion fields are isotropic and homogeneous throughout the FOV (Suomi,

1958; House, 1965; Suomi, et al., 1967; Vender Haar, 1968; and House,

Sweet, et al., 1973). This technique has been successfully applied to

the study of the global radiation budget and seasonal variations across

latitudinal zones. However, the assumptions made will lead to inaccu-

rate values of Q for the radiation budget of regions for the following

reasons: (a) the values of We and Wr of a given region are determined

by including contributions from neighboring regions, (b) the angular

distributions of N and Nr are neglected. Nevertheless, the technique

represents, perhaps, the simplest way of interpreting satellite radio-

meter data. Some of the early applications of this technique are men-

tioned below.

TIROS IV carried a radiation balance experiment of the University

of Wisconsin design consisting of two WFOV radiometers (House, 1965).

The surface of one sensor was black and the other was anodized aluminum

to make it "white." House used the black sensor to show that it is

possible to determine the radiation budget of the E-A system by using
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data from only the black radiometer.

Vender Haar (1968) described the energy budget of the E-A system

from data collected for more than 40 months by sensors carried on board

Explorer VII, TIROS IV, TIROS VII, and experimental satellites. These

sensors were WFOV flat plate and hemispherical radiometers and medium

resolution scanning radiometers. Vender Haar generated maps of the

components of the radiation budget which exhibit features of the atmos-

pheric circulation system persistent in each season and hence, should

be incorporated into any numerical models intended to simulate atmos-

pheric conditions.

L. Holloway (1957) demonstrated that there would be unavoidable

smoothing of data collected by WFOV satellite radiometers. He discussed

methods for desmoothing, that is, reversing part of the smoothing

effects and hence restoring some of the spatial fluctuations that had

been filtered out of the data. Further investigations in desmoothing

of satellite radiometer data were carried out by F. B. House (1970,

1972).

Theoretical estimates of the effects introduced when the aniso-

tropy of the radiation fields are taken into consideration was covered

in detail by Bignell (1961). He showed that the anisotropy factor C

ranges between 0.98 and 1.02 for LWR, and between 0.9 and 1.1 for SWR.

This factor is equal to one for isotropic radiation.

Two techniques were developed for obtaining the radiation fluxes

We and Wr (Pina and House, 1975a). In both of these techniques, the

E-A system is divided into regions which have homogeneous emitting and

reflecting characteristics. One of these techniques is termed instan-

taneous for it yields the values that We and Wr have at the instant the
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satellite makes a pass over the regions observed. The number of obser-

vations , which are made during a single satellite pass, matches the

number of regions under study. The other technique is termed the best

fit. In this technique, the number of observations (taken during several

passes of the satellite) is much larger than the number of regions ob-

served. An approximate solution is obtained by the method of least

squares. A preliminary application of the instantaneous technique to

a hypothetical flat E-A system yielded excellent results.

Campbell, et al. (1975) assumed an axisymmetric radiation field

and divided the E-A system into zonal or latitudinal bands. The resul-

ting system of linear simultaneous equations was solved using matrix

inversion techniques.

The above zonal problem was approached by Smith and Green (1975a),

that is, the radiation field was considered to depend on latitude but

not on longitude. In addition, it was assumed that all measurements

are taken at a constant altitude, that the angular characteristics

of the radiation are a function of the zenith angle only (not of the

azimuthal angle), and that this function is the same for the entire

globe. Based on these assumptions, it was determined that the eigen-

functions of the measurement operator are Legendre polynomials which

form a complete set. Hence, the power measurement and the radiation

flux can be expanded in terms of these polynomials in order to obtain

the desired results. It was concluded by Smith and Green that the

assumptions made are reasonable for emitted LWR but not for reflected

SWR.

Parameter estimation techniques were employed by Smith, et al.

(1975b) to find a solution to the problem of determining the fluxes
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We and Wr. Estimates of the zonal values of these fluxes were obtained

by use of the Gauss-Markov theorem. It was established that the spatial

resolution possible with WFOV data is limited due to limitations in

the accuracy of the results imposed by the smallest eigenvalue of the

integral operator. It was concluded that with some additional work,

the estimation technique formulated for the zonal case could be exten-

ded to the regional case.

Pina and House (1975b) applied the instantaneous technique to a

spherical E-A system in order to obtain the instantaneous values of

We and Wr. The best fit technique was also applied to this system in

order to calculate time-averaged values of We. These two techniques

had been partially developed previously and successfully applied to a

flat E-A system (Pina and House, 1975a). In all instances, the regional

values of We and Wr obtained were satisfactory.

It should be pointed out that both of these techniques are inde-

pendent of the shape of the orbit, i.e., circular or elliptical orbits

are treated in exactly the same manner. However the altitude of the

satellite must be known at the time of each measurement.

Smith and Green (1976a) treated the regional case of determining

the E-A radiation fluxes. Some of the assumptions on which their inves-

tigation was based are that the angular dependence of the radiances

measured is a function of the zenith angle of the radiometer making the

observation, and that the satellite orbit is circular. One important

conclusion reached in this investigation is that the accuracy of the

results is dependent upon the resolution. A similar analysis which

included data gathered with RFOV radiometers was also conducted (Smith

and Green, 1976b).
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Optimum satellite orbits

A fundamental question regarding the energy of the E-A system is

the following (Suomi, 1961). Does the E-A system possess a self-regu-

lating mechanism which restores the equilibrium of the global radiation

budget whenever departures from this state occur? The answer to this

question could not be provided, for instance, by the experiment on

board Explorer VII, since observations of the whole earth were not

obtained and, according to Suomi, the orbit was not adequate for that

purpose. Then, the following question is pertinent. What is the opti-

mum orbit required in order to sample all areas of the E-A system

equally? That is, what orbit is required for all areas to have equal

sampling weights?

House (1961) studied the above sampling problem by assuming WFOV

spherical radiometers of high thermal capacity. He determined that a

combination of two orbits of specific orbital parameters would fulfill

the equal weighting requirement for determining the fluctuations in the

radiation balance of the entire E-A system.

Harrison, et al., (1976) analyzed satellite systems with different

orbital altitudes and inclinations and with radiometers of different

fields of view. Flight simulations of these satellites were conducted

over an E-A system radiation model. It was determined that several

satellites having orbits of varying degrees of inclination are required

to obtain adequate coverage of the E-A system. This is necessary in

order to obtain regional, zonal, and global monthly mean flux values

with the desired degree of accuracy.
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Angular dependence of radiation

The angular distribution of the E-A system was investigated during

a geophysical rocket flight on August 27, 1958 (Liventsov, et al., 1066).

The rocket probe reached an altitude of about 450 km. The angular and

altitude dependence of the earth's radiation was determined without

difficulty. It was found that the intensity of the radiation diminishes

toward the earth's limb.

Data from TIROS III over the Sahara desert was used to investigate

limb darkening effects (Larsen, et al., 1963). The limb darkening values

measured were found to be significant and to exceed the theoretical

values obtained by using model atmospheres. This fact provided one of

the motivations to include in the present investigation a study of how

the results obtained are affected when an observed radiation field is

erroneously assumed to be isotropic during data interpretation.

The data from TIROS IV was used to study the angular variation of

solar radiation that was reflected from low stratiform clouds. The

anisotropy of the reflected radiation was expressed in terms of two

parameters: (a) the specular angle to , (b) the backscattering angle ij; .

It was concluded that the albedo is dependent on these two parameters,

especially the specular angle.

The anisotropy of the SWR reflected from clouds was also investi-

gated by Ruff, et al., (1967). It was determined that the anisotropy

is more pronounced for large solar zenith angles. One of the main find-

ings was the high intensity values of the reflected radiation for azi-

muthal angles of about 180° from the sun and for large zenith angles.

The last two investigations represented an additional incentive to

include in the present research a study of the effects that the erro-
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neous choice of a diffuse reflection model during data interpretation

has upon the results.

This chapter has outlined some of the historical developments of

satellite radiometry that are important to the subject of the present

investigation, namely, the determination of We and Wr for regions smaller

than the FOV of LSR radiometers.
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CHAPTER III. BASIC CONCEPTS OF SATELLITE RADIOMETRY

This chapter introduces some of the basic concepts, equations,

and definitions of satellite radiometry which are pertinent to the

development of the techniques presented in the following chapters.

Radiance (emitted) N(6,i();\ ,(t>,t). This is the energy emitted per unit

normal area, per unit time, per unit solid angle, at time t by an

elemental area dA centered at longitude X, latitude <(>, in the direc-

tion given by the zenith angle 6 and the azimuthal angle ij> (refer to

Figure 3-1). To simplify the notation, X and <|> are omitted so as to

write only N(9,̂ ,t). These angles will also be omitted in the fol-
2

lowing definitions. The units of N are W/(m - sr).

Radiance (reflected) Nr(6,ip;C,t) . The definition of this quantity

is similar to that for N except that Nr depends also on the zenith

2
angle of the sun. The units of Nr are W/(m - sr).

Flux. This term describes the radiation crossing a real or imaginary

surface per unit area, per unit time from all directions in a hemi-

2
sphere. The units of flux are W/m .

Radiant emittance We(t). This is the instantaneous flux emitted by an

elemental area dA(X,<}>) into 2ir steradians solid angle. The units
2

of We are W/m . N and We are related by the following expression.

2ir ir/2
We(t) = / dtji / N(6,i(i,t) sin 6 cos 6 de (3-1)

o o

Radiant reflectance Wr(5,t). This quantity is the flux of solar

radiation reflected by an elemental area dA. This definition is
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Figure 3-1. Satellite Radiometer Observation of an Elemental Area
Centered at Longitude A and Latitude (j>.
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similar to that of We except for the additional dependence on the

2
sun's zenith angle £. The units of Wr are W/m . Nr and Wr are

related as follows:

Wr(?,t) = /2" dip J71/2 Nr(0,ip;C,t) sin Q cos 9 d6 (3-2)

Irradiance H(t) . This is the instantaneous flux impinging on a

surface from all directions within a 2ir steradians solid angle.

Hence, We, Wr and H are similar quantities and differ only in the

fact that they refer to emitted, reflected, and incident radiation.

Solar irradiance Hs(g,t). This quantity depends upon the solar

zenith angle £, and is given by

Hs(£,t) = HQ cos

where H is the solar irradiance for zero solar zenith angle.

Shape or configuration factor F. This factor represents that

fraction of We (or Wr) originating at dA which is intercepted by.a

radiometer having a characteristic area A. F is defined by the

following expression (Stevenson and Grafton, 1961) which relates

F, A, We (or Wr), and the total radiant power P1 intercepted by

the radiometer

P' = F A We (3~4>

2
The characteristic area has the same value A = ira for both sphere

and plate radiometers, where a is the radius of either radiometer.
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Dividing Eq.(3-4) through by A, one obtains the radiant power,

P, per unit characteristic area of the radiometer.

P = F We (3-5)

t
LDF - Limb darkening function f(6)_. This quantity gives the

angular dependence of N(9,if»,t) when the dependence on the

azimuthal angle ^ is assumed negligible. Then, letting the

2
radiance in the zenith direction N (t) carry the time depend-

ence, one has

|»,t) = N(9,t) = NZ(t) f(9) (3-6)

Substituting this expression in Eq. (3-1) one obtains

We(t) = NZ(t) J2lT d<Ji /W/2 f(6) sin 0 cos 6 d6 (3-7)
o o

Defining

results in

i(f) = Ĵ '2 f(e) sin e cos e de (3-8)

We(t) = 2ir NZ(t) I(f) (3-9)

Directional reflectance r(£,t). This is the instantaneous value

of the ratio given by

a,t) (3-10)

Albedo A(£,t) . The instantaneous albedo is here defined to be

identical to the directional reflectance r(£,t) defined above.

Bidirectional reflectance p(6,^;c,t). The instantaneous value of

this quantity depends upon £, the zenith angle of the sun, as well

as on the zenith angle 9 and the azimuthal angle fy of the radio-
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meter. It is defined by the following ratio

P(e,*;5,t) - Nr(9,ip;c,t)/Hs(c,t) (3-11)

Nr and p are independent of the angles 6 and ip for the case

of diffuse reflection and Eq.(3-ll) becomes

pdlf(C,t) = Nrdif(C,t)/Hs(£,t) (3-12)

Radiometer power input P ' . The LWR power intecepted by a flat

plate satellite radiometer positioned at an arbitrary point in

space is given by

P' - A /2l1 dip /°'IliaX N' (0,1(1 ')sin a cos a da (3-13)LWK o o

where A is the area of the plate and N'(a,ipf) is the radiance

expressed in terms of the nadir angle a and the azimuthal angle tp ' .

The maximum value a of the nadir angle depends on the FOV ofmax

the radiometer, (wide or restricted) and on the altitude of the

satellite. Eq.(3-13) can be rewritten as,

P' /A - / (ty /max N' (a,ip')sin a cos a da (3-14)
LWK o 0

Similarly, the reflected SWR power impinging on the satellite

can be expressed as

Nr(a,V;C)sin a cos a da (3-15)

where Nr(a,ip';C) is the reflected radiance expressed in terms of a,

ip' and £. Notice that the t has been left out of both equations

and that PQTTP depends on the solar zenith angle £• The cos a factor
O WX\

in Eqs.(3-l4) and (3-15) is equal to one for the case of a spherical

radiometer.
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Isotropic emission. In this case, the radiance N is independent

of angle and Eq.(3-l) becomes

i

We(t) = NiS°(t) / <ty / s i n 9 cos 6 d6 (3-16)
o o

Thus,

We(t) = IT N is°(t).

Also, from Eq.(3-8)

fi0" = 1.0 and I1S° = 0.5 (3-17)

In the above, N S°, f1S°, and I represent the isotropic values

acquired by the quantities N, f, and I, respectively.

Diffuse reflection. The reflected radiance Nr is not dependent

on(6,ijj), the direction of the observation; however, it still is

dependent upon the sun's zenith angle £. Hence, Eq.(3-2) becomes

Wr(C,t) = Nrif(C,t) f2'" dty f*/2 sin 9 cos 9 d9 (3-18)
o o

Wr(£,t) = TrNrdlf (̂ ,t) (3-19)

where Nr1 (C,t) is the diffuse reflected radiance.

R, (£) and R?(9,iJ),5). These two parameters represent time averages

of the following ratios .

= r(O/r(0) = r(?,t)/r(0,t) O-20)

,c) = r(e,t)/irp(6,4i;5,t)

where r(0) = r(C=0). Mean curves for these two quantities have

been plotted by Raschke, et.al., (1973) and will be used when

applying the bidirectional reflectance model to determinations of

Wr.
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The time average of Wr is from Eq.(3-10)

Wr(O = r(?) Hs(?) .

The time average of Nr for diffuse reflection is from

Eq.(3-12)

Nrdi*(£) = pdif(C) Hs(c).

These time averages are related by Eq.(3-19), that is

Wr(c)

It follows then that

and from Eq.(3-21)

r(C)/irpdif<5)-1.0 . (3-22)

Angle relations. Figure 3-2 serves to define the following angles

which are used when determining We: 9, the zenith angle of the

satellite as seen from the observed area dA; a, the nadir angle of

dA as seen from the satellite; y> the geocentric angle between the

satellite and dA. This figure does not show the solar zenith angle

£; however, this angle appears in Figure 3-1. Figure 3-2 includes R,

the radius of the E-A system; r, the distance from dA to the satel-

lite; and H, the altitude of the satellite above the E-A's surface.

The following are important relationships among the quantities

defined above and which are used in the following chapters.

6 = a + Y 0-23)

R sin 9 = (R+H) sin a (3-24)

R sin Y = r sin a (3-25)

r2 = R2 + (R+H)2 - 2R(R+H) cos Y (3-26)
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Rsin /= r sin a

a

Figure 3-2. Pictorial Definition of Some of the Geometrical Parameters
Used in Measuring We and Wr by a WFOV Satellite Radiometer.
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CHAPTER IV. TECHNIQUES FOR OBTAINING THE RADIANT EMITTANCE

The instantaneous and best fit techniques for obtaining We are

treated in detail in this chapter. The techniques are developed for

the terrestrial emitted LWR flux first because this case is somewhat

simpler than the reflected solar SWR.

Instantaneous technique

The values of We calculated by this technique are the values that

the radiant emittances of the regions observed have during a single

pass of the satellite. Because the meausurements are taken in a short

time interval, the technique is called instantaneous and will be

referred to as such in the subsequent discussion.

In this technique, the number of observations matches the number

of unknowns (that is, the number of regions observed). Hence, if a

solution exists, it is unique.

A. Technique development

The following development is for a horizontal flat plate satel-

lite radiometer of unit area. The development also applies to the

case of a spherical radiometer of unit area, except that the factor

cos a is equated to one in all the equations containing it.

The satellite radiometer is assumed to make J=K observations of K

regions as depicted in Figure (4-1). The groups of dissimilar arrows

shown in this figure portray the fact that the magnitude and angular

distribution of the radiance may vary from region to region at the

surface of the E-A system. The power intercepted by the radiometer

during the jth observation is given by Eq.(1-6) introduced previously
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Figure 4-1. Observation of the LWR Emitted by the Several Regions within
the FOV of a Low Spatial Resolution Radiometer.
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and rewritten here in a slightly different form

K
P. = £ / d\|>' / N'(a,̂ ',t) sin a cos a da (4-1)
J k=1 *k \

where P. is the LWR power intercepted by the radiometer during the

jth observation, a and i|>' are the nadir and azimuthal angles of the

elemental area observed from the satellite, t is the time of the

observation, and N1 is the radiance when expressed in terms of a and

^'. a and i/;' indicate that the pertinent lower and upper limits of
K. K.

integration of each of the regions within the FOV must be included in

the expression. The sum is taken over K which is the total number of

regions under study. However, those regions that do not appear within

the FOV of a given observation will not be included in the correspond-

ing sum.

Consider an elemental area dA within any of the regions observed.

The radiance N and the radiant emittance We of dA are related by the

following expression.

2-n
<ty

o
We(t) = /lT dip f" N(9,i|;,t) sin 6 cos 9 d6 (4-2)

where 9 and if; are the zenith and azimuthal angles of the satellite as

seen from dA, and N is the radiance expressed in terms 'of 9 and i|>.

The problem that must be solved is stated as follows. By perform-

ing several power measurements P., use Eqs.(4-l) and (4-2) to obtain

the We values of the regions observed.

The instantaneous technique developed to solve the above problem

is described as follows.
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1. The E-A system's surface is divided into 2060 equal elemental areas

A A in order to perform numerically the integrations in Eq.(4-l).

A computer program was generated to do this division, rank the

elements into a one-dimensional array, and specify the longitudes

and latitudes of the boundaries and the centroids of all the AA's.

These elemental areas remain fixed on the surface of the E-A sys-

tem as the satellite moves, regardless of the type of satellite

orbit (circular or elliptical). Two other schemes were evaluated

to perform the numerical integrations but their application was

found too cumbersome. Refer to Appendix A for a detailed descrip-

tion of the schemes considered, as well as the procedure followed

to accomplish the division into AA's according to the technique

selected.

2. The surface of the E-A system is divided into regions having homo-

geneous emitting and reflecting characteristics which are distinct

from those of adjacent regions. This division can be made on the

basis of topographic differences, and/or on the basis of the results

obtained from previous satellite observations. The regions are

defined in terms of the elemental areas A A. Each region is made

up of an integral number of these AA's.

3. The dependence of N on the azimuthal angle ty is assumed negligible

and hence can be represented as follows (Raschke, et al., 1973).

N(6,*,t) = N(8,t) = NZ(t) f(6) (4-3)

2
where N (t) is the radiance in the zenith direction which carries

the time dependence of N, and f(0) is the limb darkening function

(LDF) which gives the angular distribution of N. Eq.(4-3) serves
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to define more precisely the concept of a region. The value of

2
N (t) may change with time and varies among adjacent regions,

but it is uniform throughout a given region. The LDF f(9) may

have a different form in each adjacent region. This form is

assumed to be uniform throughout a region; however, it is also

possible to consider a region as having more than one LDF.

4. The relationship between N and We can now be greatly simplified

by substituting Eq.(4-3) into Eq.(4-2) to obtain

We(t) = 2ir NZ(t) ̂  f(8) sin 6 cos Q dQ (4-4)
o

It is convenient to define the integral in this expression as

follows

I(f) = /U/2 f(6) sin 6 cos 6 d9 (4-5)
o

and rewrite Eq.(4-4) as

We(t) = 2ir NZ(t) I(f) (4-6)

from which one has

5. An expression for the power which is contributed by an elemental

area A A to a radiometer measurement is derived as follows. Let

A A , represent the ith elemental area of the kth region that is

within the FOV of the jth observation. A P.., denotes the power

increment that this elemental area contributes to the jth observa-

tion. Then one writes

A cos a.
AP... =N... AA... cos9... ——^ ii=- (4-8)ijk ijk ijk ijk 2
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where the subscripts ijk have the same meaning given above for

A A. ... N. ., is the radiance at AA in the direction of the
i J fc -1- JK 1j K

radiometer, 6 , is the zenith angle of the radiometer at A A..,,
ij fc ij K

a... is the nadir angle of A A , as seen from the satellite, and
i j k ij K.

r... is the distance between A A. ., and the radiometer. A , the
i j k i j K s

characteristic area of the radiometer, is assumed to be unity as

mentioned previously. Since all the elemental areas are equal,

it is unnecessary to affix subscripts to A A. Hence, Eq.(4-8)

becomes

AT. XT A A /COS 8 COS OU // ^xAP. .. = N. ., A Aijk "ijk "" v r2

6. The power which a region contributes to an observation is derived

from Eq.(4-9), as follows. The value of N.., in this equation is

the same as N(0,iJ>,t) given by Eq.(4-3) in terms of the zenith

radiance NZ and the LDF f(0). Hence, substituting Eq.(4-3) into

Eq.(4-9) one obtains

2
where only the k subscript is affixed to N in order to show that

2

the value of N, is uniform throughout the kth region. The subscripts

i, j are unnecessary since the value of N, is independent of both

the elemental area observed and the position of the observation.

From Eq.(4-7) one can write

Wek
Nv • T-FTTT (Ak 2TrI(f, )

K.

which when substituted into Eq.(4-10) yields
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AP - AA .f(6) cos 6 cos ONAPijk ~ 2*1 ( f _ ) ( 2 }ijk Wek
EC r

From Eq.(3-5), which defines the shape factor, A P.., can be

written as

By comparing Eqs.(4-12) and (4-13) one obtains

_ A A ,f (6) cos 9 cos cu ,,
ijk ~ 2irl(f. ) *• 2 'ijk *•

k r .

The power increments A P contributed by the I elemental areas of the

kth region which appear within the FOV of the jth observation are

added up and Eq.(4-13) is then used to obtain

I I
P., = E AP.., = We, E F... = F., We. (4-15)
jk 1=1 ijk k 1=1 ijk jk k

where P., is the power contributed by the kth region to the jth

observation; F., is the sum of the shape factors F.., of the kth

region and jth observation.

7. An expression for the total power P. contributed to the jth obser-

vation by all the regions within the FOV of the radiometer is

given by Eq.(4-l). Also, by adding the p.k's of all the K regions

under study as given by Eq.(4-15) one obtains a different expression

for P.
J K

P. = E F., We. (4-16)
J k=l Jk k

Clearly, if a particular region (say, region £) does not appear

within the FOV of the jth observation, then the corresponding
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configuration factor F is zero and will not appear in Eq.(4-16).
J^

From a comparison of Eqs.(4-l) and (4-16) one sees that the double

integral appearing in Eq.(4-l) is equivalent to the simple pro-

duct F We in Eq.(4-16). The expression for F is easily
JK K. JK

obtained from Eqs.(4-14) and (4-15), namely

F^'
A A ,f(9) cos 9 cos a

ijk (4-17)

8. Since there are K regions observed (i.e., K unknown values of We),
/

then the number J of observations (i.e., J equations of the type of

Eq.(4-16)) must be equal to K. The J equations can then be written

as follows.

(4-18a)

These equations can be represented in matrix form as

F F F
11 12 IK

F F F
21 22 •** 2K

F F F
Jl J2 JK

We

(4-18b)
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Symbolically, these matrices can be written as

F{We} = (P> (4-18c)

where F is the JxJ (or KxK since J=K) configuration factor

matrix. {We} and {P} are the column matrices formed by the We

values of the K regions and the P powers of the J observations,

respectively.

9. The inverse matrix F is obtained from the configuration factor

matrix F by the use of available matrix inversion subroutines.

It is then tested by computing the products FF to ascertain

that the identity matrix is obtained. By operating with the

inverse matrix F on the column matrix {P} which is made up of

the J power values measured, the column matrix {We'} is obtained,

that is

F'1 {P} = {We'} (4-19)

If the We1 values of the column matrix {We1} obtained by using

Eq.(4-19) are the same as, or very close to, the actual We values

of the K regions, the problem has been solved by using the proce-

dure outlined above. When the values of P were exact (that is, did

not contain observational uncertainties), the values of We1 were

found to agree with the actual We values to at least six signifi-

cant decimals. This indicates that the inversion computations do

not introduce significant errors (e.g., rounding errors). In this

case then, one can write

F'1 {P} = {We} (4-20)
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B. Observational errors

Serious difficulties arise when the power measurements include

Gaussian random observational errors 6P in addition to the exact power

values P. In this case, the We' values obtained for the regions

include, in addition to the actual We values, errors 6We which in

general are found unacceptable.* In this case, using {P'}={P+6P}

and {We'} = {We + 6We}, one can write the following expression

F~{P'} = F~{P+6P} - {We1} = {We + 6We} (4-21)

Subtracting Eq.(4-20) from Eq.(4-21), one obtains

F""1 {6P}= {6We} (4-22)

It is apparent from Eq.(4-22) that if the 6We errors are much larger

than the 6P errors, the inverse matrix F produces large magnifica-

tion of the 6P errors. An inverse matrix F that magnifies signifi-

cantly the random power errors is here defined to be unstable. The

original matrix F is termed an ill-conditioned matrix on the basis of

similar definitions made by Faddeev and Faddeeva (1963) „ If F is

stable, F is known as a well-conditioned matrix.

If the power errors 6P are systematic, no difficulties are encountered,

The inverse matrix F does not magnify this type of error according

to Eq.(4-22). However, if the errors 6P are combinations of systematic

and Gaussian random errors, F magnifies them just as in the case of

pure Gaussian random errors.

*Acceptability criteria are based on the recommendations made at the 1975
conference of radiation budget investigators in Chicago. The desired and
useful accuracy requirements recommended are ± 3 W/m^ and ± 15 W/m^
respectively.
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The instability of the matrix F results from observing only

small portions of some of the regions as will be shown. Because of

this instability of F , the instantaneous technique (as outlined in

the above nine steps) is inadequate for those cases where small por-

tions of regions are observed. Unless some sort of stabilization

technique is found to stabilize F , the instantaneous technique is

of no practical use as described so far. When this difficult situa-

tion in the development of the instantaneous technique was encountered,

a literature search revealed that other investigators had met equa-

tions with similar instability problems (Phillips, 1962; Twomey, 1963,

1965, 1966; Fleming and Wark, 1965; and Wark and Fleming, 1966).

C. Matrix stabilization

After considerable effort, a technique was found for stabilizing

the inverse of the configuration factor matrix. Essentially, this

technique consists in removing any non-diagonal matrix element F
Jk

(jth observation, kth region) whose value is below a pre-determined

test value and adding it to the diagonal element F.. in the same row

as the element F., . In doing this, the sum of the elements in the row
Jk

in question (the jth row) is preserved. This sum, I,., is equal to

the configuration factor of the total area within the FOV of the

radiometer.

It became apparent that the above matrix parameter £. is a quantity

that must be preserved. When non-diagonal elements F., (whose values
Jk

were below the pre-determined test value mentioned above) were removed

but were not added to the diagonal elements F.. in the same rows as the

elements F., , the sums (E.) of the elements of the pertinent rows were,
Jk j
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therefore, slightly changed. The resulting inverse matrix was even

more unstable than the initial one.

After applying the above stabilizing scheme to the original con-

figuration factor matrix F, the new matrix was found to be well-

conditioned. The symbol F will be used to denote this new matrix
wo

and F its inverse. We" will represent the radiant emittance values
we

obtained with the new stabilized inverse matrix F . These new
we

radiant emittance values and the errors they contain will be denoted

by We and 6We', respectively, if the powers used are exact (i.e., no

uncertainties); and by We" and <5We", respectively, if the power values

contain errors . That is

Fwc {P} = { W e } = {We + 6We'} (4-23)

F"1 {P1} = F"1 {P + 6P} = {We11} = {We + 6We"} (4-24)we we

As shown later, all the new We" values exhibit a significant im-

provement over their corresponding We1 values obtained previously with

the unstable matrix. Only in those cases where very small portions of

the regions are observed, are their corresponding 6We"'s found unaccept-

able. However, as will be shown,acceptable results for these regions

are obtained from other satellite radiometer observations which include

within their FOV's sufficiently large portions of the regions under dis-

cussion.

A different way of demonstrating the striking difference between

the original ill-conditioned matrix F and the new well-conditioned matrix

F is by comparison of their condition numbers. The condition number H
we J r

used here is defined by Faddeev and Faddeeva (1963) as follows.
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H = /yl

where y-, and y~ are the largest and the smallest eigenvalues of the

T T
matrix F F , where F is the transpose of F. The condition number

TH of the new matrix F F is much smaller than H,the originalwe we we

condition number, which indicates that the new matrix F has been' we

rendered well-conditioned (Cohen, et al., 1973).

It should be noted that since the above stabilization scheme

changes the structure of the configuration factor matrix, the

resulting matrix is not a true representation of the physical situa-

tion observed. Furthermore, this structural change of the matrix

also causes a new type of error 6We' to be included in the results,

that is, in the values of We" obtained with the new stabilized

matrix F . It will now be shown that neither of the above items
we

introduces a major difficulty.

The removal of a very small matrix element F., from its jk posi-

tion and addition of it to the jj diagonal element is equivalent to

seeing a little less area of the kth region at the limb, and seeing

a little more of the jth area also at the limb during the jth obser-

vation. Since the jth and kth regions have different We values, the

above modification is also equivalent to a change in the power meas-

surement of the jth observation by an amount A P. given by

AP. = F.. We. - F., We. = F.. (We.-We, ) (4-25)
3 jk J jk k jk j k

The test value used as a criterion for deciding if a matrix ele-

ment must be removed is 0.016 for the plate radiometer and 0.032 for

the sphere. Assuming that the difference between the We values of

2
the jth and kth regions is as high as 100 W/m , the value of A P. for

J
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the plate could be as high as

A P. = (0.016)(100) =1.6 W/m2 (4-26)

which is a negligible error since it only represents about nine

tenths of a percent of the average power (about 177 W) measured by

a plate at an 800 km altitude. The value of A P. given by Eq.(4-26)

is the difference between the actual power measurement and the power

that would be measured if the conditions portrayed by the new matrix

F actually existed. Hence, AP. represents the power error intro-

duced by performing the matrix element translation described above.

However, the new errors 6We' that are introduced in the results

by the stabilized matrix are the main concern. An estimate of these

new errors can be obtained by operating with the new stabilized matrix

F~ on the column matrix {P} made up of error-free power values, as

shown in Eq.(4-23). Regions whose results are predicted acceptable,

2
as described below, had 6We' errors lower than 1.0 W/m . The worst

6We' errors are found only in those cases where very small sections

of the pertinent regions are observed, as it is in the case of the

6We" errors previously mentioned. As indicated before, the results

for these cases become acceptable when larger portions of the corre-

sponding regions are observed as will be shown later.

D. Prediction technique

It is of the utmost importance to know which of the We values

obtained with the instantaneous technique will be acceptable and

which will be unreliable. It is recognized that the best way to

insure that the results obtained are accurate is by performing simul-

taneous independent observations from other spacecraft, aircraft, or
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balloons. However, it would be impractical to perform this type of

verification for every measurement. A natural question to ask is:

can the measurements themselves be used to predict the reliability

of the final data?

The answer to the above question is yes. After investigation of

several schemes for predicting the quality of the data to be obtained,

a simple technique was found which yielded excellent results. This

technique consists in evaluating the following prediction parameter

(PP) for each of the regions.

PP = (Sfc Fjj/Ej) x 1000 (4-27)

where S, is the sum of the elements in the kth column (kth region),

F,. is the diagonal element of the jth column and jth row (jth obser-

vation), and E. is the sum of the elements in the jth row. This last

sum is the configuration factor of the whole FOV of the jth observa-

tion.

A realistic and justifiable criterion was found for determining

a cut-off value of PP which may be applied to any region. If the PP

of a given region is below this value, the corresponding We is unreli-

able because of insufficient information. If the PP is above this

value, We is considered acceptable. The cut-off value of PP was

fixed at 150 for a spherical radiometer, and at 100 for a horizontal

plate radiometer. Justification for establishing these particular

cut-off values will be presented later.

Once the above prediction scheme is applied, only the results of-

those regions whose PP values meet the above test need be considered.
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Regions whose PP values fall below the required cut-off values are

no longer taken into account in the evaluation of the data gathered

during the satellite pass under consideration. Future satellite

passes which observe larger portions of these regions are necessary

for making accurate determinations of their We values.

It is to be noted that one of the important characteristics of

the instantaneous technique is that even though the We values obtained

for some of the regions are considered totally unreliable, these

results do not affect those We values which are predicted acceptable.

In other words, the instability of the matrix resulting from observing

small sections of some of the regions produces unacceptable errors only

for these regions. The errors generated for the remaining regions fall

within acceptable limits. Without this characteristic, the instantaneous

technique would be totally unreliable, or at least impractical. It

would perhaps be impossible to predict to what extent the effects of

"bad" regions would influence the results obtained for the "good"

regions.

In several instances it has been pointed out that the instability

of the configuration factor matrix is the result of not observing suffi-

ciently large portions of all the regions investigated. That is, some

of the S, values of the configuration factor matrix are too small while

others are too large. As will be shown, when the satellite positions

are so chosen that sufficiently large portions of all regions are ob-

served, the instability of the matrix vanishes. When this is the case,

there is no need for stabilizing the inverse of the original matrix,

nor is there need for any prediction scheme since all the We values are
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found acceptable.

From the above, one can conclude that it was imperative to develop

the stabilization and prediction techniques only because not all the

geometric configurations of satellite orbits and regions observed

guarantee sufficient coverage of the regions under study.

E. Angular distribution function

One would expect errors in the results if the function used to

describe the angular distribution of the radiation field during data

interpretation does not adequately represent the actual angular dis-

tribution. Then one questions how significant these errors are, or

how they could be estimated.

Several LDF's which describe the angular distribution of the LWR

emitted by areas with different topographical characteristics have

been studied (Raschke, et al., 1973). One of the two LDF curves shown

for the desert samples by Raschke, et al. exhibits the largest devi-

ations for large zenith angles from the value of unity which all LDF's

have for zero zenith angle. A hypothetical LDF was generated based on

the above LDF for a desert region by extrapolating this curve to a

zenith angle of ninety degrees. This LDF then represents the most

notable departure from the isotropic case. These two extreme cases

(LDF and isotropic) were used to make estimates of the errors intro-

duced when using an incorrect function to describe the angular distri-

bution of a LWR field

The following procedure was implemented to estimate the effects

caused by use of an erroneous angular function. A LWR field was

assumed to be described by the LDF generated for this purpose and the
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power measurements resulting from a set of simulated satellite obser-

vations were calculated. These power measurements were then modified

with Gaussian, systematic, and combinations of Gaussian and systematic

uncertainties. During the interpretation stage of these modified

power measurements, the LWR field was again assumed described by the

LDF originally used to calculate the powers. This case will be re-

ferred to as LDF/LDF. The 6We" errors obtained for the regions

observed were used as a standard for comparison with the results ob-

tained in those cases in which a different angular function was used

during interpretation of the data. Two cases were considered:

a) LDF/ISO, where the field is described by a LDF and an isotropic

field is assumed during data interpretation; b) LDF-ISO/LDF, in which

a combination of regions with a LDF field and regions with an isotropic

field are observed and a totally isotropic field is assumed during data

interpretation. In both cases, the results obtained for those regions

that passed the prediction technique test were found acceptable as will

be shown later.

F. Homogeneity condition

A basic assumption of the instantaneous technique is that the E-A

system's surface can be divided into regions whose We values are fairly

uniform within each region. As indicated previously, it is assumed

that each region has homogeneous emitting and reflecting characteristics

which are different from those of adjacent regions. Therefore, this

type of topographic division is assumed to exist whenever the instan-

taneous technique is applied. As mentioned before, this method requires

that the number of observations match the number of regions (i.e., the
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number of unknowns), and hence, a unique solution is obtained.

If the physical conditions are such that one of the regions is

split into two large subregions having significantly different We

values, then, the system has one more unknown, and the number of

observations must be correspondingly increased. However, as will be

shown, the instantaneous technique can even deal with some of these

cases without adding the required extra observation. In the majority

of cases, region inhomogeneities can be interpreted as sources of

power perturbations which are similar in character to the observational

errors (combinations of Gaussian random and systematic) treated pre-

viously. This is especially true in those cases where the We gradient

within a region is small. However, even when there is a large gradient

between two or more small adjacent sections of a region, the instan-

taneous technique yields acceptable results.

A figure of merit or evaluation parameter (EP) was developed for

evaluating the acceptability of the results derived from observations

which include regions with varying degrees of inhomogeneity. As will be

shown, the difference A We between the two values of We in a given inho-

mogeneous region was varied to observe the effects upon the results. The

evaluation parameter EP defined below was shown to be correlated with

the errors in the results so that it could be used to evaluate the

acceptability of the results.

The value of EP is determined as follows. One obtains a weighted

average We for the jth observation by dividing the power P. of this

observation by £., the total configuration factor of the jth observation.

The value of We", calculated for the jth observation is assigned to the
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region for which k=j (since those regions that pass the prediction

scheme test have large diagonal elements) and is identified as We, .

The We!1 values obtained for those regions whose results are considered

acceptable by the prediction scheme are then subtracted from the

corresponding We, values, that is
K.

<k = Wlk - Wek" (4-28)

The We, " values are obtained by operating with the stabilized inverse
K

matrix F on the column matrix {P'} of perturbed powers according to
VrC

Eq.(4-24).

The evaluation parameter EP is defined as the rms of these dif-

ferences e obtained for all regions that have passed the prediction

technique test. Hence,

ri jr 2,1/2t,r - I — L £„ I

where L is the number of regions found acceptable according to the

prediction scheme test. An illustration will be given later in which

the values of these parameters, £, and EP, are presented in tabular

form for comparison with the rms's of the 6We" errors obtained

for ten sets of observations which include uncertainties and/or

inhomogeneity errors. It was found that those regions which contri-

bute least to the satellite observations may have a value of AWe=
2

50 W/m and still yield acceptable We " results. On the other hand,

regions that make large contributions to the set of observations
2

must have values of AWe smaller than 50 W/m in order to give accu-

rate results. In those cases in which the value of AWe is too large,
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the value of the evaluation parameter EP serves to indicate the

presence of large power perturbations caused by large region

inhomogeneities. This type of situation requires further investi-

gation in order to establish the number of regions which is actually

observed in order to match them with an equal number of radiometer

observations.

G. Results

An illustration of the use of the instantaneous technique is

presented in detail in order to discuss the types of results obtained.

It is assumed that a satellite carrying a spherical and a hori-

zontal plate radiometer circles the earth in an orbit whose inclina-

tion is slightly greater than 90 . Six observations are made of six

hypothetical regions which have different We values. The LWR field

of these regions is described by a LDF which, as described previously,

is an extended version of one of the LDF's presented by Raschke,

et al., (1973) for a desert area. Figure 4-2 is a schematic repre-

sentation of these regions and the subsatellite points of the six

observations. This figure also shows for each region the identifying

number, the equivalent area in square degrees of great circle arc,

and the We value. The identifying numbers of the six satellite posi-

tions from which the observations are made, as well as the FOV of

the 3rd observation are also shown.

The 6x6 configuration factor matrices generated for the sphere

and plate radiometers are presented in Figure 4-3. These matrices

were constructed from the six observations according to Eqs.(4-17)

through (4-18c).



56

R6
(30.90)2

We=l60.0W/m

R3

(3I.30)
3 We = 240.0 W/m2We = 220.0 W/m

(25.5°)
We=280.0 W/m2

Figure 4-2. Schematic of the Six Regions Observed During a Satel-
lite Pass. The Identifying Numbers and the Equivalent
Areas in Degrees of the Regions Are Shown, as well as
the Six Subsatellite Points of the Observations. The
FOV of the 3rd Observation Is also Shown.
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F(J,4)
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0.258814514
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0.487663243

0.528171128

0.265272705

F(J,5)

0.000000000

0.000573998

0.005278446

0.021139950

0.056825754
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F(J,6)
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0.044623274

0.194298827

0.586177329

F(J,1)

0.142034123

0.025353983

0.004430432

0.000405171

0.000000000

0.000000000

F(J,2)

0.038266775

0.013638843

0.003350071

0.000437742

0.000000000

0.000000000

F(J,3)

0.507402557

0.579847085

0.533391963

0.387527735

0.202499094

0.066395811

F(J,4)

0.102109397

0.169588717

0.243683062

0.366841137

0.427337623

0.188571404

F(J,5)

0.000000000

0.000264010

0.002501058

0.010673015

0.031376080

0.062680970

F(J,6)

0.000000000

0.000387740

0.004205418

0.023734909

0.128678132

0.473902060

Figure 4-3„ Original ill-conditioned configuration factor matrices for a spherical

radiometer (above) and a horizontal plate radiometer (below). (LDF included)

Ui
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Eqs.(4-18c) and (4-20) through (4-24) will be used to generate

the results and in order to facilitate references to them, they are

rewritten and renumbered here in the same order

F {We} = {P} (4-30)

F"1 {P} = {We} (4-31)

F"1 {P1} * F"1 {P + SP} = {We1} = {We + 6We} (4-32)

F"1 {6P} = {6We} (4-33)

F~J {P} = {We(1)} = {We + SWe'} (4-34)

F-1 {P'} = F"1 {P + 5P} = {We"} = {We + 6We"} (4-35)we we

The six power measurements made by each radiometer are obtained

by operating on the {We} matrix with the matrices F for the sphere

and plate according to Eq.(4-30). The resulting power column matrices

for both radiometers are presented in Table 4-1.

Table 4-1. Power column matrices {P} obtained for

the sphere and plate radiometers.

Observation
no.

1
2
3
4
5
6

Power matrix
Sphere

261.742680435
252.527383060
248.346466037
241.585706241
227.328416581
199.451654369

elements P (W)
Plate

193.576929315
187.096484378
184.875462069
179.866778485
169.477776668
145.781227143
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The power matrix elements in Table 4-1 are exact values, that is,

they do not contain observational uncertainties. Therefore, when the

inverses of the matrices in Figure 4-3 were multiplied with the

corresponding power matrices { P } of Table 4-1 according to Eq. (4-31),

the column matrix { We } was obtained. The values of We calculated

matched the original We values in Figure 4-2 to at least six decimal

places. This type of accuracy indicates that no computational errors

are introduced by the subroutine used to carry out the matrix inversions.

The next step was to investigate the effects that observational

errors have upon the results. This was done by simulating thirty sets

of power measurements by each of the radiometers from the six obser-

vation points shown in Figure 4-2.

In order to simulate the power measurements, the exact power

values P listed in Table 4-1 were perturbed with the following three

types of instrumental errors 6P: a) Gaussian random, b) systematic,

c) combinations of Gaussian and systematic. The Gaussian random

errors had a sigma value of 0.5 W, while the systematic errors ranged

from -0.9 to 0.9 W. Ten sets of power measurements were simulated

for each of the above three types of errors for each radiometer. The

resulting perturbed powers P' = P + ,5 P were used to construct the new

power column matrices {P'} = {P + fiP } for each set of six measure-

ments and for both radiometers. These matrices were operated on by

the inverse matrices F (which are the inverses of the matrices in

Figure 4-3) according to Eq. (4-32).

The resulting 6We errors for each of the six regions for all

sets of observations and for both radiometers were used to compute

rms's of these errors. These rms's are shown in lines 1, 3, and 5
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of Table 4-2 for the sphere, and of Table 4-3 for the plate. From

line #3 in these two tables, one sees that the systematic power

uncertainties do not produce large 6We errors since the largest

2
error found in this line is 1.4 W/m. However, from lines #1 and #5

of the same tables, it is clear that Gaussian random power uncertainties

are highly magnified by the inverse matrices F of both radiometers.

2
For example, regions 2 and 5 have rms errors of 158.6 and 269.1 W/m ,

respectively, for the sphere (Table 4-2). The same two regions have

2
rms errors of 215.4 and 293.2 W/m , respectively, for the plate

(Table 4-3). Only the rms's of the 5 We errors of region 3 in these

2
two lines (lines #1 and #5) have rms errors below 15 W/m which is

considered the limit of acceptability as discussed previously. Hence,

it is concluded that the original matrices F of both radiometers are

ill-conditioned.

Application of the stabilization technique to the two original

matrices resulted in the two well-conditioned matrices shown in

Figure 4-4. The optimum cut-off values found for stabilizing the

matrices are 0.032 for the sphere and 0.016 for the plate. Comparisons

of the elements of the original matrices in Figure 4-3 with those of

the corresponding well-conditioned matrices in Figure 4-4 show that

all non-diagonal elements lower than the cut-off values have been

translated along their corresponding rows and added to the diagonal

elements in those rows.

The two new well-conditioned matrices in Figure 4-4 were inverted

and the new inverse matrices F were multiplied with the power column

matrices { P1 } according to Eq. (4-35). From the new errors 6 We"

obtained per this equation new rms errors were calculated for the six



Table 4-2. Rms's of the 6We and 6We" errors obtained with the original and stabilized
inverse matrices of a spherical radiometer. (LDF included)

Power
Spr

uncertainties

Gaussian
random a=0 .

Gaussian a=0.
random

Systematic -.9 to

Systematic -.9 to

CS

Gaussian
random a=0 .
plus
Systematic 0.9

ead Matrix

5 W Original

5 W Stabilized

.9 W Original

.9 W Stabilized

5 W Original

W Stabilized

Region 1

36.8

15.2

0.5

4.9

36.7

14.8

Rms 's of

Region 2

158.4

53.7

0.7

23.5

158.6

54.1

6We and 6We" errors

Region 3

9.1

1.3

0.6

0.7

8.9

1.1

Region 4

17.6

1.3

0.6

0.6

17.9

1.7

(W/m2)

Region 5

269.2

22.7

0.4

5.7

269.1

22.7

Region 6

43.5

4.3

0.6

0.9

43.7

4.4



Table 4-3. Rms's of the 5We and <SWe" errors obtained with the original and stabilized
inverse matrices of a horizontal plate satellite radiometer. (LDF included)

Power
Spr

uncertainties

Gaussian
random o=0 .

Gaussian o=0.
random

ead Matrix

5 W Original

5 W Stabilized

Systematic -«9 to .9 W Original

Systematic -.9 to .9 W Stabilized

Gaussian
random o=0 .
plus
Systematic 0.9

5 W Original

W Stabilized

Region 1

46.8

22.1

0.6

3.8

46.6

21.8

Rms's of

Region 2

215.2

88.9

1.4

21.0

215.4

89.3

6We and 6We" errors

Region 3

6.5

1.4

0.8

0.7

6.4

1.4

Region 4

13.9

1.8

0.8

0.7

14.2

2.3

(W/m2)

Region 5

293.3

42.3

0.2

5.7

293.2

42.2

Region 6

34.7

5o7

0.8

0.7

35.1

5.9

O\
ISJ
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0.000000000
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0.000000000

0.000000000

0.000000000
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F(J,4)
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0.258814514
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0.265272705

F(J,5)

0.000000000

0.000000000

00 000000000

0.000000000
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0.000000000
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0.000000000

0.000000000

0.000000000

00 000000000
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0.000000000

0.000000000

0.000000000

0.000000000
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F(J,4)

0.102109397

0.169588717
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0.427337623

0.188571404

F(J,5)

0.000000000

0.000000000

0.000000000

0.000000000
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F(J,6)

0.000000000

0.000000000

0.000000000

0.023834909

0.128678132

0.473902060

Figure 4-4. Well-conditioned configuration factor matrices for a spherical radiometer

(above) and a horizontal plate radiometer (below). (LDF included)

u>
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regions and for both radiometers. These new rms's appear in lines

2,4, and 6 of Table 4-2 for the sphere and of Table 4-3 for the plate.

Comparisons of the rms values in line #2 with those in line #1,

and those of line #6 with those of line #5, clearly show the dramatic

decrease caused by the stabilized matrices in the rms errors derived

totally or partially from Gaussian power uncertainties. For example,

2
region 4 went from 17.9 to 1.7 W/m for the sphere (Table 4-2, lines 5

2
and 6), while this same region decreased from 14.2 to 2.3 W/m for

the plate (Table 4-2, lines 5 and 6).

However, it is also noted that the new rms values of regions 3,

4, and 6 are much lower than those of regions 1, 2, and 5 whose rms

errors are unacceptable. For instance, regions 1, 2, and 5 have rms

values of 21.8, 89.3, and 42.2 W/m in line #6 of Table 4-3; in the

same line and table, regions 3, 4, and 6 have rms values of 1.4,

2
2.3, and 5.9 W/m , respectively. The last three values are all

2
acceptable (lower than the acceptable limit of 15 W/m )%, while the

rms values of regions 1, 2, and 5 are not.

Comparison of the rms's in lines #3 and #4 of Tables 4-2 and 4-3

show that the stabilized matrices have increased significantly the

rms errors of regions 1, 2, and 5. Region 2, for example, went from

2
0.7 to 23.5 W/m in Table 4-2, while it increased from 1.4 to 21.0

2
W/m in Table 4-3. However, these increases have no significance

since as will be shown later, regions 1, 2, and 5 should be disregarded

according to the results of the prediction scheme. On the other hand,

the rms errors of regions 3, 4, and 6 (whose results are considered

acceptable by the prediction scheme, as will be demonstrated later)

2
are less than 1 W/m in every instance, as can be seen from the rms
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values of these regions shown in lines #3 and #4 of Tables 4-2 and

4-3.

Figures 4-5 and 4-6 display the dramatic contrast between the

curves of the rms's of the fiWe" errors (derived from combinations

of Gaussian and systematic uncertainties) obtained with the unstable

and stabilized matrices, versus the regional configuration factor S.
K

of each region for the sphere and plate, respectively. As defined

previously, S, is the sum of the shape factors contributed by the kth

region to all six observations; it is referred to as the regional

configuration factor of the kth region. These curves are plots of

the data displayed in the last two lines of Tables 4-2 and 4-3

previously discussed.

Another way of showing the significant differences between the

original ill-conditioned matrices F and the new well-conditioned

matrices F is by comparison of their condition numbers defined

previously. The values of these parameters are compared in Table 4-4

for both radiometers. As seen from the last column, the condition

number values dropped from 1087 to 184 for the sphere, and from

945 to 253 for the plate.

The instantaneous technique was also applied to a LWR field which

was assumed to be isotropic. Proceeding in the same manner as in the

previous case in which a LWR field described by a LDF was treated,

rms's of the 6 We" errors obtained with the unstable and stabilized

matrices are computed for the sphere and plate. These rms's are

displayed in Table 4-5 for the sphere and in Table 4-6 for the plate.

Just as in the case of a LDF radiation field, regions 3, 4, and 6

show acceptable results for the three types of power uncertainties
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STABILIZED MATRIX
(8 We" ERRORS)

UNSTABLE MATRIX ( 8 We ERRORS)

1.0 2.0
REGIONAL CONFIGURATION FACTOR S,

Figure 4-5. Rms's of the Errors 6We and 6We" (Derived from Gaussian
and Systematic Uncertainties) for the Six Regions with
the Unstable and Stabilized Inverse Matrices of the
Spherical Radiometer. (LDF Included)
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Figure 4-6. Rms's of the Errors 6We and 6We" (Derived from Gaussian
and Systematic Uncertainties) for the Six Regions with
the Unstable and Stabilized Inverse Matrices of the
Horizontal Plate Radiometer. (LDF Included)



Table 4-4. Condition numbers of the original, ill-conditioned and the new, well-
conditioned configuration factor matrices for both types of radiometer,
spherical and horizontal plate. (LDF included)

Radiometer

Sphere

Sphere

Plate

Plate

Mati
Matrix F

F I

T
:ix Eigenvalues y of F F

? ymax

Original, F FTF 2.401393667

Well-conditioned, F FT F 2.452713184
we we we

Original, F FTF 1.392923372

Well-conditioned, F FT F 1.412063277
we we we

min

0.000002033

0.000354014

0.000001559

0.000114178

Condition

number

1087

184

945

253

00



Table 4-5. Rms's of the <5We and 6We" errors obtained with the original and stabilized
inverse matrices of a spherical radiometer. (Isotropic radiation field)

Power

uncertainties
Spread Matrix

Rms's of 6We and 6We" errors (W/m )

Region 1 Region 2 Region 3 Region 4 Region 5 Region 6

Gaussian
random

Gaussian
random

a=0.5 W

a=0.5 W

Original

Stabilized

38.4

14.4

164.1

49.1

12.2

1.5

23.2

1.3

313.8

19.8

56.3

Systematic

Systematic

.9 to .9 W

.9 to .9 W

Original

Stabilized

0.6

5.2

0.6

24.5

0.6

0.9

0.6

0.7

. 0.6

5.5

0.6

0.9

Gaussian
random
plus
systematic

0=0.5 W

0.9 W

Original

Stabilized

38.2

14.1

164.2

49.5

12.1

1.1

23.4

1.8

313.6

19.8

56.5

4.4

VO



Table 4-6. Rms's of the 6We and 6We" errors obtained with the original and stabilized inverse
matrices of a horizontal plate radiometer. (Isotropic radiation field)

Power
Spr

uncertainties

Gaussian
random a=0 .

Gaussian a=0.
random

Systematic -.9 to

ead Matrix

5 W Original

5 W Stabilized

.9 W Original

Systematic -.9 to .9 W Stabilized

Gaussian
random o=0 .
plus
systematic 0.9

5 W Original

W Stabilized

Region 1

47.1

20.8

0.7

4.2

47.0

20.5

Rms's of

Region 2

211.0

79.2

1.1

22.3

211.3

79.7

6We and 6We" errors

Region 3

8.2

1.5

0.8

0.7

8,0

1.4

Region 4

17.1

1.8

0.8

0.8

17.4

2o3

(W/m2)

Region 5

316.9

37.2

0.5

5.4

316.7

37.1

Region 6

41o9

5.7

0.8

Oo8

4202

5.9
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(Gaussian, systematic, and combinations of Gaussian and systematic)

and for both radiometers. Figures 4-7 and 4-8 display the curves

obtained from the data appearing in the last two rows of Tables 4-5

and 4-6, respectively. These curves are plots of the rms's of 6We"

errors derived from combinations of Gaussian and systematic power

uncertainties, versus the value of S, of each region. Comparison

of these curves obtained for an isotropic radiation field with similar

curves obtained for a field described by a LDF and displayed in

Figures 4-5, and 4-6 show that the stabilization technique produces

equally good results in both instances.

The prediction parameter PP was defined by Eq. (4-27) which is

here rewritten and renumbered

PP = (S, F. . / £ .) x 1000 (4-36)
K J J J

Figures 4-9 (sphere) and 4-10 (plate) are curves of the rms errors

appearing in the last line of Tables 4-2 and 4-3, respectively,

plotted versus the values of PP for the six regions. The rms errors

selected are the result of combinations of Gaussian and systematic

uncertainties in the power measurements. In both of these figures,

regions 3, 4, and 6 show rms values of less than 6 W, while regions

1, 2, and 5 show rms values of about 15 W or greater. The smallest

gap in the value of PP between these two groups is at least 300. On

the basis of results soon to be presented, cut-off values of 150 for

the sphere and 100 for the plate were selected to separate the two

groups of regions, those that are predicted acceptable and those that

are not. Hence, according to the prediction parameter PP, only the

results obtained for regions 3, 4, and 6 are to be considered accept-

able. The results for regions 1, 2, and 5 are to be considered
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Figure 4-9. Curve Showing the Relationship between the Prediction
Parameter and the Rms's of the 6We" Errors Obtained
with the Stabilized Inverse Matrix of a Spherical Radio-
meter. (LDF Included)



75

CM

100

80 -

CO

W

§

3
-rt

0 400 800
PREDICTION PARAMETER PP

1200 1600
(S.F../E.) x 1000

K J J J
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with the Stabilized Inverse Matrix of a Horizontal Plate
Radiometer. (LDF Included)
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unacceptable as a result of insufficient data gathered from these

regions. Data from different satellite observations which include

larger portions of the regions under discussion yield acceptable

results for these regions as will be shown.

Figures 4-11 and 4-12 show curves for the isotropic case similar

to those shown in Figures 4-9 and 4-10 for the LDF case. The rms's

of the 6We" errors used in Figure 4-11 (sphere) and 4-12 (plate) are

those presented in the last row of Tables 4-5 and 4-6, respectively,

which are the result of Gaussian and systematic power uncertainties.

From these figures, it is seen that the PP cut-off values of 150 for

the sphere and 100 for the plate clearly separate the regions 1, 2,

and 5 (rejectable) from regions 3, 4, and 6 (acceptable) exactly as in

the LDF case.

As indicated previously, it became necessary to develop the matrix

stabilization and prediction techniques to be used in conjunction with

the instantaneous technique only because the sections observed of some

of the regions were too small. In other words, if the satellite

positions were such that sufficiently large portions of all regions

are observed, the results obtained with the original matrices would

be acceptable. To prove this contention, satellite positions were

selected such that the FOV's covered all the regions sufficiently.

The results are displayed in Tables 4-7 and 4-8. From rows 1, 3, and

5 of these tables, it is seen that the rms's of the 5We" errors

obtained with the original matrices are all acceptable. The largest

2
rms value found in these rows is 3.6 W/m for region 2. Furthermore,

application of the stabilization technique to both of the original

matrices produced only slight improvements as can be seen from the
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Figure 4-11. Curve Showing the Relationship between the Prediction
Parameter and the Rms's of the 6We" Errors Obtained
with the Stabilized Inverse Matrix of a Spherical Radio-
meter. (Isotropic Radiation Field)
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Radiometer. (Isotropic Radiation Field)



Table 4-7. Rms's of the 6We and 6We" errors obtained with the original and stabilized inverse
matrices of a spherical radiometer. Adequate portions of all regions are observed
by judicious selection of satellite positions. (LDF included)

Power
Spr

uncertainties

Gaussian
random o=0 .

Gaussian o=0.
random

Systematic -.9 to

Systematic -.9 to

Gaussian
random a=0 .
plus
systematic 0.9

ead Matrix

5 W Original

5 W Stabilized

.9 W Original

.9 W Stabilized

5 W Original

W Stabilized

Region 1

2.0

1.8

0.6

1.1

2.0

2.1

Rms ' s of

Region 2

3.0

2.6

0.6

0.5

3.0

2.6

6We and 6We" errors

Region 3

1.6

1.6

0.6

0.6

1.7

1.3

Region 4

2.4

2.1

0.6

0.5

2.7

2.4

(W/m2)

Region 5

1.1

1.1

0.6

0.8

1.4

1.6

Region 6

1.1

1.0

0.6

0.6

1.2

1.2



Table 4-8. Rms's of the 6We and SWe" errors obtained with the original and stabilized inverse
matrices of a horizontal plate radiometer. Adequate portions of all regions are
observed by judicious selection of satellite positions. (LDF included)

Power
Spr

uncertainties

Gaussian
random a=0 .

Gaussian a=0.
random

Systematic -.9 to

Systematic -.9 to

Gaussian
random a=0 .
plus
systematic 0.9

ead Matrix

5 W Original

5 W Stabilized

.9 W Original

.9 W Stabilized

5 W Original

W Stabilized

Region 1

2.4

2.2

0.8

1.0

2.4

2.3

Rms's of

Region 2

3.6

3.2

0.8

0.8

3.6

3.3

6We and SWe" errors

Region 3

1.7

1.6

0.8

0.7

2.0

1.6

Region 4

2.8

2.5

0.8

0.7

3.2

2.9

(W/m2)

Region 5

1.2

1.1

0.8

0.9

1.6

1.7

Region 6

1,2

1.1

0.8

0.8

1.5

1.4

oo
o
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results shown in. rows 2, 4,*and 6 of the same tables. For example,

2
the highest rms value of 3.6 W/m for region 2 mentioned previously,

decreased to 3.3 W/m (Table 4-8, lines #5 and #6).

Since all the results displayed in Tables 4-7 and 4-8 are

considered acceptable, the data in the last row of these tables were

plotted versus the PP values of the regions in Figures 4-13, and 4-14,

respectively. It is seen from these figures that all the results lie

above 150 for the sphere, and above 100 for the plate. These cut-off

values were therefore selected as the lowest PP values that a region

must have in order for its results to be considered acceptable.

These cut-off values were shown in Figures 4-9 and 4-10 for the LDF

case, and in Figures 4-11 and 4-12 for the isotropic case.

The effects caused by improper selection of an angular function

to describe the LWR field during data interpretation were investigated.

Following is a description of the two cases studied.

In one case, the simulated power measurements of a radiation

field described by a LDF were computed by using configuration factor

matrices that included this LDF. The resulting exact powers are those

presented in Table 4-1 for a LDF field. The perturbed powers were

the same powers generated for the LDF case discussed previously and

whose results were presented in Tables 4-2 and 4-3. However, those

results were obtained by using the correct LDF during interpretation

of the data. In this study, on the other hand, the radiation field

is assumed isotropic when interpreting the data. This case, in which

a LWR field described by a LDF is assumed ISOTROPIC during data

evaluation will be termed LDF/ISO. The results obtained for this

case with the stabilized matrix of a spherical radiometer are
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presented in Table 4-9. As in the two previous cases (LDF and

isotropic) where the correct angular function of the field was

used during data interpretation, regions 3, 4, and 6 have acceptable

results when Gaussian power uncertainties are used either totally

(row 1), or partially (row 3). The largest rms error is found in region
2

6, line #1. This rms error is 8 W/m which is below the acceptable
2

limit (15 W/m ). The results obtained when systematic power uncer-

tainties only are used (row 2) show that this type of error is not

highly magnified. The rms error in this row for columns 3, 4, and
2

6 are 4.8, 1.8, and 7.5 W/m , respectively.

The prediction scheme was applied to this case and the results

are similar to those obtained in the previous cases (LDF and isotropic).

A plot of the rms's of the 6We" errors versus the prediction parameter

PP for the six regions is shown in Figure 4-15. The rms's used in this

figure are those appearing in the last row of Table 4-9 just discussed.

As seen from Figure 4-15, where the prediction parameter cut-off value

(broken line) previously selected for the sphere is shown, it is

predicted that regions 3, 4, and 6 are to have acceptable results

while those of regions 1, 2, and 5 should be considered unreliable

for lack of sufficient data. This prediction agrees with the rms

values in this curve.

In the other case studied, three regions were assumed to have a

LWR field described by a LDF while the remaining three regions were

assumed to radiate isotropically. However, when interpreting the

data, the radiation field was assumed entirely isotropic. This

case will be referred to as LDF-ISO/ISO. The rms's of the 6We"

errors obtained with the stabilized matrix of the spherical radiometer



Table 4-9. Rms's of the 6We" errors obtained when the stabilized inverse matrix of a spherical
radiometer which was derived for an isotropic radiation field was then applied to
an anisotropic field. (Uncertainties in power measurements are included)

Power

uncertainties

Gaussian random

Systematic

Combination of
Gaussian random
and systematic

Region

0=0.5 W 14.2

-.9 to .9 W 4.7

0=0.5 W
0.9 W 13'8

Rms's of 6We" errors (W/m2)

1 Region 2 Region 3

41.0 5.2

0.9 4.8

41.0 4.5

Region 4

2.2

1.8

1.7

Region 5 Region 6

20.5 8.0

11.1 7.5

20.7 7.4

CXI
Ui
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the Stabilized Inverse Matrix of a Spherical Radiometer
Which Was Derived for an Isotropic Radiation Field and
Then Applied to an Anisotropic Field.
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are displayed in Table 4-10. As can be seen from the three rows of

data, all the results for regions 3, 4, and 6 are acceptable, just

as in all previous cases considered. The highest rms value is 4.1

2
W/m for region 6 in lines #1 and #3. The data shown in the last

row of this table are plotted versus the region's prediction parameter

values in Figure 4-16. The value of PP = 150 (the vertical broken

line) is included in this figure to indicate that the three regions

to the right (regions 3, 4, and 6) are predicted to have acceptable

results, while the results of the three regions to the left (regions

1, 2, and 5) are to be considered unreliable for lack of sufficient

data from these regions. The rms errors shown in this figure agree

with these predictions.

The rms's of the 6We" errors obtained for the three regions

(R3, R4, and R6) that passed the prediction technique test, for the

case of a spherical radiometer are presented in Table 4-11 for the

following four cases:

1. LDF/LDF: A LDF field is interpreted as a LDF field.

2. ISO/ISO: An isotropic field is interpreted as an isotropic
field.

3. LDF/ISO: A LDF field is interpreted as an isotropic field.

4. LDF-ISO/ISO: A field which is partially LDF and partially
isotropic is interpreted as an isotropic field.

Even though the rms's of the LDF/ISO case shown in Table 4-11

are higher than those obtained for the other three cases, all the

rms errors in this case are acceptable. Region 6 which exhibits the

highest values in rows 3, 7, and 11, has rms errors of 8.0, 7.5, and

? 2
7.4 W/m' which are below the acceptable limit (15 W/m ). These

results indicate that no major errors are introduced when LWR fields



Table 4-10. Rms's of the <SWe" errors obtained when the stabilized inverse matrix of a spherical
radiometer which was derived for an isotropic radiation field was then applied to a
field which was partially anisotropic and partially isotropic. (Uncertainties in
power measurements are included)

Power

uncertainties
Spread

2
Rms's of 6We" errors (W/m )

Region 1 Region 2 Region 3 Region 4 Region 5 Region 6

Gaussian random o=0.5 W

Systematic

Combination of
Gaussian random
and systematic

-.9 to .9 W

0=0.5 W
Oo9 W

15.4

4.1

15.1

56.3

20.5

56.6

1.2

0.6

1.1

1.3

0.5

1.6

19.5

7.7

19.6

4.1

1.2

4.1

oo
oo
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Table 4-11. Comparisons of the effects of proper and improper
selection of the angular distribution function on
the rms's of the SWe" errors obtained with the sta-
bilized inverse matrix of a spherical radiometer
for the three regions whose results are predicted
acceptable.

90

Power
Spr

uncertainties

Gaussian random a=0.

Gaussian random o=0.

Gaussian random o=0.

Gaussian random o=0.

Systematic -.9 to

Systematic -.9 to

Systematic -.9 to

Systematic -.9 to

Gaussian

Case
ead

studied

5 W LDF/LDF

5 W ISO/ISO

5 W LDF/ISO

5 W LDF-ISO/ISO

.9 W LDF/LDF

.9 W ISO/ISO

.9 W LDF/ISO

.9 W LDF-ISO/ISO

LDF/LDF

random a=0.5 W ISO/ISO

plus

systematic 0.9

LDF/ISO

W LDF-ISO/ISO

Bms

R3

1.3

1.5

5.2

1.2

0.7

0.9

4.8

0.6

1.1

1.1

4.5

1.1

s of 6We"

R4

1.3

103

2.2

1.3

007

0.7

1.8

Oo5

1.7

1.8

1.7

1.6

R6

4.3

4o3

8.0

4.1

007

Oo9

7o5

1,2

4»4

4.4

7,4

4,1
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are assumed ISOTROPIC during data interpretation.

As discussed in detail before, the instantaneous technique is

assumed to apply to regions of the E-A system which have fairly homo-

geneous emitting and reflecting characteristics. Furthermore, the

number of observations should match the number of regions observed in

order to obtain a unique solution. Therefore, if a region is split

into two subregions having different We values, an additional observa-

tion must be taken to meet the requirement of a unique solution. Never-

theless, the following results show that the instantaneous technique

can deal successfully with several of these cases without including the

required additional radiometer observation.

The errors resulting from region inhomogeneity become more signifi-

cant if the region is divided into two subregions of approximately equal

area , and hence this was the type of region division selected to investi-

gate the effects of innomogeneities. As explained previously, A We is

the difference between the We values of the two subregions formed. Several

values of A We were assumed and the results obtained for a spherical radio-

meter are compared with the corresponding values of the evaluation para-

meter EP. The value of EP is calculated according to Eq.(4-29) which is

rewritten here as applied to the three regions considered acceptable

according to the prediction technique .

1 3 2 %
EP = [i ̂  ep (4-29)

where e is given by Eq.(4-28) which is also rewritten here for easy

reference

= We~ - We" (4-28)
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where the subscript k denotes the kth region. We, and We, " were pre-

viously defined.

Region 3 was selected to be divided into two subregions of approxi-

mately equal area in these inhomogeneity studies because it has the

largest S, value. As explained before, S, is the sum of the shape

factors contributed by the kth region to the total set of observations.

The S, value of regions 3, 4 and 6 (that were predicted acceptable) are

2.976, 2.076 and 0.825, respectively, (refer to the matrix for the

sphere in Fig. 4-4). For comparison, region 6 was also split into two

approximately equal areas and an example of the effects caused by the

inhomogeneity of this region is also included. This is the region that

has the lowest S, value among the three regions considered acceptable.
K.

The results obtained are presented in Table 4-12. As seen from

lines 2, 4, 6 and 10 of this table, region 6 has the largest rms error

in each of these lines. In line 8, regions 4 and 6 have about the same

rms value. Hence, the rms error of region 6 is generally the largest

in each of the lines and for this reason it was selected for comparison

with the corresponding EP value in each case studied. The 6We" errors

from which the rms errors shown in the table were computed are obtained

by subtracting the corresponding We" values from the hypothetical standard

We's assigned to the regions. In the case of a split region, the standard

value is assumed to be the arithmetic mean of the We values assigned to

the two subregions.

It can be seen from Table 4-12 that when region 3 was split into

2
two subregions with a difference of A We = 50 W/m , the rms error of region

2
6 became 18.74 W/m which is unacceptable. The EP value in this case is



Table 4-12. Comparisons of evaluation parameters (EP) for different Inhomogeneity

(AWe) values.

AWe

(W/m2)

0

0

6

6

10

10

50

50

50

50

Inhomogeneous „6 Parame
region -

None e.

None rms of

3 ^
3 rms of

3 ^
3 rms of

3 £

3 rms of

6 €,

6 rms of

;ter e^ or rms of <SWe"

Region 3

-6.72

6We" 1.06

-7.95

<5We" 1.38

-8.02

<SWe" 1.18

-14.51
.

6We" 2.99

-6.35
,

<5We" 1.06

Region 4

4.53

1.73

6.53

2.32

6.90

3.31

16.00

19.69

4.81

2.27

Region 6 -

18.04

4.44

20.74

4.82

21.44

5.27

34.74

18.74

13.61

15.72

EP

(W/m2)

11.42

13.37

13.80

23.62

9.10

VO
u>
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2
23.62 W/m . All other cases in the table where region 3 is the inhomo-

geneous region are acceptable.

The last two lines in Table 4-12 refer to the splitting of region 6

2
into two subregions having a A We value of 50 W/m . The rms error of

2
region 6 in this case was only 15.72 W/m , barely above the maximum

2 2
permissible rms value of 15 W/m ; the corresponding EP value is 9.10 W/m .

From these results, an estimate of the range of values of EP which indi-

cates when region inhomogeneity can be disregarded was obtained. This

range is

10 < EP < 20 W/m2

It should be noted that by analyzing additional cases which included

varying values of observational errors (combinations of Gaussian and

systematic) but excluded regional inhomogeneities, a range of values of

2
EP between 11 and 19 W/m was obtained which is within the range of 10

2
and 20 W/m discussed above. Hence, it can be concluded that as long

2
as the evaluation parameter has a value between 10 and 20 W/m , the

effects due to region inhomogeneity can be treated as if caused by

instrumental uncertainties, and all regions passing the test of the

prediction technique will have acceptable results.

As indicated previously, in extreme cases where the evaluation

2
parameter might be outside the permissible range of values(10 to 20 W/m ),

the value of EP indicates that the radiometer data must be supplemented

by other forms of information, (such as cloud photographs),in order to

include the additional region.
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Best fit technique

The best fit technique is an outgrowth of the instantaneous method

just discussed. In that method, the number of measurements matches the

number of regions studied and a unique solution is obtained. In the pre-

sent technique, the number of measurements is much greater than the num-

ber of regions observed and the method of least squares is used to find

an approximate solution. The results obtained with this method are time

averages of the We values of each of the regions observed for the time

interval (e.g., month, season) during which the observations are made.

The fundamentals of this technique and the results obtained by applying

it to a simulated series of satellite observations are presented below.

A. Technique fundamentals

The best fit technique is developed following the same reasoning

used in deriving Eq.(A-l) through Eq.(4-17). For easy reference,

Eqs.(4-16) and (4-17) are rewritten and renumbered here

K K
P. = I P., = Z F,. We. (4-37)
J k=l Jk k=l Jk k

- r AA xf(6) cos 9 cos ou
jk - Jo. IT ( 2 } (4~38)

where P. is the jth power measurement, P., is the power which the kth
J Jk

region contributes to P. and F., is the configuration factor contributed
J JK

by the kth region to the jth observation. I is the number of elemental

areas A A of the kth region which appear within the FOV of the jth obser-

vation. K is the total number of regions under study. If a region does

not appear within the FOV, its corresponding configuration factor is
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zero and will not contribute anything to the sum in Eq.(4-37).

The equations are written for a horizontal flat plate radiometer.

However, they apply equally well to a spherical radiometer by equating

to one the factor cos a in all equations where it appears.

In this technique, the number of measurements J is much greater

than the number of regions K. Hence, the problem can be considered

overdetermined and some smoothing of errors is to be expected. The

smoothing obtained is dependent upon the J/K ratio (Panofsky and Brier,

1968). Instead of the J=K equations shown in Eq.(4-18a) for the instan-

taneous scheme, one has in this technique J»K equations representing J

power measurements , as follows .

pl
P2

= F We H

= F21We;LH

HF12 We2+.,

h F22 We2 +' '

' >+ F1K

' '+ F2K (4~39)

PJ

Eqs.(4-39) represent J surfaces in the coordinate system given by

F, , F ,..., F . For example, for the jth plane, the values of these
-L L. K.

coordinates are F.1S F.0, ... , F. .
31 Jz JK

It is desirable to choose satellite positions which yield more or

less equal values of S for all regions. As defined before, S, is the
1C 1C

sum of the shape factors in the kth column (i.e., the kth region). For

example, for the first column one has



97

Sl = Fll + F21 + ''' + FJ1 (4~40)

and in general,

Sk = Flk + F2k + ' •' + FJk <4-41>

This choice of satellite positions insures that the matrix derived from

the final K normal equations yields acceptable 6We errors for all regions

observed.

The required K normal equations are generated by the method of

least squares. The approximate solution obtained is represented by a

regression surface PB whose equation can be written in this applicationK

as follows (Spiegel, 1961)

PR - Po + Wel FR1 + We2 FR2 + '» + WeK FRK <4'42)

where the coordinate values of this regression surface are F_n, F_0
KJ. K,/

F-v-. This equation contains K+l unknowns, the K coefficients We, ,
KK K.

and the P-intercept P . Hence, one needs K+l normal equations to obtain

these unknowns.

Since all of the Eqs.(4-39) pass through the origin of the F.., F?,..

F., coordinate system, it will be assumed that the regression surface also
K

passes through the origin of the coordinate system. Then, Eq.(4-42) can

be written as

PR ' Wel FR1 + We2 FR2 + ••' + W6K FRK (4

Hence, in this case only K normal equations are required to solve the

problem. The determinant of the coefficients of the normal equations

is found to be nonzero and an approximate solution of the problem is

obtained.
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Although it is recognized that by making the above assumption
•

(that the regression surface passes through the origin of the coordi-

nate system) one has possibly introduced errors in the partial regres-

sion coefficients We, these errors are small and the results are accept

able as will be shown.

Derivation of the K normal equations according to the method of

least squares is as follows:

1. Multiply each equation by the first shape factor F. appearing in

the equation and add up the resulting equations. That is, multiply

the first equation by F 1 , the second equation by F? , and so on

until the Jth equation is multiplied by F . The addition of these
J J_

equatipns yields the first of K normal equations, namely

2
V

+ WeK l W

2. Multiply each equation by its second shape factor and add the

resulting equations to obtain the second normal equation

FJ2

3. Do the same with the remaining shape factors. When each of the

equations is multiplied through by its own K shape factor, and

the resulting J equations are added up, the Kth normal equation



is obtained, namely

Z P F
= 3 J

We
J
E F F.,, + We., I F.n F.T, + .,

We
J

K Z
K J-l

(4-46)

The resulting K equations can be greatly simplified by using

the symbols defined below.
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P F (4-47)

F F = Z F F
An l *j£ jn (4-48)

Making these substitutions into the K equations illustrated by

Eq.(4-44) through (4-46), one obtains the K equations which are given

below in matrix form.

F1F1 F1F2 ' ' * F1FK

F2F1 F2F2 ' ' ' F2FK

•

F F F F F F
K 1 K 2 KK

—
We

We2

•

_W6K

=

PF1

PF2

_PFK_

(4-49)

Or, in symbolic form, these matrices can be written as

FF {We} = {PF} (4-50)

where FF is the KxK matrix made up of the sums of the products of the
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shape factors as defined by Eq.(4-48). {We} is the column matrix

whose elements are the regional We values. {PF} is the column

matrix whose elements are the sums of the products of the powers

and shape factors as defined by Eq.(4-47).

From Eq.(4-50), it is seen that by inverting the matrix FF to

— -.1
obtain (FF) one can find the We values from the relation

{We} = (FF)'1 {PF} (4-51)

The results obtained by using this technique are now illustrated.

B. Results

The regions observed are those previously presented in schematic

form in Figure 4-2, and used for describing the instantaneous technique.

In that case, it was assumed that the We values of the six regions

remained constant during the short time interval during which the six

power measurements were made. Now, however, thirty-six observations

are made of the six regions by each radiometer. The We values of the

six regions are assumed to remain constant only during six measurements,

and then they change before the next set of measurements is taken. The

thirty-six values of We are presented in Table 4-13. The average values

of the regions (or columns) appear in the last row.

Four types of power measurements (itemized below) were used in order

to analyze the range of values that the 6We errors have. In this tech-

nique, the 6We errors are the differences between the results obtained

and the averages of the regional We values which are shown in the last

row of Table 4-13. For each of the four types of power measurements,

thirty-six observations were simulated for each radiometer, sphere and
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Table 4-13. Values of We of the six regions for each of the six
sets of observations.

Meas . No .

K

1-6

7-12

13-18

19-24

25-30

31-36

AVERAGES

Values of We (W/m2)

Region 1

280.0

290.0

300.0

310.0

295.0

285.0

293.3

Region 2

250.0

240.0

230.0

220.0

230.0

245.0

235.8

Region 3

240.0

230.0

220.0

210.0

250.0

260.0

235.0

Region 4

220.0

235.0

240.0

250.0

235.0

225.0

234.2

Region 5

200.0

210.0

225.0

230,0

215.0

205.0

214.2

Region 6

160.0

150.0

140.0

130.0

145.0

155.0

146.7
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plate. The four types of measurements considered are:

1. Power measurements are exact, i.e., no instrumental errors are

included.

2. Powers include Gaussian random errors with a = 0.5 W.

3. All power measurements include a 0.9 W systematic uncertainty.

4. Powers include combinations of the above mentioned Gaussian and

systematic uncertainties.

Table 4-14 displays the results obtained from these simulated

power measurements by use of the best fit technique. All of the re-

sults shown in this table for cases with and without instrumental

errors are found acceptable.

As discussed previously in the case of the instantaneous technique,

the effects produced by improper selection of LDF or by inhomogeneities

within a region are similar to those produced by instrumental errors

and can be treated as such. As mentioned before, these errors are

smoothed out by having large values of the ratio J/K. The SWe errors

displayed in Table 4-14 show this to be the case, that is, all the

results obtained are acceptable.



Table 4-14. 6We errors obtained with the best fit technique for spherical and
horizontal plate radiometers. (LDF included)

Power
Spr

uncertainties

None

None —

Gaussian
random o=0.

Gaussian a=0.
random

Systematic 0.9

Systematic 0.9

Gaussian
random o=0.
plus
systematic 0.9

ead Radiometer

Sphere

Plate

5 W Sphere

5 W Plate

W Sphere

W Plate

5 W Sphere

W Plate

2
6We errors (W/m )

Region 1

10.9

10.0

12.1

11.4

11.7

11.1

13.0

12.5

Region 2

-9.8

-7.5

-11.3

-9.3

-8.9

-6.4

-10.4

-8.1

Region 3

-9.0

-8.3

-9.3

-8.5

-8.2

-7.2

-8.5

-7.4

Region 4

7.8

5.9

8.3

6.5

8.7

7.0

9.2

7.6

Region 5

4.4

3.1

4.3

3.0

5.2

4.2

5.1

4.1

Region 6

-2.3

-1.2

-2.4

-1.3

-1.5

-0.1

-1.5

-0.2

o
co
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CHAPTER V. TECHNIQUES FOR OBTAINING THE RADIANT REFLECTANCE

The instantaneous and best fit techniques as used for determining

the radiant reflectance Wr from power measurements by spherical and

horizontal plate radiometers are discussed in this chapter. These

techniques were introduced in the previous chapter for the case of the

terrestrial emitted LWR flux We since that application is less complex

than the present one. Since the best fit technique is an outgrowth of

the instantaneous technique, the latter will be treated first just as

was done in the case of We.

Instantaneous technique

The instantaneous technique yields the values of Wr that the

regions under study have at the time the set of measurements is per-

formed. The Wr values are obtained from a set of J simultaneous equa-

tions expressing the powers measured by a detector observing the K=J

regions under study. Therefore, if the solution exists, it is unique.

A. Technique development

The following application for the case of Wr is very similar to

the development introduced for We, except that in that case a LDF is

used while the present application includes a bidirectional reflectance

model. A horizontal plate satellite radiometer will be considered in

this development; however, the equations discussed also apply to a

spherical radiometer by equating the factor cos a = 1 wherever this

factor appears.

Figure 5-1 presents for easy reference the same regions observed

in the case of the emitted LWR, as well as the same satellite position
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E-A SYSTEM

Figure 5-1. Observation of the Solar Radiation Reflected by the Several
Regions within the FOV of a Low Spatial Resolution Radio-
meter.
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from which one of the observations is assumed to be made. Furthermore,

the regions are defined identically as for the case of LWR by using

the same AA's. The only difference between the case of We and Wr is

that in the latter case it is the reflecting characteristics that are

assumed different from region to region. The AA's used to define the

regions and to perform the numerical integrations are all of equal area

as described previously. The division of the E-A system's surface into

these elemental areas is discussed in detail in Appendix A.

An expression similar to Eq.(4-8) for the SWR power APjM^ that

A A.., contributes to a radiometer measurement is developed as follows.

If A A... denotes the ith elemental area within the k th region that
1JK-

appears in the FOV of the jth observation, then A P . , represents the
1JK-

power increment that this elemental area contributes to the jth obser-

vation. The expression for A P.., is written as

A cosa.
AP.jk - Nr <6,*,0ljk AA..k cos e±jk (5-1)

where Nr(9,ip,c) is the reflected radiance. As indicated by its argu-

ments, this quantity depends on the solar zenith angle £, and on the

zenith and aximuthal angles of the radiometer 6, and ty, respectively.

(Refer to Figure 5-2 which defines pictorially the angles used in the

expression), a is the nadir angle of A A as observed from the satel-

lite, and r is the distance between A A and the satellite. As in the

case of We, the characteristic area of the satellite radiometer Ag is

assumed to be unity and no subscripts will be affixed to A A since all

elemental areas are equal. Then, Eq. (5-1) reduces to
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ZENITH
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RADIOMETER
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AA i jk

:.ire 5-2. Pictorial Definition of the Angles Used to Compute the
SWR Power Increment AP̂ ,. Contributed by the Elemental

Area AA.
ijk
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t cos 9 cos aAA (. 2

r

where Nr. ., denotes the reflected radiance at AA. .
ijk ijk

One of the fundamental concepts included in the instantaneous

and best fit techniques when applied to the SWR flux is that a bidi-

rectional reflectance model (BRM) can be used to describe the reflected

radiation field (Raschke, et al., 1973). In order to express Eq.(5-2)

in terms of the bidirectional reflectance p(0,̂ ,C) this quantity is

now defined as

/s -i\(5-3)

where Hs(£) is the solar irradiance at A A.., which can be expressedIJK

in terms of H , the solar irradiance at A A. for zero solar zenith

angle as follows

Hs(O = H cos t, (5-4)

Hence, using Eqs.(5-3) and (5-4) in (5-2) one obtains

AP..k =AA Ho [cos C p<e,*,5)]ljk< )..k (5-5)

The following three quantities are needed in order to develop an

expression for A P.., that facilitates its computation. The direc-
ijk

tional reflectance r(O is defined by

The ratio of this quantity for an arbitrary solar zenith angle to its

value for zero solar zenith angle will be denoted by R, fe ) , that is
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This quantity is very useful in this development and its value for

several values of £ has been obtained by several investigators

(Raschke, et al., 1973).

Another ratio that will often be used is defined by

This quantity is also plotted by Raschke, et al. (1973).

Substitution in Eq.(5-5) of the value p(9,i|;,C) as obtained from

Eq.(5-8) results in

c°s 6cos a . .
(5 9)

Using the value of r(£) given by Eq.(5-7) in this expression one has

cos c!

From Eq.(5-6) one writes

Wr(5) = Hs(O r(C) (5-11)

from which one obtains for 5=0

Wr(0) = Hs(0) r(0) (5-12)

But from Eq.(5«4), Hs(0) = H . Hence,

Wr(0) = H r(0) (5-13)

Substituting this value of H r(0) into Eq.(5-10) one obtains
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One recalls that the shape factor F for a LWR field and a radiometer

of unit characteristic area was defined by

P = F We (5-15a)

or

A Pijk = Fijk Weijk (5-15b)

One can make a similar definition here, that is,

Then, comparing Eqs.(5-14) and (5-16) one can write for the shape

factor in this application

„ , A A. f cos 0 cos a , fTt

Before discussing the significance of Eq.(5-17), it is convenient to

derive a similar expression for a slightly different shape factor as

follows. Using Eq.(5-4) to substitute the value of H cos £ in Eq.(5-9)

one has

/ A A. rcos 0 cos a. -. r

But the last factor in this expression is Wr(C) as given by Eq.(5-ll).

Hence, the result is

Comparing Eqs.(5-14) and (5-19), one sees that

[Wr(O] i jk = [RX(O cos el [Wr(0) ] (5-20)
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Furthermore, while Eq.(5-14) contains explicitly the value of Wr only

for £=0, Eq.(5-19) contains Wr(£) which applies to any position of

the sun. For this reason, a "true" shape factor Ft is defined from

Eq.(5-20) based on the definition given by Eq.(5-15b) as follows.

0 cos a, ,r

Hence, Eq.(5-19) can be written as

A P.. = Ft.. [Wr(£)].. (5-22)

From Eqs.(5-17) and (5-21) one has

Fijk ° Fti:jk [V5) COS «l (5-23)

or

[R (? ) cos ? ] . . , = ~~ (5-24)
1 XJIC * :Ljk

Substituting this expression into Eq.(5-20) one obtains,

One now has available the equation required to give a mathematical

definition of a region for the case of reflected SWR. It is necessary

to use a quantity that can have a constant value throughout a given

region in order to represent the homogeneous reflecting characteristics

of the region. Obviously, Wr(£) can not be used since it depends on ?

which varies within any region for a given sun position due to the

earth's curvature. However, Wr(0) can be used as follows. Every A A

within an area having approximately homogeneous reflecting characteris-

tics would reflect the same amount of energy Wr(0) if the sun were

positioned at the zenith of each A A.
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An expression similar to Eq.(4-15) for the case of LWR can now

be found for SWR. That is, an expression can be developed for the

SWR power P., (which is the power that the kth region contributes toJk

the jth observation) in terms of the configuration factor F of the
Jk

kth region and jth observation. By summing up the powers AP. contri-
ijk

buted by the AA's (I in number) within the kth region, and using

Eq.(5-16) to express AP. .. in terms of F. , one obtains

Pjk = APiJk= Fijk {

Since Wr(0) is a constant throughout the kth region, it can be taken

outside the summation sign, that is

Pjk = {Wr(0)}k . Fijk = Fjk {Wr(°)}k (5'27)

where F = £ F. is, as mentioned previously, the configuration
3 k ^_ ̂  i j K

factor contributed by the kth region to the jth observation.

An expression similar to Eq.(4-16) for the total power of the jth

observation is obtained by summing up the powers contributed by each

region within the FOV of the radiometer. Hence,

K
P. = I F (Wr(0)} (5-28)
3 k=1 3K

where K is the number of regions in the set that is under study. There

are J equations of the type of Eq.(5-28) for the J observations made,

and this number must match K, the total number of regions observed.

In order to simplify the notation , the symbol Wro will be used to denote

Wr(0). Then, the J = K equations are
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+FlKWr°K

WroR
(5-29a)

FJ1 Wrol + FJ2 Wr°2 + '•' + FJK Wr°K

These equations are represented in matrix form as follows.

F F
11 12

21

. . F
IK

2K

F F F
*J1 *J2 ' ' ' JK

Wro

Wro2

•

•

•

5°K

Pl

P2

•

•

•

_PJ_

(5-29b)

Symbolically, these matrices are written as

F{Wro} = {P} (5-29c)

where F is the JxJ (or KxK since J = K) configuration factor matrix.

{Wro} and {P} are the column matrices made up of the Wro values of the K

regions and the P powers of the J observations, respectively. Eqs.(5-29a)

through (5-29c) are equivalent to Eqs.(4-18a) through (4-18c), respec-

tively, for the LWR case.

If the exact values of P are known, then by inverting F one

obtains F and the values Wro1 are obtained from the following expression.

{Wro1} = F {P} (5-30a)
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As in the case of Eq.(4-19) for the LWR problem, the values of

Wro' obtained agree with the actual Wro values to at least six deci-

mal places. This indicates that the matrix inversion subroutines

used do not introduce computational errors. In this case then, since

Wro' = Wro, one can write

F"1 }̂ = {Wro} (5-30b)

Before proceeding to discuss the effects that observational errors

have on the results obtained, one point needs to be clarified. Eq.(5-30b)

yields the hypothetical value Wro of a region by means of the matrix

operation indicated by this equation. However, how does one go from

here to obtaining the desired result? That is, how does one obtain

the value of Wr(C) of a region if Wro is known for that region? This

question is answered in the following discussion.

It is not possible to develop a set of equations equivalent to

Eqs.(5-29) in terms of Wr(£) rather than Wro. The reason for this is

that when the power increments AP... are added up to obtain the power
13 K

P contributed by the kth region to the jth observation, Wr(£) can not
jfc

be taken out of the summation sign as was done with Wro to obtain

Eq.(5-27). This can be seen by adding up Eq.(5-22), that is

(5-31)

where the value of Wr(? ) is different for each AA.., . However, it

is possible to write

Pjk"

or

Pjk = Ftjk [Wr(5)]jk (5-32)
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where [Wr(£)]-k is the average value of Wr(£ ) obtained for the kth

region during the jth observation.

Eq.(5-32) is similar to Eq.(5-27) which is rewritten here in

terms of Wro rather than Wr(0), that is

jk jk k

It is convenient to derive from Eqs.(5-32) and (5-33) two dif-

ferent expressions for the power P, that the kth region contributes

to the total number of observations J=K. One expression is obtained

by adding up Eq.(5-32) over the J measurements.

J J
Pk = i£i P1k " 4*1 Ftik IW

or

j =

or

Pk=<Wr(0>k Ft (5-35)

(5-36)

where St. is the sum of the true configuration factors Ft., contri-
k j k

buted by the kth region to the total set of J observations.

<Wr(£)> is the average value of Wr(£) obtained for the kth region

for the set of J observations.

Similarly, by adding up Eq.(5-33), one writes

Pk " J! Fjk
 Wr°k <5-37>

As discussed previously, the kth region is assumed to have the value

Wro during the short time interval in which the J observations are
K.

made; that is, the reflecting characteristics of the region remain
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unchanged. Hence, it can be taken out of the summation sign to

obtain

p
k -

 Wr°k Ji V <5-38>
or

Pk = Sk Wrok (5-39)

where S, is the sum of the shape factors contributed by the kth region

to the complete set of J observations.

Equating Eqs. (5-36) and (5-39) one has

Wrok (5-40)

or
S
~ Wro (5-41)

"• Jtk k

Thus, once the values of Wro have been determined by use of

Eq.(5-30b) (or equations similar to this which will be introduced

later) one can find the corresponding average values of Wr(£) by

using Eq.(5-41).

B. Observational errors

The effects that observational errors have on the results is

now investigated. A notation similar to that introduced for the

case of LWR is used here. P1 is the sum of the instrumental error

<SP and the exact power P. 6Wro is the difference between Wro1,

which is the value obtained, and the actual value Wro. Hence one

can write

F"1 '̂} = F~1{P+6P} = {Wro1} = { Wro + 6Wro} (5-42)
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Subtracting Eq.(5-30b) from Eq.(5-42) one obtains

F-1{5P} = {6Wro> (5-43)

As in the case of LWR, it was found that the inverse matrix F

was unstable, that is, the power uncertainties 6P were highly magni-

fied by F . By applying the stabilization scheme developed and used

previously, the original matrix F was rendered well-conditioned. This

new matrix is denoted by F and its inverse by F as was done in theJ we we

case of We. 6Wro' denotes the new errors added to Wro by operating

with F on the column matrix {P} made up of exact power values. Wro
we

is the sum of Wro and the Wro1 errors, that is

F"1 {P} = {Wro(1)} = {Wro + 6Wro'} (5-44)

which is similar to Eq.(4-23) for the case of We.

An expression similar to Eq.(4-24) is also obtained, namely,

F-1 {P'} = F"1 {P + 6P} = {Wro"} = {Wro + 6Wro"} (5-45)
we we

where 6Wro" is the error obtained from the perturbed powers P' = P + 6P

with the new inverse matrix F . Wro" is the sum of the actual value
we

Wro and the error 6Wro".

As was shown previously, the value of <Wr(£)>, can be obtained
K.

by using Eq.(5-41) once Wro is known. This value of Wro is obtained

only when there are no uncertainties in the power measurements, that

is when SP = 0, as seen from Eq.(5-30b). Hence, the values of <Wr(C)>
tc

also correspond to the case for which 6P = 0. Now, however, the results

Wro" contain the uncertainties SWro" as indicated in Eq.(5-45). There-
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fore, Eq.(5-41) is written in the following modified form,

Sk Wro" = <Wr"(O> (5-46)
Stk

where

<Wr"(O>k = <Wr(O>k + 6Wr"(Ok (5-47)

The value of <Wr(£)>, is given by Eq.(5-41) for the case of 6P=0, as
it

was just explained, and 6Wr"(̂ ) is the error contained in the result

<Wr"(£)>,. The Wro" values are the results obtained by means of
cC K.

Eq.(5-45).

Thus, Eq.(5-46) can be rewritten as

Sk [Wro + 6Wro"]. = <Wr(£)>, + dWr'̂ C), (5-48)—

Subtracting Eq.(5-41) from Eq.(5-48) one obtains

= Sk <5Wro" (5-49)

This equation and Eq.(5-41) will be used later in the analysis of the

results obtained. It should be pointed out here that the 6Wr"(̂ )'s are

the errors that have real significance since they represent the errors

in the <Wr"(̂ )> values according to Eq.(5-47). However, the 6Wro" 's

must be known first in order to obtain the 6Wr"(£)'s per Eq.(5-49).
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C. Diffuse reflection model

In this section is discussed the procedure followed to study

how the results are affected when one assumes a diffuse reflection

(DIF) model for interpreting data collected from regions whose SWR

field is described in terms of a bidirectional reflectance model

(BRM) . The essential difference between these two models resides in

the value assigned to the parameter R2(6,'(',C) defined by Eq. (5-8)

which is rewritten here for easy reference

- <5-8)

As was pointed out previously, plots of the function R9 are given by

Raschke, et al. (1973) for snow and different cloud types. Some of

the plotted values for R? go as low as 0.4, while others go as high

as 1.4. The curves presented by Raschke, et al. were used as a basis

for constructing a hypothetical BRM to describe a SWR field. A series

of satellite radiometer observations were simulated and the power mea-

surements were computed using the BRM indicated above.

During data interpretation in one of the investigations, R_(6,ijj,£)

was equated to one which is the value that this function has for a dif-

fuse reflection model. The results obtained were affected in a totally

unpredictable manner. Some of the results that should have been accept-

able became rejectable, while some of the rejectable ones became accept-

able. Hence, as opposed to the LWR case where use of an improper LDF

during data interpretation does not significantly affect the original

results, the use of the DIF model during interpretation of SWR data can

produce results which may be totally unreliable.
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D. Computational procedure

The procedure followed to obtain the Wro" values according to

Eq. (5-45) first requires generating the matrix F; then, by applying

to F the stabilization procedure, F is obtained, from which the

inverse matrix F is calculated. Hence, the procedure must include
we

computations of each F., which are the elements of the matrix F.

These elements are the sums of the shape factors F. ., of the ele-
1JK

mental areas A A.., according to Eq.(5-27). Therefore, the shape

factor F. ... of each A A. ., within the FOV of the radiometer must be
ijk ijk

calculated. These calculations are done by computer.

The following discussion introduces the equations used in the

computer program in order to calculate each F. ., according to Eq.(5-17)
13 "̂

which is rewritten here to facilitate reference to it.

R
i A. .cos 9 cos a cos c,-, , 1 -, (5-50)
TT U 2 JijkLR(e,<|>,C)Jijk

One can see that the angles 9, a, and £ must be determined in order

to compute the three cosine functions and the functions RI and R~

shown in the above equation. Also, r, the distance between the radio-

meter and the observed A A, must be calculated.

The values of the following eight quantities must be known for

each value of F. to be calculated. The same symbols used by Raschke,
IJK.

et al. (1973) are used here in order to facilitate reference to their

document.

1. A , 6: the Greenwich hour angle (measured in
G

degrees westward) and the declination

of the sun, respectively.
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2. X, <j>: the longitude and latitude of AA ,
ijk

respectively.

3. X , <|> : the longitude and latitude of the sub-s s

satellite point, respectively.

4. R: the radius of the E-A system. The value

used is 6401.55 km; 6371.23 km for the

radius of the earth, and 30.32 km for the

thickness of the atmospheric spherical shell.

5. H: the height of the satellite, assumed here to be

800 km.

The following quantity is often used and hence it is here defined

K = (5-51)

From Figure 3-2 , three important relationships among the dif-

ferent angles shown in the figure are easily deduced. An expression

for r, the distance between the satellite and A A.., can be obtained
1JK-

from this figure. Eqs.(3-23) through (3-26) give these relationships

which are rewritten here for easy reference.

6 = a + Y (5-52)

R sin 9 = (R+H) sin a (5-53)

or

sin 6 = K sin a (5-54)

sin Y = TT sin a (5-55)R

r2 = R2 + (R+H)2 - 2R(R+H) cos y (5-56)
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From the above equations 9 and r are computed. The remaining

angles needed to solve Eq.(5-50) are £ and ̂  which are obtained from

the following expressions given by Raschke, et al. (1973). A detailed

derivation of these expressions is presented in Appendix B.

C = cos {cos <(> cos 6 cos(X - X) + sin <)> sin 6} (5-57)

-lrcos £ cos 6 - cos T-, ,_ .
COS { sin C sin 6

 } (5-58)

where

(5-59)

cos r = — {(K cos <|> cos (A - X ) - cos <(» cos(X - X_))cos 6 +D s s G G

(K sin d> - sin <j>) sin 6}
s

and

2 ^
D = {K + 1 - 2K(cos cf> cos <f> cos(X - X ) + sin <|> sin <|>)} 2 (5-60)

S S S

E. Results

The illustration selected to discuss the application of the

instantaneous technique to the case of Wro is the same as that intro-

duced earlier for We. In that application, a satellite was assumed

to circle the earth in an orbit whose inclination was slightly greater

than 90 . Six observations were simulated of six hypothetical regions

which had different We values. Figure 4-2 is a schematic representa-

tion of the six regions and the subsatellite points of the six observa

tions. In the present application, these same regions are assumed to

have different Wro values which are uniform within each of the regions.

Figure 5-3 displays the six regions, the six subsatellite points, the

subsolar point, and the Wr(0) = Wro values. This figure also shows

the values of <Wr(c)> and <Wr(O> obtained according to Eq.(5-41)
s p
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R6

Wr (0)= 202.95

<Wr(£)>s= 177.71

= 178.55

R5

Wr(0) = 270.60

<Wr(£)> 8*24733

p=247.58

R4

Wr(0)= 338.25

<(Wr(£))>s =304.40

,=305.49

R3

Wr(0)= 405.90

<Wr(£)>p=373.2l

SUBSOLAR
PQIMT

R2

Wr(0)=446.49

<Wr(£j>s= 398.79

= 399.34

Rl

Wr(0)=54l.20

<Wr(£)>s=502.29
<Wr (g )>p =502.47

Figure 5-3. Schematic of the Six Regions Observed During a Single
Satellite Pass. The Identifying Number and the Value
of Wr(0) of Each Region, the Subsolar Point and the Six
Subsatellite Points of the Observations Are Shown.
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as particularized to the sphere and plate in Eqs.(5-61) and (5-62).

S
= (~-) Wr(0) (5-61)

s bt s

<Wr(O> = (g£-)p Wr(0) (5-62)

where s and p are subscripts denoting sphere and plate, respectively.

Sk Sk( - ) and ( - ) are the ratios of the sums of the shape factors to
Stk s Stk p

the sums of the true shape factors that the kth region contributes to

the total set of six measurements. As indicated by Eqs.(5-38) and

(5-39), and by Eqs. (5-35) and (5-36), S and St are given by

J=6
S - I F (5-63)

= 3

J=6
St, = I Ft.
k j=1 J

where J = 6 is the total number of observations in the present illu-

stration.

The reason corresponding values of <Wr(£)> and <Wr(?)> differ
s p

slightly for the six regions in Figure 5-3 is thought to be due to

small truncation errors introduced in the computations of the shape

factors and their sums S. and St, .
k k

Figure 5-4 displays the original, ill-conditioned, 6x6 confi-

guration factor matrices for the sphere and plate radiometers gene-

rated according to Eqs.(5-29) for the six observations under consi-

deration.



F(J,D

.189686179

.040528358

.007450660

.000691278

.000000000

.000000000

F(J,2)

.068394333

.029207258

.009006905

.001268763

.000000000

.000000000

F(J,3)

.543375122

.628556145

.579626443

.437124002

.247445185

.092187183

F(J,4)

.144790086

.238738238

.329356206

.442853207

.473557131

.256772937

F(J,5)

.000000000

.000456674

.004237711

.017848877

.052651685

.104251122

F(J,6)

.000000000

.000883453

.010115524

.049218886

.189266111

.501478375

F(J,1)

.126764844

o021624949

.003573654

.000318527

.000000000

.000000000

F(J,2)

.039499114

.014954778

.004301107

.000584634

,000000000

.000000000

F(J,3)

.434097178

.495612491

.451826047

.329962902

.175288545

.057340905

F(J,4)

.093010661

.154382702

.221787030

.328326005

.376384609

.180722206

F(J,5)

.000000000

.000210052

.002009307

.008973405

.028911033

.060610569

F(J,6)

.000000000

.000406401

.004822862

.025947694

.124049597

.398413452

Figure 5-4. Original ill-conditioned configuration factor matrices for a spherical

radiometer (above) and a horizontal plate radiometer (below). (BRM)

to
Ul
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The following equations will be used to discuss the results

obtained in this illustration. Eqs. (5-29c), (5-30b), and (5-42)

through (5-45) are rewritten and renumbered here, respectively, in

order to facilitate reference to them.

F{Wro} = {P} (5-65)

F 1{P> = {Wro} (5-66)

F-1{P + 6P} = {Wro'} = {Wro + 6Wro} (5-67)

F 1{SP} = {6Wro} (5-68)

-1 (1)
F {P} = {Wrov '} = {Wro + SWro1} (5-69)
we

" {P1} = F - {P + SP} = {Wro11} = {Wro + 6Wro"} (5-70)
we we

Using the configuration factor matrices shown in Figure 5-4

and the Wro values of the six regions of Figure 5-3 in Eq. (5-65)

one obtains the two column power matrices, one for the sphere and

one for the plate, which are displayed in Table 5-1. The elements

of the power matrices in this table are the exact power values,

that is, they do not contain uncertainties. Hence, when the inverses

of the two original matrices shown in Figure 5-4 operate on the cor-

responding power matrices {P} of Table 5-1 in accordance with Eq.(5-66),
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Table 5-1 Power column matrices
and plate radiometers.

obtained for the sphere
(BRM)

Observation
No.

1
2
3
4
5
6

Power matrix elements P (W)
Sphere

402
371
357
342
313
254

.726754250

.161717506

.928570698

.983272546

.277803126

.257613163

Plate

293.901994233
271.908959494
263.792636358
253.115921135
231.460905826
181.663189538

the column matrix {Wro} is obtained. The Wro elements of this

matrix match the original Wro values shown in Figure 5-3 to at

least six decimal places. The accuracy of this computation im-

plies that no significant truncation errors are introduced by the

subroutine used to accomplish the matrix inversions.

The effects that observational errors have upon the results

were investigated in exactly the same manner as was done in the

• case of LWR. That is, it was accomplished by simulating thirty

sets of power measurements by each radiometer from the six points

of observation pictured in Figure 5-3. The new power measurements

including uncertainties (for both radiometers) were simulated by

perturbing the exact power values shown in Table 5-1 with three

types of instrumental errors 6P as follows: a) Gaussian random,

b) systematic, c) combinations of Gaussian and systematic. The

sigma value of the Gaussian errors was 0.5 W, while the systematic

errors ranged from -0.9 to 0.9 W. Ten satellite passes making six

measurements in each pass by each radiometer, and for each of the
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three types of instrumental uncertainties were simulated. Hence, a

total of thirty satellite passes making six radiometer measurements

in each pass were simulated.

The perturbed powers P1 = P + SP constitute the elements of the

new power column matrices {P*} = {P + <SP} for each set of six measure-

ments simulated for both types of radiometers. The matrices F , which

are the inverses of the original ill-conditioned matrices in Figure 5-4

were multiplied with the new perturbed power matrices {P1} in accord-

ance with Eq.(5-67) to obtain {Wro'J. The errors <SWro in this equation

are obtained by subtracting the original Wro values from the correspond-

ing new Wro1 results. These errors can also be obtained by operating
-̂i

on {6p} with the inverse matrix F in accordance with Eq.(5-68). This

is done for both types of radiometers. The rms's of the 6Wro errors

of each region for each set of ten satellite passes for each of the

three types of uncertainties were then computed. These rms's are

displayed in lines 1, 4, and 7 of Table 5-2 for the sphere, and of

Table 5-3 for the plate.

From the results shown in line #4 of both of the above tables,

it is seen that systematic power uncertainties do not produce large

6Wro errors, just as was true in the LWR case. The largest rms value

2 2
in line #4 is 0.8 W/m for the sphere and 1.1 W/m for the plate.

However, from lines 1 and 7 of the same tables, it is clear that

Gaussian random power uncertainties are highly magnified by the in-

verse matrices F~ of both radiometers. Only region #3 has acceptable

2
values (below 15 W/m ) in lines 1 and 7 in both tables. Region//5

2
has the largest rms values in these two lines, namely, 350.5 W/m



Table 5-2. Rms's of the 6Wro, 6Wro" and 6Wr" errors obtained with the original and the
stabilized inverse matrices of a spherical radiometer. (BRM.)

Power
Spr

uncertainties

Gaussian a=0.
random

Gaussian a=0.
random

Gaussian a=0.
random

Systematic -.9 to

Systematic -.9 to

Systematic -.9 to

Error
ead

type

5 W 6Wro

5 W 6Wro"

5 W 6Wr"

.9 W 6Wro

.9 W 6Wro"

.9 W 6Wr"

Gaussian a=0.5 W 6Wro
random

plus

systematic 0.9

6Wro"

W 6Wr"

Rms's of the 6Wro, SWro"

Region 1

41.8

18.5

16.6

0.6

11.5

10.3

41.6

17.9

16.1

Region 2

161.5

64.6

52.9

0.7

50.7

41.5

161.6

65.2

53.4

Region 3

11.1

2.7

2.5

0.7

2.2

2.1

11.0

1.9

1.8

2
and 6Wr" errors (W/m )

Region 4

18.1

1.4

1.2

0.7

1.1

1.0

18.3

2.0

1.8

Region 5

350.3

29.4

23.5

Oo4

19.3

15.4

350.5

29.6

23.7

Region 6

66.2

6,4

5.5

0.8

3.6

3.1

66.5

6,2

5.3

S3



Table 5-3. Rms's of the 6Wro, 6Wro" and 6Wr" errors obtained with the original and the
stabilized inverse matrices of a horizontal plate radiometer. (BRM)

Power
Spr

uncertainties

Gaussian a=0.
random

Gaussian a=0.
random

Gaussian o=0.
random

Systematic -.9 to

Systematic -.9 to

Systematic -.9 to

Gaussian a=0.
random

plus

systematic 0=9

Error
ead

type

5 W 6Wro

5 W 6Wro"

5 W 6Wr"

.9 W 6Wro

.9 W 6Wro"

.9 W 6Wr"

5 W 6Wro

6Wro"

W 6Wr"

Rms's of the 6Wro, 6Wro" and 6Wr"

Region 1

53.2

23.8

21.6

0«8

9.5

8.6

53.1

23.2

21.0

Region 2

221.1

86.7

72.0

1.0

45.9

38.1

221.3

87.4

72.5

Region 3

8.4

2.0

1.8

0.9

1.2

1.1

8.3

1.5

1.4

Region 4

15.1

1.8

1.6

0.9

0.8

0.8

15.4

2.3

2.1

2
errors (W/m )

Region 5

370.7

49.8

40.5

0.6

18.9

15.4

370.9

49.9

40.6

Region 6

51.4

7.8

608

1.1

2.4

2.1

51.8

7.8

6.8
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2
for the sphere (line 7 of Table 5-2), and 370.9 W/m for the plate

(line 7 of Table 5-3). These results clearly show that the original

matrices F of the two radiometers shown in Figure 5-4 are ill-

conditioned and that their corresponding inverses F are unstable.

Application of the matrix stabilization technique previously

described and applied to the case of LWR was used here in an identi-

cal fashion. The two resulting well-conditioned matrices are dis-

played in Figure 5-5. The same optimum cut-off values found for

stabilizing the matrices in the LWR case were used here, namely,

0.032 and 0.016. Any element smaller than 0.032 in the configu-

ration factor matrix for the sphere, and smaller than 0.016 in that

for the plate is removed and added to the diagonal element in the

same row of the element removed.

Comparisons of the elements of the original matrices in Figure

5-4 with the corresponding elements of the well-conditioned matrices

in Figure 5-5 indicate that all non-diagonal elements below the cut-

off values have been translated along their corresponding rows and

added to the diagonal elements in those rows.

Inversion of the two well-conditioned matrices F shown in
we

Figure 5-5 produced the inverses F which were multiplied with the

perturbed power column matrices {P1} in accordance with Eq.(5-70).

The new errors 6Wro" obtained per this equation were used to compute

new sets of rms's for the six regions and for both radiometers.

These new rms's are shown in lines 2, 5, and 8 of Table 5-2 for the

sphere and of Table 5-3 for the plate. Comparison of the rms's in

line 2 with those of line 1, and those of line 8 with those of line 7



F(J,1)

.189686179

.040528358

.000000000

.000000000

o 000000000

.000000000

F(J,2)

.068394333

.030547386

.000000000

.000000000

.000000000

.000000000

F(J,3)

.543375122

.628556145

.610437244

.437124002

.247445185

.092187183

F(J,4)

.144790086

.238738238

.329356206

.462662226

.473557131

.256772937

F(J,5)

.000000000

.000000000

.000000000

.000000000

.052651685

.104251122

F(J,6)

.000000000

.000000000

.000000000

.049218886

.189266111

.501478375

F(J,1)

.126764844

.021624949

.000000000

.000000000

.000000000

.000000000

F(J,2)

.039499114

.015571231

.000000000

.000000000

.000000000

.000000000

F(J,3)

.434097178

.495612491

.466532977

.329962902

.175288545

.057340905

F(J,4)

.093010661

.154382702

.221787030

.338202571

.376384609

.180722206

F(J,5)

.000000000

.000000000

.000000000

.000000000

.028911033

.060610569

F(J,6)

.000000000

.000000000

.000000000

.025947694

.124049597

.398413452

Figure 5-5. Well-conditioned configuration factor matrices for a spherical radiometer

(above) and a horizontal plate radiometer (below). (BRM)

u>
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is indicative of the excellent results obtained with the matrix

stabilization technique. For example, the highest rms value for

the sphere was found in region 5 as mentioned previously. This

2
rms value of 350.5 W/m (line 7) was drastically reduced to 29.6

2
W/m (line 8). Region 5 also had the highest rms value in the

2
case of the plate. This value which was 370.9 W/m (line 7) became

2
49.9 W/m (line 8). Similarly, region 2 in the case of the sphere

2
had an rms value of 161.6 W/m in line 7 of Figure 5-2 which was

2
reduced to 65.2 W/m (line 8). For the plate, the corresponding

2
rms value in Table 5-3 was 221.3 W/m (line 7 , region 2) which

2
was brought down to 87.4 W/m .

It should be pointed out that the stabilization scheme increases

the 6Wro errors due to systematic power uncertainties. As seen from

a comparison of the rms values in lines 4 and 5 of Tables 5-2 and

5-3, the error increase is notable for regions 1, 2, and 5. The new

2
rms values of these regions are 11.5, 50.7 and 19.3 W/m for the

2
sphere (Table 5-2), and 9.5, 45.9 and 18.9 W/m for the plate

(Table 5-3). The error increase for regions 3, 4 and 6 is not as

significant. These regions have the following new rms values:

a) 2.2, 1.1, and 3.6 W/m2 for the sphere, b) 1.2, 0.8 and 2.4 W/m2

for the plate. It will be shown soon that according to the results

obtained with the prediction technique, the results obtained for

regions 3, 4 and 6 are considered acceptable, while those obtained

for regions 1, 2 and 5 are unreliable due to lack of sufficient

information from these regions. Consequently, the error increments,

(although large) introduced by the matrix stabilization technique
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into the results of regions 1, 2 and 5 have no significance in

the final analysis since in any case the results of these regions

will be shown to be unacceptable.

Rows 3, 6 and 9 in Tables 5-2 and 5-3 deserve special atten-

tion. The data in these rows have no counterpart in the LWR case.

These data are the rms's of the 6Wr"(C) errors that are computed

from the rms's of the <SWro" errors appearing in lines 2, 5 and 8

according Co Eq.(5-49). This equation is rewritten here in the

modified form used to obtain

k

The values of the ratios S, /St. for the six regions for both

radiometers are given in Table 5-4 below. Using these ratios, two

examples will be discussed.

Table 5-4. Values of the ratio S /St for the six regions
rC K,

and for both radiometers. (BRM)

Radiometer

Sphere

Plate

1 Rl 1

0.896

0.905

R2

0.819

0.830

R3 1

0.934

0.927

R4

0.909

0.910

R5

0.799

0.813

R6

0.863

0.871

The value 1.8 for region 3 in row 9 of Table 5-2 is obtained by

multiplying the value 1.9 immediately above it by 0.934. This last

factor is the value of S /St for the sphere and region 3 in Table 5-40
K. K.

Similarly, 1.4, the corresponding value for the plate in Table 5-3 is

obtained by multiplying the value above it (1.5) by 0.927 from Table 5-4.
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All the values of S. /St, in Table 5-4 are less than one.
k k

This indicates that the rms's of the 8Wr"(?) errors are smaller

than the rms's of the 6Wro" errors. Because of this, it is

believed unnecessary to include the rms's of the SWr"(c) errors

in the data tables of the diffuse reflection case to be discussed

later.

Figures 5-6 and 5-7 display the curves of the rms's of the

6Wro and 6Wro" errors (derived from combinations of Gaussian and

systematic power uncertainties) versus the regional configuration

factor S, of each region for the sphere and plate, respectively.
1C

These figures show the remarkable contrast between the curves ob-

tained with the unstable and with the stabilized inverse matrices.

As defined previously, S, is the sum of the shape factors that the
K.

kth region contributed to all six observations and is referred to as

the regional configuration factor of the kth region. The curves in

Figures 5-6 and 5-7 are plots of the data appearing in the 7th and

8th rows of Tables 5-2 and 5-3 previously presented.

An additional method of showing the striking difference between

the original ill-conditioned matrices F and the new well-conditioned

matrices F is by comparing their condition numbers. The values of

this parameter are displayed in Table 5-5 for both radiometers. From

the last column, it is seen that the values of the condition numbers

dropped from 1192 to 134 for the sphere, and from 987 to 190 for the

plate. The significant reduction in the values of this parameter

for both radiometers clearly indicates the effectiveness of the

matrix stabilization technique developed just as was shown to be the

case in the LWR application.
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Figure 5-6. Rms's of the Errors 6Wro and 6Wro" (Derived from Gaussian
and Systematic Uncertainties) for the Six Regions with
the Unstable and Stabilized Inverse Matrices of a Spheri-
cnl Radiometer. (BRM)
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Table 5-5. Condition numbers of the original, ill-conditioned and the new, well-
conditioned configuration factor matrices for both types of radiometer,
spherical and horizontal plate. (BRM)

Radiometer

Sphere

Sphere

Plate

Plate

Mat!
Matrix F

F 1

T
fix Eigenvalues y of F F

F nmax

Original, F FTF 1.845019494

Well-conditioned, F FT F 1.887796292
we we we

Original, F FTF 1.045866846

Well-conditioned, F FT F 1.061700938
we we we

Vn

0.000001298

0.000104577

0.000001073

0.000082767

Condition

number

1192

134

987

190

u>
oo
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The instantaneous technique was also applied to a SWR field

which was assumed to be described by a DIP model. As explained

before, the parameter R2(6,ij>,^) = r(c)/np(6,iji,£) = 1 in this model.

This case was treated in the same manner as the BRM case just dis-

cussed. The rms's of the 6Wro errors obtained with the unstable

matrices, as well as the rms's of the 6Wro" errors calculated with

the stabilized matrices are displayed in Table 5-6 for the sphere

and in Table 5-7 for the plate. As in the case of the BRM, and also

as in the case of LWR, lines 2, A and 6 of both tables show accept-

able results for regions 3, 4 and 6 for both types of radiometers.

Figures 5-8 and 5-9 exhibit the curves of the rms's of the SWro

and SWro" errors (derived from combinations of Gaussian and systema-

tic uncertainties) versus the regional configuration factor S, of
K.

each region for the sphere and plate, respectively. These figures

show the significant difference between the curves obtained with the

unstable and with the stabilized matrices. Comparing the curves in

Figures 5-8 and 5-9 for the DIF case with those in Figures 5-6 and

5-7 for the BRM case, one can see that the stabilization scheme pro-

duces excellent results in both applications.

The prediction parameter PP was introduced in the LWR case and

its definition was given by Eq.(4-36) which is here rewritten and

renumbered for easy reference.

PP = (S, F../Z.) x 1000 (5-72)
K- JJ J

where S is the regional configuration factor of the kth region,
K.

F.. is the diagonal element in the jth row of the configuration

factor matrix F, and E. is the sum of the elements in the jth



Table 5-6. Rms's of the 6Wro and 6Wro" errors obtained with the original and stabilized
inverse matrices of a spherical radiometer. (Diffuse model)

Power
Spr

uncertainties

Gaussian
random a=0 .

Gaussian a=0.
random

ead Matrix

5 W Original

5 W Stabilized

Systematic -.9 to .9 W Original

Systematic -.9 to .9 W Stabilized

Gaussian
random a=0 .
plus
systematic 0.9

5 W Original

W Stabilized

2
Rms's of 6Wro and 6Wro" errors (W/m )

Region 1

40.5

15.6

0.6

5.9

40.4

15.2

Region 2

179.4

57.1

0.7

31.3

179.6

57.5

Region 3

12.6

1.6

0.6

0.9

12.5

1.2

Region 4

24.4

1.6

0.7

0.9

24.6

1.4

Region 5

315.5

32.5

0.1

30.8

315.5

33.1

Region 6

58.7

6.7

0.7

5.5

59.0

6.1

JS
o



Table 5-7. Eras's of the 6Wro and 6Wro" errors obtained with the original and stabilized
matrices of a horizontal plate radiometer. (Diffuse model)

Power
Spr

uncertainties

Gaussian
random a=0 .

Gaussian o=0.
random

Systematic -.9 to

Systematic -.9 to

Gaussian
random a=0 .
plus
systematic 0.9

ead Matrix

5 W Original

5 W Stabilized

.9 W Original

.9 W Stabilized

5 W Original

W Stabilized

2
Rms's of 6Wro and 5Wro" errors (W/m )

Region 1

50.4

22.4

0.8

4.6

50.2

22.0

Region 2

233.9

89.1

1.2

26.9

179.6

89.6

Region 3

8.6

1.6

0.8

0.7

12.5

1.6

Region 4

18.1

2.1

0.9

1.0

24.6

2.1

Region 5

323.4

43.9

0.2

30.3

315.5

44.3

Region 6

44.2

6.8

1.0

3.8

59.0

6.4
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Figure 5-8. Rms's of the Errors 6Wro and 6Wro" (Derived from Gaussian
and Systematic Uncertainties) for the Six Regions with
the Unstable and Stabilized Inverse Matrices of a Spheri-
cal Radiometer. (DIF)
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Figure 5-9. Rms's of the Errors 6Wro and <5Wro" (Derived from Gaussian
and Systematic Uncertainties) for the Six Regions with the
Unstable and Stabilized Inverse Matrices of a Horizontal
Plate Radiometer. (DIF)
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row of this same matrix F. The cut-off values determined for this

parameter in the case of LWR were found to be applicable also in

the SWR case, as will be shown later. These cut-off values of PP

are 150 for the sphere and 100 for the plate.

Figures 5-10 and 5-11 are plots of the rms's of the 6Wro"

errors for the BRM case (derived from Gaussian plus systematic power

errors) of the six regions versus the values of PP for these regions

for the sphere and plate, respectively. In both figures, regions

o
3, 4 and 6 show rms values of less than 8 W/m , while regions 1, 2 and

f\
5 show rms values of 20 W/m or greater. The gap in the value of PP

between these two groups is at least 250. The broken vertical lines

denote the cut-off values of PP (150 for the sphere and 100 for the

plate) already discussed. Hence, according to these cut-off values,

the prediction scheme indicates that only the results of regions 3,

4 and 6 are to be considered acceptable, while those of regions 1, 2

and 5 should be considered unreliable for lack of sufficient infor-

mation from these regions. These predictions, as one sees from

these curves, agree with the rms's of the 6Wro" errors obtained from

simulation experiments of several satellite observations. Data

gathered during different satellite passes which include sufficiently

large sections of the three rejected regions (1, 2 and 5) yield

results that are acceptable for these regions as will be shown soon.

Figures 5-12 and 5-13 show plots for the DIF model case which

are the equivalent of those exhibited in Figures 5-10 and 5-11 for

the case of the BRM. Again here, the PP cut-off values of 150 for

the sphere and 100 for the plate predict that only the results of
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Figure 5-12. Relationship between the Prediction Parameter and the
Rms's of the 6Wro" Errors Obtained with the Stabilized
Inverse Matrix of a Spherical Radiometer. (DIF)



148

J_
400 800 1200 1600

PREDICTION PARAMETER PP = (S F../E.) x 1000

Figure 5-13. Relationship between the Prediction Parameter and the
Rrns's of the 6Wro" Errors Obtained with the Stabilized
Inverse Matrix of a Horizontal Plate Radiometer. (DIF)



149

regions 3, 4 and 6 are acceptable. This is easily verified by

observing that the rms's of the 6Wro" errors of these regions are
2

less than 15 W/m in both figures, while those of regions 1, 2

2
and 5 are above 15 W/m .

As was stated in the LWR case, it was necessary to develop

the matrix stabilization and prediction techniques for use in con-

junction with the instantaneous technique only because the portions

observed of some of the regions were too small. Hence, as was

proven in the case of the LWR, if the satellite positions are se-

lected so as to observe sufficiently large sections of all the

regions under study, then the results obtained with the original

matrices of both radiometers would be acceptable. There would then

be no need for using any matrix stabilization techniques or predic-

tion schemes.

The same satellite positions selected in the LWR case to ob-

serve sufficiently large portions of all regions were used in the

SWR case. The rms's of the 6Wro errors calculated with the original

matrices and the rms's of the <$Wro" errors obtained with the stabi-

lized matrices are displayed in Table 5-8 for the sphere and 5-9 for

the plate. From rows 1, 3 and 5 in these tables it is seen that the

results obtained with the original matrices for all six regions are

2
acceptable. The highest rms value is 3.4 W/m for the sphere

2
(region 2, row 5, Table 5-8), and 4.1 W/m (same region and row of

Table 5-9). It is also seen from lines 2, 4 and 6 of both tables

that in those instances in which the stabilized matrices produce an

improved result, the improvement is negligible.



Table 5-8. Rms's of the 6Wro and 6Wro" errors obtained with the original and stabilized
inverse matrices of a spherical radiometer. Adequate portions of all regions
are observed by judicious selection of satellite positions. (BRM)

Power

uncertainties
Spread Matrix

Rms's of the <SWro and <SWro" errors (W/m )

Region 1 Region 2 Region 3 Region 4 Region 5 Region 6

Gaussian
random

Gaussian
random

a=0.5 W

0=0.5 W

Original

Stabilized

2.4

2.7

3.4

2.9

1.9

2.7

2.8

2.4

1.4

1.8

1.4

1.3

Systematic

Systematic

,9 to .9 W

.9 to .9 W

Original

Stabilized

0.6

2.5

0.7

0.7

0.7

1.8

0.6

0.5

0.6

1.6

0.7

Gaussian
random
plus
systematic

a=0.5 W

0.9 W

Original

Stabilized

2.4

3.3

3.4

3.0

2.1

2.1

3.1

2.6

1.7

2.4

1,5

1.5

Uio



Table 5-9. Rms's of the 6Wro and 6Wro" errors obtained with the original and stabilized
matrices of a horizontal plate radiometer. Adequate portions of all regions
are-observed by judicious selection of satellite positions. (BEM)

Power
Spr

uncertainties

Gaussian
random o=0 .

Gaussian o=0.
random

Systematic -.9 to

Systematic -.9 to

Gaussian
random a=0 .
plus
systematic 0.9

ead Matrix

5 W Original

5 W Stabilized

.9 W Original

.9 W Stabilized

5 W Original

W Stabilized

2
Rms's of the 5Wro and 6Wro" errors (W/m )

Region 1

2.8

2.6

0.9

1.8

2.8

3.1

Region 2

4.0

3.6

0.9

1.1

4.1

3.8

Region 3

2.1

2o3

0.9

1.1

2.3

1.9

Region 4

3.2

2.8

0.9

0.7

3.7

3.2

Region 5

1.5

1.5

0.8

1.2

1.9

2.2

Region 6

1.5

Io4

0.9

1.0

1.8 '

1.8
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The data in the fifth row of Tables 5-8 and 5-9 were plotted

versus the corresponding values of PP for the six regions. These

plots are displayed in Figure 5-14 for the sphere and 5-15 for

the plate. It is seen that the PP values of all regions in Figure

5-14 are above the cut-off value of 150, except for region 2 whose

PP value fell just below this mark. Its value is 148. Thus, for

all practical purposes, the cut-off value of 150 introduced for the

sphere in the LWR case is still applicable in this instance. The PP

values of all six regions in Figure 5-15 are greater than 100 which

is the cut-off value determined for the plate in the LWR case and

which is also applicable in this case.

The effects on the results caused when an improper BRM was used

during data interpretation were evaluated as follows. First, a set

of six power measurements of a SWR field described by a BRM was simu-

lated, and the powers were computed using the correct BRM. These pow-

ers are the ones displayed in Table 5-1 for the sphere and plate for

the BRM case discussed previously. These powers were then perturbed

in the same manner as was done for the case of the BRM. In that case,

the BRM was used during interpretation of the data. Now, however,

a DIF model is assumed during data interpretation. That is, the per-

turbed power matrices were multiplied with the inverse matrices

derived for a DIF model case.

Table 5-10 shows the rms's of the the 6Wro" errors for the case

just described for a spherical radiometer. These rms values were

calculated as follows. The information obtained by observing a SWR

field which is described by a BRM was processed under the assumption
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Rms's of the 6Wro Errors Obtained with the Inverse Matrix
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Regions Are Observed by Judicious Selection of Satellite
Positions. (BRM)
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Table 5-10. Rms's of the 6Wro" errors obtained when the stabilized inverse matrix of
a spherical radiometer derived for a diffuse reflectance model (DIF) was
then applied to a Wr field which is described by a bidirectional reflec-
tance model. (BRM/DIF)

Power

uncertainties

Gaussian
random

Systematic

Reg

2
Rms's of the 6Wro" errors (W/m )

ion 1 Region 2

a=0.5 W 13.3 81.6

-.9 to .9 W 2.2 70.5

Combination of
Gaussian random a=0.5 W , ~ , an Q
and systematic 0.9 W

Region 3

33.0

32.7

32.2

Region 4

1.4

0.5

1.6

Region 5

44.4

45.1

45.1

Region 6

10.1

9.8

9.3

Ul
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that it was derived from a radiation field described by a diffuse

reflection model. Two important points should be noted from the

results in Table 5-10: a) region 3, which had an acceptable rms

2
error of 1.9 W/m (Table 5-2, line 8) when the correct BRM was

used during data interpretation, now has an unacceptable value

of 32.2 W/m2 (Table 5-10, line 3); b) region 1, which had an

2
unacceptable rms error of 17.9 W/m (Table 5-2, line 8), now

2
has an acceptable value of 13.4 W/m . These results are absurd

since region 3 has the largest S, value (2.56), while the S, value

of region 1 (0.23) is one of the smallest. Hence, use of an

incorrect BRM during data interpretation, such as application of a

diffuse reflection model, can produce results which may be unreliable.

Figure 5-16 serves to depict the discrepancy now existing in

the above situation. The prediction scheme indicates as before that

regions 3, 4 and 6 should have acceptable results since they have

large S, values and large PP values. However, the rms of the 6Wro"
rC

2
error of region 3 is above 30 W/m . Region 1 has an rms value of

2
less than 15 W/m , but since the S, value is small, its PP value is

also small and it is predicted to have unreliable results for lack

of sufficient data from this region.

The three SWR cases investigated with the instantaneous tech-

nique are:

1. BRM/BRM: A field described by a BRM is interpreted by
using the correct BRM.

2. DIF/DIF: A diffuse reflection field is interpreted as such.

3. BRM/DIF: A field described by a BRM is erroneously interpreted
by assuming it to be a diffuse reflection field.
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A comparison of the results obtained in the above three cases

for those regions whose data was predicted acceptable (regions 3,

4 and 6) is presented in Table 5-11. From the results shown in

rows 1, 2, 4, 5, 7 and 8 of this table it is seen that whenever

the correct angular function that describes the field is used dur-

ing data interpretation, the results obtained for regions 3, 4 and

6 are satisfactory. Rows 3, 6 and 9 indicate that region 3 is not

acceptable when the DIP model is used to interpret data obtained

from a radiation field which is represented by a BRM. This result

is unreasonable, as indicated above, since region 3 was observed

more than any of the other regions, that is, it has the largest

value of S, .



Table 5-11. Comparisons of the effects of proper and improper
selection of the angular distribution function on the
rms's of the 6Wro" errors obtained with the stabilized
inverse matrix of a spherical radiometer for the
three regions whose results are predicted acceptable.
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Power

uncertainties

Gaussian random

Gaussian random

Gaussian random

Systematic

Systematic

Systematic

Gaussian random

plus

systematic

Spread

a=0.5 W

0=0.5 W

0=0.5 W

-.9 to .9 W

-.9 to .9 W

-.9 to .9 W

0=0.5 W

Case

studied

Rms's of 6Wro"

R3 R4

BRM/BRM 2.7 1.4

DIF/DIF 1.6 1.6

BRM/DIF 33.0 1.4

BRM/BRM 2.2 1.1

DIF/DIF 0.9 0.9

BRM/DIF 32

BRM/BRM 1

.7 0.5

.9 2.0

DIF/DIF 1.2 1.4

0.9 W BRM/DIF 32.2 1.6

R5

6.4

6.7

lOol

3.6

5,5

9.8

6.2

6.1

9.3
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Best fit technique

This technique is a natural outgrowth of the instantaneous

technique. As explained in detail in its application to the LWR

case, the main difference between the two methods developed is

that in the instantaneous technique, the number of observations J

equals the number of regions K, while in the best fit technique

the number of observations J is much greater than K the number of

regions observed. In the best fit technique, the method of least

squares is used to find an approximate solution to the problem.

Since the details of the best fit technique were thoroughly

discussed in the LWR case, the application of this technique to

the case of SWR will be done by simply using the same illustra-

tion introduced in the LWR case. That is, it is assumed that

thirty-six observations are made of the same six regions used in

that illustration. The values of Wro of the six regions are pre-

sumed to remain constant during each set of six measurements, and

then they are changed before the next set of six measurements is

taken. Table 5-12 displays the thirty-six values of Wro. Each

row in this table has the Wro values that the six regions have

during a given set of six measurements.

As in the case of LWR, the four types of power measurements

itemized below are studied. For each of these four types of mea-

surements, thirty-six observations are simulated for both types of

radiometers. The four types of measurements considered are the

same ones used in the LWR application and which are restated here

for easy reference.



Table 5-12. Values of Wro of the six regions for each of the six
sets of observations.
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Meas . No .

K

1-6

7-12

13-18

19-24

25-30

31-36

AVERAGES

Values of Wro (W/m2)

Region 1

541.0

531.0

521.0

511.0

526.0

536.0

527.7

Region 2

446.0

457.0

467.0

477.0

467.0

452.0

461.0

Region 3

406.0

416.0

426.0

436.0

396.0

386.0

411.0

Region 4

338.0

323.0

318.0

308.0

323.0

333.0

323.8

Region 5

271.0

261.0

246.0

241.0

256.0

266.0

256.8

Region 6

203.0

213.0

223.0

233.0

218.0

208.0

216.3
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1. Exact power measurements, i.e., no uncertainties included,

2. Power values include Gaussian random errors with a=0.5 W.

3. Powers include 0.9 W systematic errors.

4. Combinations of the above Gaussian and systematic uncertain-

ties are included in the power values.

Table 5-13 displays the results obtained with the best fit tech-

nique by simulating the types of power measurements described above.

The 6Wro errors shown in this table were calculated by subtracting

the results obtained in each case from the average value of Wro com-

puted for each region. These averages are shown in the last row of

Table 5-12.

The SWR field is assumed to be described by a BFM and this same

BRM is used for interpreting the data.

The magnitudes of all of the 5Wro errors obtained with the best

2
fit technique are below 12 W/m as seen from the results shown in Table

5-13, and hence, the errors are acceptable.



Table 5-13. <SWro errors obtained with the best fit technique for spherical and
horizontal plate radiometers. (BRM)

Power
Spr

uncertainties

None —

None —

Gaussian
random a=0 .

Gaussian a=0.
random

Systematic 0.9

Systematic 0.9

Gaussian
random a=0 .
plus
systematic 0.9

ead Radiometer

Sphere

Plate

5 W Sphere

5 W Plate

W Sphere

W Plate

5 W Sphere

W Plate

2
6Wro errors (W/m )

Region 1

-10.9

-10.1

-12.5

-11.8

-10.0

-8.8

-11.5

-10.5

Region 2

9.1

7.1

9.9

7.8

10.1

8.4

10.8

9.1

Region 3

9.1

8.4

9.5

8.8

10.0

9.7

10.5

10.1

Region 4

-7.2

-5.5

-7.1

-5.3

-6.3

-4.3

-6.2

-4.1

Region 5

-4.3

-3.1

-4.7

-3,5

-3.4

-1.9

-3.8

-2.2

Region 6

2.5

1.3

2.9

1.9

3.4

2.6

3.9

3o2



164

CHAPTER VI. CONCLUSIONS AND RECOMMENDATIONS

Conclusions

On the basis of the results obtained in this investigation, the

following is concluded.

1. The techniques developed in this research, denoted as instantaneous

and best fit, provide two methods for computing the radiation bud-

get Q = Hs - Wr - We of regions of the earth-atmosphere system

which are smaller than the field of view of low spatial resolu-

tion radiometers. The two techniques yield the instantaneous and

averaged values of the radiant reflectance Wr and the radiant emit-

tance We for each region under study. As previously explained in

the Introduction, the regional spatial average of incident solar

radiation Hs, the first component of Q, can be easily obtained by

available procedures.

2. The instantaneous and best fit techniques have the important

characteristic of isolating in space the problem of determining

the regional values of We and Wr. No region outside the set of

regions under study is used in obtaining the results of the set

investigated. Conversely, the data gathered from a given set of

regions is not used in computing the results of any that is out-

side this set. The sizes of the regions in this investigation

were arbitrarily chosen. The ratio of the area of the smallest

region to the area of the field of view is 0.256, while the ratio

of the largest region to the field of view is 0.428. The area of

the earth-atmosphere system that is subtended by the field of view

2
of a radiometer at an altitude of about 800 km is 28,606,466 km .
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An estimate of the smallest region size that is theoretically

possible in the use of the instantaneous technique was obtained.

For a sampling rate of two observations per minute, the minimum

6 2
region size is about 5.06x10 km , which is about 0.177 times

the area of the field of view.

3. The scheme introduced for performing the numerical integrations

required for computing the powers intercepted by the radiometers

represents the simplest way of accomplishing this integration.

In this integration scheme, the earth-atmosphere system is

divided into 2060 elemental areas. These areas are fixed, that

is, their size and position remain unchanged as the satellite

moves, regardless of the type of satellite orbit (circular or

elliptical).

4. The instantaneous technique isolates in time the determination of

We and Wr by evaluating these quantities from radiometer data

acquired during a single satellite pass. Consequently, this

technique provides the instantaneous regional values of We and Wr.

5. The instantaneous technique yields excellent results when applied

to the case of radiant emittance as well as to the case of radiant

reflectance when used in conjunction with the matrix stabilization

and prediction techniques. The high accuracies obtained are illu-

strated by the following range of uncertainties in the values

of We and Wr when typical observational errors are included in the

power measurements of spherical and horizontal plate radiometers:

2 2
a) 1.1 to 4.4 W/m for the sphere, and 1.4 to 4.9 W/m for the

2
plate in the case of We; b) 1.8 to 5.3 W/m for the sphere and

2
1.4 to 6.8 W/m for the plate in the case of Wr.
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6. The stabilization scheme developed in this research renders well-

conditioned the configuration factor matrices F as demonstrated by

a) the significant reduction in the values of the condition numbers

of the matrices, from 1087 to 184 for the sphere, and from 945

to 253 for the plate in the case of We; from 1192 to 134 for the

sphere, and from 987 to 190 for the plate in the case of Wr;

b) the remarkable decrease in the magnification of observational

2
errors, from 43.7 to 4.4 W/m for the sphere, and from 35.1 to

2
5.9 W/m for the plate in the case of a LDF field for region 6.

7. The prediction technique represents a reliable method for deter-

mining which results are to be considered acceptable within

defined error limits and which are to be taken as unreliable for

lack of adequate information. Generally, a region will have

2
unreliable results (errors greater than 15 W/m ) if the magni-

tude of the prediction parameter is less than 150 for the sphere

and 100 for the plate.

8. Matrix stabilization and prediction techniques are unnecessary

when applying the instantaneous technique to cases that include

instrumental errors when sufficiently large portions of all of

the regions are observed. This was demonstrated by simulating

a series of observations from selected satellite positions in

such a manner that adequate sections of all regions were observed.

The results obtained with the original matrix for the sphere had

2
errors not greater than 3 W/m which are considered acceptable

2
relative to the criterion of 15 W/m . It was unnecessary to use

the stabilization and prediction techniques in this case which

further demonstrates the feasibility of the approach.
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2
9. The errors in the results increase by about 3 W/m (from about

3% to about 5% for the worst acceptable case) when a LWR field

which is described by a limb darkening function is assumed to

be isotropic. Hence, the isotropic assumption can be used

during interpretation of observations of LWR fields without intro-

ducing errors beyond reasonable limits.

10. The errors in Wr are affected in an unpredictable fashion when a SWR

field which is described by a bidirectional reflectance model is

interpreted as a diffuse field in the solution. For example,

2
region no.3 which had an acceptable rms error of 1.9 W/m jumped

2
to 32.2 W/m which is unacceptable. On the other hand, region

2
no.l which had an unacceptable rms error of 17.9 W/m changed to

2
13.4 W/m which is acceptable. Therefore, it is not advisable

to assume that a reflected radiation field is diffuse unless

there is evidence (e.g., data collected with a narrow field of

view scanner radiometer) that this is the case.

11. The division of the earth-atmosphere system into regions presup-

poses that the regions have homogeneous emitting and reflecting

characteristics. However, it was found that the instantaneous

technique yields acceptable results in many cases where a region

is divided into two subregions of almost equal size and having

different values of We. It was determined that the values of We

2
in the two subregions can differ by as much as 10 W/m with a

2
resulting rms error below 6 W/m . Furthermore, in two cases the

2
difference between the two subregions was as much as 50 W/m and

2
the results obtained were: a) -13.3 and 15.7 W/m for the sphere
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2
and plate, respectively, in one case; b) 18.7 and 20.0 W/m for

the sphere and plate, respectively, in the other case. The results

2
in the first case are acceptable (the acceptable limit is 15 W/m ),

while those of the second are not. However, an evaluation para-

meter was developed which identifies these situations.

12. The best fit technique produces solutions which are acceptable for

all regions. The magnitude of the errors in these solutions range

2 2
from 1.5 to 13.0 W/m for the sphere, and from 0.2 to 12.5 W/m

for the plate in the case of emitted LWR. In the reflected SWR

2
case, the errors range from 3.8 to 11.5 W/m for the sphere, and

2
from 2.2 to 10.5 W/m for the plate.
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The following two items are recommended.

1. Investigate the effects that satellite altitude uncertainties

can have upon the elements of the configuration factor matrices

as well as on the results.

2. Apply the techniques developed to data gathered by satellite

radiometer systems consisting of wide field of view and scanner

narrow field of view radiometers (such as NOAA's ERB experiment).

Data from the scanner radiometer can be used to obtain the angular

distributions of the radiation fields observed. The resulting

angular functions can then be incorporated into the instantaneous

and best fit techniques in order to interpret the data collected

by the wide field of view radiometer.
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APPENDIX A

DIVISION OF THE SURFACE AREA OF THE E-A SYSTEM INTO ELEMENTAL AREAS

The power intercepted by a horizontal flat plate radiometer

during the jth observation of a set of K regions is given by

K
P. = Z I di/j' / N* (a,i/>f ,t)sin a cos a da (A-l)
J k=l ̂  ak

where a and i|>' are the nadir and azimuthal angles of the elemental

area observed from the satellite, and N* is the radiance when ex-

pressed in terms of a and ip'. The angles T|>' and OL under the inte-

gration signs indicate that the integrations over each region k

must be performed between the corresponding lower and upper limits

of these angles. If one of the regions of the set K under study is

not included within the FOV of the jth observation, this region will

not appear in the sum indicated in Eq.(A-l).

The following three schemes for performing numerically the

double integration in Eq.(A-l) were evaluated. Scheme //3 was found

to represent the simplest procedure for performing this numerical

integration.

1. The FOV is divided into a finite number of equal elemental solid

angles Afi. Each Aft subtends an elemental area A A at the sur-

face of the E-A system. As the nadir angle of Aft increases,

the elemental area A A subtended by the elemental solid angle

also increases. All Aft's that have equal nadir angle subtend

equal elemental areas A A.
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The origin of this grid of AA's, or reference system, is

assumed to be centered at the nadir point of the satellite.

Hence, it is supposed to move with the nadir point. One of

the main difficulties with this scheme is that one AA can

include large portions of two adjacent regions (especially

at the limb where the AA's are largest) and there is no sim-

ple procedure for evaluating what fraction of the AA is

occupied by each region.

2. The surface area of the E-A system that is subtended by the

FOV of the radiometer is divided into a finite number N of

equal elemental areas AA. As in the previous scheme, the

origin of this grid of AA's, or reference system, is centered

at the nadir point of the satellite and hence, travels with it.

This scheme is difficult to handle if it is applied to ellip-

tical orbits, especially orbits with high eccentricities. In

these cases the area A subtended by the FOV constantly changes

and hence, the size of the AA's also changes if N is held con-

stant. An alternative approach is to keep the size of the AA's

approximately the same by varying N to compensate for the

variations in A. Either of these two approaches requires

extra computations which are unnecessary when using scheme #3

shown below which was the scheme finally selected.

3. The entire surface of the E-A system is divided into 2060

elemental areas as will be shown in detail below. These

elemental areas are fixed on the surface of the E-A system
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and are numbered consecutively starting at the north pole

and ending at the south pole. The positions of the AA's

are given by the longitudes and latitudes of their centroids.

The regions into which the E-A system is divided are defined

in terms of these elemental areas in such a way that each

AA belongs to one, and only one, region.

This is the first time that this scheme has ever been intro-

duced to perform numerically the double integration that appears

in Eq.(A-l). It is believed that this scheme represents the simp-

lest way of accomplishing this integration.

The power increments A P contributed by the A Af s in the kth

region are summed up to obtain the value of the double integral

for the kth region in Eq.(A-l). The values of AP are easily com-

puted once the altitude of the satellite and the longitudes and

latitudes of the subsatellite point and A A are known.

The procedure followed in scheme #3 to perform the division

of the surface of the E-A system into 2060 elemental areas is

itemized as follows:

1. The radius of a spherical earth having the same surface area

as the actual earth is approximately 6371.23 km (List, 1966).

The thickness of an atmospheric spherical shell of about

30.32 km was included as part of the spherical E-A system

considered. More than 99% of the total atmosphere is con-

tained within this shell (House, 1965). Then, the radius R

of the spherical E-A system is 6401.55 km which yields a sur-

face area A of 514,967,887 km .
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2. The surface area of each hemisphere of the E-A system is

divided into 1029 AA's distributed among 20 latitudinal

bands and a polar elemental area A A . One hemisphere is

the mirror image of the other. The areas of each of the
rt

1029 AA's is 250,000 km , and that of the A A is 233,900 km2

2
which yields an area for the hemisphere of 257,483,900 km .

Thus, the total surface of the spherical E-A system is

?
514,967,800 km according to this division.

3. Each latitudinal band contains an integral number of identi-

cal elemental areas A A. Although the areas of all AA's are

equal, their shape varies from one band to the next. The

northern and southern latitudinal boundaries of the jth band

are given, respectively, by the latitudes <|>. and ^..-i*

4. The common longitudinal width ALON. (in degrees) of the AA's

in the jth band is obtained by dividing the 360 degrees in

the circumference by n., the number of A,A's in the jth band.

k
The value of ALON. (in km) is determined by dividing the

value of the latitudinal circumference C. (in km) by n.. C.
J J J

Q

is computed for the central latitude $. of the jth band which

is given by <J>? = (4>. + <f>.+1)/2. The value of C? (in km) is
j j j j
o c k

then given by C. = 2irR cos <(>. , and the ALON. (in km) is given
J J J

k o
by ALON. = C./n.. The first A A of each band is assumed to

be west of the Greenwich meridian,that is, this meridian is

the eastern longitudinal boundary of the first A A in each band.

This meridian is also the western longitudinal boundary of the

last A A in each band.
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5. The longtitudes of the centroids of the AA's in the jth band

are (ALON^)/2 for the first A A, 3(ALON^)/2 for the second,

and so on; (n.-l/2)(ALON.) is that of the last A A in the

jth band*

6. The latitudinal width of the jth band ALAT. (in degrees) is

given by ALAT. = <)>.- <K.-i > where <J>. and <!>..-• are the higher

and lower latitudinal boundaries, respectively, of the jth

k
band. The common latitudinal width ALAT. (in km) of all the

AA's in the jth band is given by the product ALAT. = ALAT.
J J

x 111.728 (km/deg).

7. The common latitude of the centroids of all the AA's in the

jth band is given by <J>? =(<(. + <f>j+1)/2.

8. The 2060 elemental areas are identified by a sequential num-

bering system which begins with #1 for the A A of the north

pole and ends with #2060 for the A A of the south pole. The

#2 elemental area is the first A A in the j=l band. The first

A A in each band is adjacent to, and to the west of the Green-

wich meridian. The AA's in each band are numbered consecu-

tively westward.

Table A-l lists the 1030 elemental areas of the northern hemi-

sphere: the polar cap A A of the north pole and the 1029 AA's dis-

tributed among the 20 latitudinal bands. The data for A A appears

in the first row of the table, its longitudinal width ALON and lati-

tudinal width A LAT in km are not shown since these quantities have

no meaning for the polar cap. n. is the number of AA's in the jth band,

and N-: is the total number of elemental areas in all bands 0 through j.
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The j = 0 band is defined as the band containing the north polar cap.

The assignment of the identification numbers of the elemental areas

was described previously. A A is no.l, and the AA's are numbered

westward within each band. The lowest number in each band is assigned

to the A A west of the Greenwich meridian, and the highest number in

the band is that of the A A east of this meridian. <f>. and <t>.,1 are

the upper and lower latitudinal boundaries of the jth band. CENTROID

(j,l) refers to the centroid of the first A A in the jth band. The

longitude and latitude in degrees of CENTROID(j,1), for all j values,

are given in the last two columns of the table.

The numbering system shown in Table A-l continues south of the

equator in the same fashion. For example, AA//951 which is the first

elemental area of the j = 20 band (the last band in the northern

hemisphere) has as its mirror image the elemental area AA//1031 which

is the first A A in the j = 21 band (the first band in the southern

hemisphere). Hence, the longitudes of the boundaries and centroid of

AA//1031 are the same as those of AA//951. The corresponding latitudes

of the boundaries and centroids of these two elemental areas have the

same magnitude but different sign. Thus, from the latitudes of the

upper and lower boundaries and centroid given for AA//951 in Table A-l,

the corresponding values of these quantities for AA//1031 are, 0.00°,

-4.45°, and -2.23°, respectively.

2
Since the area A A = 233,900 km is somewhat smaller than A A =

P
2

250,000 km , one must decide how the A A *s are to be treated whenever

one of them appears within the FOV of the radiometer. Two possible

approaches are here considered: (a) assign the correct area to A A

whenever it is observed and no error is introduced, and (b) assume
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A A to have an area equal to A A and introduce a small error into the

computations.

The fractional error introduced when A A is assigned the area of

A A is computed as follows:

A A - AAp _ 250,000 - 233.000 _
r 28,606,466 °'00056

or about 0.056% of ApQ which is the area of the FOV. This error is

insignificant and approach (b) is considered acceptable.

Figure A-l displays most of the elemental areas into which the

earth-atmosphere system was divided for performing the numerical inte-

grations required in the two techniques developed to determine We and

Wr.



tea* immim
mum roJcerioK. nut n KAU IT nv N wo

Figure A-l. Division of the Earth-Atmosphere System into Elemental Areas.
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APPENDIX B

DERIVATIONS OF THE MAIN EXPRESSIONS USED IN

COMPUTATIONS OF THE RADIANT REFLECTANCE

Equations (B-l) , (B-2) and (B-3) below are used by Raschke,

et al. (1973). These equations are derived here in complete detail,,

£ = cos [cos <|> cos 6 cos(V - X) + sin <f> sin6] (B-l)

, -lrcos 5 cos 6 - cos T., , ox

* = COS [ sin C sin 6 -
 ] (fi-2>

where

cos T = — {[K cos $ cos(X -X )-cos <j> cos(X-X )]cos 8 +
U S S o Or

[K sin <|> - sin <f>] sin 6} (B-3)s

The denominator D is given by

D = {K + l-2K[cos A cos <|> cos(X-X ) + sin <j> sin i]}1/2 (B-4)s s s

K is defined by

v _ R+H ,„ CNK = R (B-5)

where R is the radius of the E-A system and H is the altitude of the

satellite.

Figure B-l is used to give a pictorial definition of the angles

entering into the expressions to be derived. The three planes shown

in this figure are helpful in giving a precise definition of the

angle 1(1. These planes are described as follows.
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Figure B-l. Pictorial Definition of the Angles Used to Compute the
SWR Power Increment AP... Contributed by the Elemental
Area AA.
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1. Principal plane. The three points used for defining this plane

are the center of the sun, the center of the earth, and the

centroid of the observed elemental area A A. ., . Hence, theijk '

zenith-nadir line through this elemental area lies in the prin-

cipal plane.

2 . Horizontal plane. This plane contains the elemental area

A A , and is perpendicular to the zenith-nadir line throughIJK.

the centroid of A A.

3. Radiometer plane. The three points used to define this plane

are the center of the radiometer, the center of the earth, and

the centroid of A A.

The unit vector ij> lies in the intersection of the principal

and horizontal planes. Its origin is at the centroid of A A... and
ijk

it points in the antisun direction as shown in Figure B-l. The
^

angle ip is the angle between the radiometer plane and i|) . It is

measured on the horizontal plane as shown in Figure B-l. The angle

T is the angle between the sun and the satellite as measured at A A.

The angles £ and 9 are the zenith angles of the sun and the satel-

lite as measured at AA. .,.
ij k

Figure B-2 is formed by making two projections onto the celes-

tial sphere. In one projection, AA is considered to be at the
ijk

center of the celestial sphere and the point SAT' is the projection

of the satellite. In the other projection, the celestial sphere is

assumed to be geocentric and SAT is the projection of the satellite.

SUN and AA are the projected points of the sun and AA in both of
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SUN

CELESTIAL
NORTH POLE

CNP

PRINCIPAL
PLANE

RADIOMETER-
PLANE

Figure B-2,

Centered at
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the above projections.

From Figure B-l, one can see that the satellite and the two

points used as centers of the celestial sphere during the projec-

tions (the center of the earth and A A..,) lie in the radiometer
IJK

plane. Then, the intersection of this plane and the celestial sphere
Q

must contain both satellite projections which are denoted by SAT and

SAT1 in Figure B-2. As shown in Figure B-l, 6 is the zenith angle of

the satellite, that is, the angle between the zenith and the radio-

meter as seen from A A. ., . Hence, it is the angle between ZENITH
1JK.

(or A A) and SAT' in Figure B-2. The angle y, on the other hand, is

the angle between the zenith at A A.., and the satellite as seen from
13 K-

the center of the earth. Thus, it is the angle between ZENITH(or A A)

and SAT in Figure B-2. The angle T shown in Figure B-l between the

sun and the radiometer as seen from A A.., , is the angle between the
1JK-

SUN and SAT1 in Figure B-2. On the other hand, the angle T° between

the sun and the radiometer as seen from the center of the earth is

the angle between SUN and SAT° in Figure B-2.

The terrestrial longitudes are considered as the celestial longi-

tudes in Figure B-2, and the terrestrial latitudes and the sun's decli-

nation as the celestial latitudes for purposes of this derivation. The

c »
latitude of SAT is <fc and that of SAT is defined as A1. CNP is theTs s

celestial north pole.

It should be noted that only the satellite is projected onto two

different points when the center of the celestial sphere is shifted

from A A.., to the earth's center. This is due to the finite height
1JK

of the satellite. The sun, however, is assumed to be infinitely dis-

tant from the earth and hence both of its projections coincide.



188

Derivation of Eq.(B-l) is as follows. Consider the spherical

triangle defined by the three points SUN, A,A, and CNP in Figure B-2.

Apply to this triangle the law of cosines for spherical triangles

and obtain

IT IT IT TTcos £ = cos(-~- - 6)cos(— - (j>)+sinOs- - 6)sin(-̂ - - $ )cos(A_-A)*• 2. f. 2. G-

or

cos C = cos <(> cos 6 cos (A -A) + sin <(> sin 6

or

£ = cos [cos <j> cos 6 cos(A -A) + sin <|> sin 6] (B-7)
IT

which is Eq.(B-l) that was to be derived.

In order to derive Eq.(B-2), consider the spherical triangle

defined by the three points SUN, A A, and SAT1 in Figure B-2. Again,

by applying the law of cosines for spherical triangles to this tri-

angle one obtains

cos T = cos £ cos 9 + sin £ sin 0 cos (w-î )

but since cos(ir-ij») = - cos ty, the above equation can be written as

cos T = cos t, cos 9 - sin £ sin 0 cos ip (B-8)

or

-1 , cos t, cos 0 - cos T , ,ij» = cos [ ; ;— J (B-9)sin T, sin 9

which is Eq.(B-2) that was to be shown.

Derivation of Eq.(B-3) is as follows. Apply the cosine law to

the spherical triangle defined by SUN, A A, and SAT° in Figure B-2
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and obtain

cos F = cos £ cos Y + sin ? sin Y COS(TT-I);)

or

Q

cos r = cos t, cos Y ~ sin ? sin Y cos i|» (B-10)

From Eqs.(B-8) and (B-10), respectively, one obtains

. _ . cos g cos 6 - cos T ,_ ,,.
sin C cos 4* = - (B-ll)

. cos £ cos Y - cos T ,„ .-.
sin t. cos ̂ ) = 2

 : ' (B-12)
sin Y

Equating these two expressions, the result is

sin 0 cos C cos Y - sin 0 cos T = sin Y cos £ cos 0 - sin Y cos T

or

1 c
cos T = — [ sin 0 cos T - cos C(sin 0 cos Y - cos 0 sin Y)]

sin Y

or
1 c

cos T = —; t sin 0 cos T - cos c. sin(0-Y)] (B-13)

From Figure B-3, the following relationships are obtained

0 = a + Y (B-14)

R sin 0=(R + H) sin a (B-15)

R sin Y = r sin a (B-16)

r2 = R2 + (R+H)2- 2R(R+H)cos Y (B-17)

Eliminating sina between Eqs.(B-15) and (B-16) results in

r sin 0 = (R+H) sin Y (B-18)
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Rsin ~Y~ r sin a

Rsin 0= (R+H) sin a

Figure B-3. Pictorial Definition of Some of the Geometrical Para-
meters Used in Measuring We and Wr by a WFOV Satellite
Radiometer.
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From Eq.(B-14)

sin(0-Y) = sin a (B-19)

Substituting Eq.(B-19) into Eq.(B-13), one has

1 c
cos T = —— [sin 0 cos T - cos £ sin a] (B-20)

Applying the cosine law to the spherical triangle defined by SUN, SAT°,

and CNP in Figure B-2 one obtains

cos T = sin 6 sin <(> +cos 6 cos <j> cos(X -X ) (B-21)
S S (j S

Similarly, the triangle SUN, A A, CNP in the same figure yields

cos t, = sin 6 sin <f> + cos 6 cos <J> cos (A -X) (B-22")

£
Substituting the values of cos F and cos £ given by Eqs.(B-21)

and (B-22) into Eq.(B-20), one obtains

„ sin6 . . . sin9 . ,. . .
cos T = —; sin q> sin o + —: cos <p cos (X̂ -X ) coso -

siny s siny s G s

sin ̂  sin 6 - ~. cos ^ cos (Xg-X) cos 6 (B-23)

But from Eqs.(B-16) and (B-18), respectively, one obtains

(B_24)
siny r

(B_25)

siny r N '

Substituting these results into Eq.(B-23) and rearranging,
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- R
cos r = t-̂ -2- sin $ - - sin <J>] sin 6

r s r

R
[ - cos <j> cos (A -A )- — cos <J> cos ( A_- A) ] cos 6 (B-26)

IT S vj S r \j

Multiplying top and bottom by R and using the definition of K given

by Eq.(B-S) results in

cos F = ̂ {[K sin $ - sin <|>] sin 6 +
r s

[K cos <|> cos(A -A )-cos <j> cos (A.,- A)] cos 8} (B-27)
S (j S vr

Using Eq.(B-17) for r, one obtains for r/R

| = {K2 + 1 - 2 K cos y]1/2 (B-28)

From the spherical triangle A A, SAT°, CNP, in Figure B-2, one obtains

cos y = sin <J) sin <|> + cos <(> cos <|> cos( A-A )
S S S

Substituting this value for cos Y into Eq.(B-28) one obtains the expres-

sion for D given by Eq.(B-4), namely

D= f- = fe2+l-2 K[cos (() cos 4> cos (A-A )+sin (f> sin c(»] }1/2(B-29)
i\ S S S

Then, using this value of r/R and the fact that cos (A-A ) = cos(A -A )
LJ S S w

and cos(Ar,-A) = cos(A-A ),one obtains from Eq.(B-27) the final expression

for cos F, that is

cos r = — {[K cos <)) cos (A -A )-cos <J> cos(A-A )]cos 6 +
D S S lj u

[K sin (j> - sin <|>] sin 6} (B-30)
S

which is the same as Eq.(B-3) that was to be derived.
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A

AA

A A

AA

APT

AVCS

a

a
max

BRM

BRM/BRM

BRM/DIF

DIP

Albedo defined as Wr/Hs.

Elemental area of the earth-atmosphere system equal

?
to 250,000 km .

The ith elemental area of the kth region within the

field of view of the jth observation.

Polar cap elemental area of the earth-atmosphere

2
system equal to 233,900 km .

Automatic picture transmission .

Advanced vidicon camera system.

Nadir angle of A A as seen from the satellite.

Maximum value that a can attain.

Bidirectional reflectance model. It depends

on the directions of the sun and the satellite as

seen from A A.

Bidirectional reflectance model SWR field interpreted

as such.

Bidirectional reflectance model SWR field interpreted

as a diffuse reflection field.

Latitudinal circumference measured at the central

latitude tf~ of the jth band, (km).

Diffuse reflection model.
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DIF/DIF

E-A

EP

F. .
JJ

we

-1

we

F F
in

FOV

H

H

HRIR

IGY

ISO

ISO/ISO

Diffuse reflection SWR field interpreted as such.

Earth-atmosphere .
L 35

Evaluation parameter defined by EP=[ £ e£]
1=1 £

Defined by We^ - Wek" .

Configuration factor matrix.

Shape factor of A A.

Diagonal element of the jth row (jth measurement)

of the configuration factor matrix.

Element of matrix F. It is the shape factor of the

kth region and jth observation.

Well-conditioned matrix F.

Transpose of matrix F.

Inverse of matrix F.

Inverse of well-conditioned matrix F .we

Defined by .^ F.£ Fjn .

Field of view.

2
Irradiance (W/m ).

Solar irradiance of an area normal to the sun's rays;

2
hence, it is given by Hs(0). (W/m ).

2
Solar irradiance given by H cos £. (W/m ).

High resolution infrared radiometer.

International Geophysical Year.

Isotropic.

Isotropic LWR field interpreted as such.
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J

k

K

LDF

LDF/ISO

LDF-ISO/ISO

LDF/LDF

LSR

LWR

ALAT

ALAT

ALON'

ALONj

m

MFOV

MRIR

N

The jth row of the configuration factor matrix

which corresponds to the jth satellite radiometer

observation.

Total number of satellite radiometer observations.

The kth column of the configuration factor matrix,

which corresponds to the kth region of the set of

K regions under investigation.

Total number of regions under study.

Limb darkening function.

Limb darkening function field interpreted as isotropic.

Partially limb darkening function and partially

isotropic field interpreted as isotropic.

Limb darkening function field interpreted as such.

Low spatial resolution.

Longwave radiation (5 to lOOy).

The latitudinal width in degrees of the jth band.

The latitudinal width in kilometers of the jth band.

The common longitudinal width in degrees of the

AA's in the jth latitudinal band.

The common longitudinal width in kilometers of the

AA's in the jth latitudinal band.

Meter.

Medium field of view.

Medium resolution infrared radiometer.

Radiance; used for LWR and expressed in terms of the

zenith angle 6 and the azimuthal angle 4* of the satel-

2
lite as seen from A A. (W/ (m - sr)).
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N1 Radiance; used for LWR and expressed in terms of

the nadir angle a and the azimuthal angle i|/' of

2
A A as seen from the satellite. (W/(m - sr)).

Nls° Radiance for isotropic LWR fields.(W/(m
2 - sr)).

N Radiance in the zenith direction; used for LWR.

(W/(m2 - sr)).

Nr Radiance; used for reflected SWR and expressed in

terms of the zenith angle 9 and azimuthal angle ij>

o
of the satellite as seen from A A. (W/(m - sr)).

NFOV Narrow field of view.

P Longwave (or shortwave) radiation (exact) power

measured by a satellite radiometer of unit area (W).

P1 Perturbed power recorded by a satellite radiometer

of unit area; it is equal to the exact power P plus

the instrumental uncertainty 6P.

6P Instrumental error included in the power measurement P1.

A P.., Power increment contributed by A A. .
i j K i j k

P . Power contributed by the kth region to the jth observa-
JK

tion.

j
PF. Defined by I. P. F.0 .
'* j=l J J*

PP Prediction parameter defined by (S F../Z.)x 1000.
K JJ J

4>. Northern latitudinal boundary of the jth band.

<J> 1 Southern latitudinal boundary of the jth band.

4>? Central latitude of the jth latitudinal band.
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Azimuthal angle of the satellite as seen from A A.

Azimuthal angle of A A as seen from the satellite.

Net radiation or radiation balance defined by
2

Hs - Wr - We, (W/m ).

Distance from A A to the satellite.

Directional reflectance given by Wr(c)/Hs(£).

Defined by r(c)/r(0).j_

R_(6,ij;,£) Defined by r(£)/Trp(0,i|j,£) •

p(6,i|>,£) Defined by Nr(6,̂ ,?)/Hs(C) .

RFOV Restricted field of view.

S, Sum of the elements in the kth column of the configu-
K.

ration factor matrix. It is the sum of the shape

factors contributed by the kth region to the total

number of observations made.

SIRS Satellite infrared spectrometer.

SSP Subsatellite point.

SWR Shortwave radiation (0.2 to 5y).

Z. Sum of the matrix elements in the jth row of the

configuration factor matrix. It is the shape factor

of the total area within the field of view of the

jth observation.

TIROS Television and infrared observation satellite.

W Watts (joules/sec).

2
We Radiant emittance value assigned to a region, (W/m ).

We' Radiant emittance value obtained with the inverse
2

of the original matrix from perturbed powers, (W/m ).
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We" Radiant emittance value obtained with the stabilized

2
matrix from perturbed powers, (W/m ).

We Radiant emittance value obtained with the stabilized

2
matrix from exact powers, (W/m ).

We, Defined by P./E. for j = k, that is, for the regionK J J

whose kth value equals j

We. = We. = P./Z. .
k J J 3

A We Difference between the We values of the two sub-

regions into which a region has been split to investi-

gate inhomogeneity.

<SWe Uncertainty in the value of We obtained with the original
2

matrix, (W/m ).

6We' Uncertainty in the value of We obtained with the

2
stabilized matrix from exact powers, (W/m ).

6We" Uncertainty in the value of We" obtained with the

2
stabilized matrix from perturbed powers, (W/m ).

Wro Radiant reflectance for solar zenith angle equal

to zero, Wr(0). It has a uniform value throughout

2
a region, (W/m ).

Wro1 Radiant reflectance value obtained with the inverse

2
of the original matrix from perturbed powers, (W/m ).

Wro" Radiant reflectance value obtained with the stabilized

2
matrix from perturbed powers, (W/m ).

Wro Radiant reflectance value obtained with the stabilized

2
matrix from exact powers, (W/m ).
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Wr(C) Radiant reflectance for solar zenith angle equal

to C, (W/m ).

Weighted average of Wr(c) within the kth region

2
and given by S Wro /St., (W/m ).

1 Defined by S, Wro"/St,, (W/m2).
K. 1C K. iC

6Wro Uncertainty in the value of Wro1 obtained with the

2
original matrix, (W/m ).

6Wro' Uncertainty in the value of Wro obtained with the

2
stabilized matrix from exact powers, (W/m ),

6Wro" Uncertainty in the value of Wro" obtained with the

2
stabilized matrix from perturbed powers, (W/m ).

5Wr"(?) Uncertainty in the value of <Wr"(£)> .

WFOV Wide field of view.

C Zenith angle of the sun at the A A considered.




