340 research outputs found
Controlling hydrogen evolution on iron electrodes
Aiming to develop a cost effective means to store large amounts of electric energy, NiFe batteries were produced and tested under galvanostatic conditions at room temperature. Multiple regression analysis was conducted to develop predictive equations that establish a link between hydrogen evolution and electrode manufacturing conditions, over a wide range of electrode/electrolyte systems. Basically, the intent was to investigate the incidence of lithium hydroxide and potassium sulphide as electrolyte additives on cell performance. With this in mind, in-house built Fe/FeS based electrodes were cycled against commercially available nickel electrodes on a three electrode cell configuration. A 3 × 4 full factorial experimental design was proposed to investigate the combined effect of the aforementioned electrolyte additives on cell performance. As a consequence, data from 144 cells were finally used in conducting the analysis and finding the form of the predictive equations. Our findings suggest that at the level of confidence alpha = 0.05, the presence of relatively large amounts of the soluble bisulphide would enhance the performance of the battery by reducing electrolyte decomposition
Efflux Pump, the Masked Side of ß-Lactam Resistance in Klebsiella pneumoniae Clinical Isolates
International audienceBACKGROUND: Beta-lactamase production and porin decrease are the well-recognized mechanisms of acquired beta-lactam resistance in Klebsiella pneumoniae isolates. However, such mechanisms proved to be absent in K. pneumoniae isolates that are non susceptible to cefoxitin (FOX) and susceptible to amoxicillin+clavulanic acid in our hospital. Assessing the role of efflux pumps in this beta-lactam phenotype was the aim of this study. METHODOLOGY/FINDINGS: MICs of 9 beta-lactams, including cloxacillin (CLX), and other antibiotic families were tested alone and with an efflux pump inhibitor (EPI), then with both CLX (subinhibitory concentrations) and EPI against 11 unique bacteremia K. pneumoniae isolates displaying the unusual phenotype, and 2 ATCC strains. CLX and EPI-dose dependent effects were studied on 4 representatives strains. CLX MICs significantly decreased when tested with EPI. A similar phenomenon was observed with piperacillin+tazobactam whereas MICs of the other beta-lactams significantly decreased only in the presence of both EPI and CLX. Thus, FOX MICs decreased 128 fold in the K. pneumoniae isolates but also 16 fold in ATCC strain. Restoration of FOX activity was CLX dose-dependent suggesting a competitive relationship between CLX and the other beta-lactams with regard to their efflux. For chloramphenicol, erythromycin and nalidixic acid whose resistance was also due to efflux, adding CLX to EPI did not increase their activity suggesting differences between the efflux process of these molecules and that of beta-lactams. CONCLUSION: This is the first study demonstrating that efflux mechanism plays a key role in the beta-lactam susceptibility of clinical isolates of K. pneumoniae. Such data clearly evidence that the involvement of efflux pumps in beta-lactam resistance is specially underestimated in clinical isolates
Aqueous batteries as grid scale energy storage solutions
Energy storage technologies are required to make full use of renewable energy sources, and electrochemical
cells offer a great deal flexibility in the design of energy systems. For large scale electrochemical
storage to be viable, the materials employed and device production methods need to be low cost, devices
should be long lasting and safety during operation is of utmost importance. Energy and power densities
are of lesser concern. For these reasons, battery chemistries that make use of aqueous electrolytes are
favorable candidates where large quantities of energy need to be stored. Herein we describe several
different aqueous based battery chemistries and identify some of the research challenges currently
hindering their wider adoption. Lead acid batteries represent a mature technology that currently dominates
the battery market, however there remain challenges that may prevent their future use at the
large scale. Nickel–iron batteries have received a resurgence of interest of late and are known for their
long cycle lives and robust nature however improvements in efficiency are needed in order to make them
competitive. Other technologies that use aqueous electrolytes and have the potential to be useful in
future large-scale applications are briefly introduced. Recent investigations in to the design of nickel–iron
cells are reported with it being shown that electrolyte decomposition can be virtually eliminated by
employing relatively large concentrations of iron sulfide in the electrode mixture, however this is at the
expense of capacity and cycle life
An Ontological Approach to Inform HMI Designs for Minimizing Driver Distractions with ADAS
ADAS (Advanced Driver Assistance Systems) are in-vehicle systems designed to enhance driving
safety and efficiency as well as comfort for drivers in the driving process. Recent studies have
noticed that when Human Machine Interface (HMI) is not designed properly, an ADAS can cause
distraction which would affect its usage and even lead to safety issues. Current understanding of
these issues is limited to the context-dependent nature of such systems. This paper reports the
development of a holistic conceptualisation of how drivers interact with ADAS and how such
interaction could lead to potential distraction. This is done taking an ontological approach to
contextualise the potential distraction, driving tasks and user interactions centred on the use of
ADAS. Example scenarios are also given to demonstrate how the developed ontology can be used
to deduce rules for identifying distraction from ADAS and informing future designs
Status and performance of the underground muon detector of the Pierre Auger Observatory
The Auger Muons and Infill for the Ground Array (AMIGA) is an enhancement of the Pierre Auger Observatory, whose purpose is to lower the energy threshold of the observatory down to 1016.5 eV, and to measure the muonic content of air showers directly. These measurements will significantly contribute to the determination of primary particle masses in the range between the second knee and the ankle, to the study of hadronic interaction models with air showers, and, in turn, to the understanding of the muon puzzle. The underground muon detector of AMIGA is concomitant to two triangular grids of water-Cherenkov stations with spacings of 433 and 750 m; each grid position is equipped with a 30 m2 plastic scintillator buried at 2.3 m depth. After the engineering array completion in early 2018 and general improvements to the design, the production phase commenced. In this work, we report on the status of the underground muon detector, the progress of its deployment, and the performance achieved after two years of operation. The detector construction is foreseen to finish by mid-2022
A combined fit of energy spectrum, shower depth distribution and arrival directions to constrain astrophysical models of UHECR sources
The combined fit of the measured energy spectrum and distribution of depths of shower maximum of ultra-high-energy cosmic rays is known to constrain the parameters of astrophysical scenarios with homogeneous source distributions. Further measurements show that the cosmic-ray arrival directions agree better with the directions and fluxes of catalogs of starburst galaxies and active galactic nuclei than with isotropy. Here, we present a novel combination of both analyses. For that, a three-dimensional universe model containing a nearby source population and a homogeneous background source distribution is built, and its parameters are adapted using a combined fit of the energy spectrum, depth of shower maximum distribution and energy-dependent arrival directions. The model takes into account a symmetric magnetic field blurring, source evolution and interactions during propagation. We use simulated data, which resemble measurements of the Pierre Auger Observatory, to evaluate the method’s sensitivity. With this, we are able to verify that the source parameters as well as the fraction of events from the nearby source population and the size of the magnetic field blurring are determined correctly, and that the data is described by the fitted model including the catalog sources with their respective fluxes and three-dimensional positions. We demonstrate that by combining all three measurements we reach the sensitivity necessary to discriminate between the catalogs of starburst galaxies and active galactic nuclei
Event-by-event reconstruction of the shower maximum Xmax with the Surface Detector of the Pierre Auger Observatory using deep learning
The measurement of the mass composition of ultra-high energy cosmic rays constitutes a prime challenge in astroparticle physics. Most detailed information on the composition can be obtained from measurements of the depth of maximum of air showers, Xmax, with the use of fluorescence telescopes, which can be operated only during clear and moonless nights. Using deep neural networks, it is now possible for the first time to perform an event-by-event reconstruction of Xmax with the Surface Detector (SD) of the Pierre Auger Observatory. Therefore, previously recorded data can be analyzed for information on Xmax, and thus, the cosmic-ray composition. Since the SD operates with a duty cycle of almost 100% and its event selection is less strict than for the Fluorescence Detector (FD), the gain in statistics with respect to the FD is almost a factor of 15 for energies above 1019.5 eV. In this contribution, we introduce the neural network particularly designed for the SD of the Pierre Auger Observatory. We evaluate its performance using three different hadronic interaction models, verify its functionality using Auger hybrid measurements, and find that the method can extract mass information on an event level
Performance of the 433 m surface array of the Pierre Auger Observatory
The Pierre Auger Observatory, located in western Argentina, is the world’s largest cosmic-ray observatory. While it was originally built to study the cosmic-ray flux above 1018.5 eV, several enhancements have reduced this energy threshold. One such enhancement is a surface array composed of a triangular grid of 19 water-Cherenkov detectors separated by 433 m (SD-433) to explore the energies down to about 1016 eV. We are developing two research lines employing the SD-433. Firstly, we will measure the energy spectrum in a region where previous experiments have shown evidence of the second knee. Secondly, we will search for ultra-high energy photons to study PeV cosmic-ray sources residing in the Galactic center. In this work, we introduce the SD-433 and we show that it is fully efficient above 5×1016 eV for hadronic primaries with θ < 45°. Using seven years of data, we present the parametrization of the lateral distribution function of measured signals. Finally, we show that an angular resolution of 1.8° (0.5°) can be attained at the lowest (highest) primary energies. Our study lays the goundmark for measurements in the energy range above 1016 eV by utilizing the SD-433 and thus expanding the scientific output of the Auger surface detector
Constraining Lorentz Invariance Violation using the muon content of extensive air showers measured at the Pierre Auger Observatory
Lorentz Invariance (LI) implies that the space-time structure is the same for all observers. On the other hand, various quantum gravity theories suggest that it may be violated when approaching the Planck scale. At extreme energies, like those available in the collision of Ultra-High Energy Cosmic Rays (UHECRs) with atmosphere nuclei, one should also expect a change in the interactions due to Lorentz Invariance Violation (LIV). In this work, the effects of LIV on the development of Extensive Air Showers (EAS) have been considered. After having introduced LIV as a perturbation term in the single-particle dispersion relation, a library of simulated showers with different energies, primary particles and LIV strengths has been produced. Possible LIV has been studied using the muon content of air showers measured at the Pierre Auger Observatory. Limits on LIV parameters have been derived from a comparison between the Monte Carlo expectations and muon fluctuation measurements from the Pierre Auger Observatory
- …