67 research outputs found

    Neurofilament Light Regulates Axon Caliber, Synaptic Activity, and Organelle Trafficking in Cultured Human Motor Neurons

    Get PDF
    Neurofilament light (NFL) is one of the proteins forming multimeric neuron-specific intermediate filaments, neurofilaments, which fill the axonal cytoplasm, establish caliber growth, and provide structural support. Dominant missense mutations and recessive nonsense mutations in the neurofilament light gene (NEFL) are among the causes of Charcot–Marie–Tooth (CMT) neuropathy, which affects the peripheral nerves with the longest axons. We previously demonstrated that a neuropathy-causing homozygous nonsense mutation in NEFL led to the absence of NFL in patient-specific neurons. To understand the disease-causing mechanisms, we investigate here the functional effects of NFL loss in human motor neurons differentiated from induced pluripotent stem cells (iPSC). We used genome editing to generate NEFL knockouts and compared them to patient-specific nonsense mutants and isogenic controls. iPSC lacking NFL differentiated efficiently into motor neurons with normal axon growth and regrowth after mechanical axotomy and contained neurofilaments. Electrophysiological analysis revealed that motor neurons without NFL fired spontaneous and evoked action potentials with similar characteristics as controls. However, we found that, in the absence of NFL, human motor neurons 1) had reduced axonal caliber, 2) the amplitude of miniature excitatory postsynaptic currents (mEPSC) was decreased, 3) neurofilament heavy (NFH) levels were reduced and no compensatory increases in other filament subunits were observed, and 4) the movement of mitochondria and to a lesser extent lysosomes was increased. Our findings elaborate the functional roles of NFL in human motor neurons. NFL is not only a structural protein forming neurofilaments and filling the axonal cytoplasm, but our study supports the role of NFL in the regulation of synaptic transmission and organelle trafficking. To rescue the NFL deficiency in the patient-specific nonsense mutant motor neurons, we used three drugs, amlexanox, ataluren (PTC-124), and gentamicin to induce translational read-through or inhibit nonsense-mediated decay. However, the drugs failed to increase the amount of NFL protein to detectable levels and were toxic to iPSC-derived motor neurons

    Myasthenic congenital myopathy from recessive mutations at a single residue in NaV1.4

    Get PDF
    OBJECTIVE: To identify the genetic and physiologic basis for recessive myasthenic congenital myopathy in 2 families, suggestive of a channelopathy involving the sodium channel gene, SCN4A. METHODS: A combination of whole exome sequencing and targeted mutation analysis, followed by voltage-clamp studies of mutant sodium channels expressed in fibroblasts (HEK cells) and Xenopus oocytes. RESULTS: Missense mutations of the same residue in the skeletal muscle sodium channel, R1460 of NaV1.4, were identified in a family and a single patient of Finnish origin (p.R1460Q) and a proband in the United States (p.R1460W). Congenital hypotonia, breathing difficulties, bulbar weakness, and fatigability had recessive inheritance (homozygous p.R1460W or compound heterozygous p.R1460Q and p.R1059X), whereas carriers were either asymptomatic (p.R1460W) or had myotonia (p.R1460Q). Sodium currents conducted by mutant channels showed unusual mixed defects with both loss-of-function (reduced amplitude, hyperpolarized shift of inactivation) and gain-of-function (slower entry and faster recovery from inactivation) changes. CONCLUSIONS: Novel mutations in families with myasthenic congenital myopathy have been identified at p.R1460 of the sodium channel. Recessive inheritance, with experimentally established loss-of-function, is a consistent feature of sodium channel based myasthenia, whereas the mixed gain of function for p.R1460 may also cause susceptibility to myotonia

    Clinical significance of serological biomarkers and neuropsychological performances in patients with temporal lobe epilepsy

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Temporal lobe epilepsy (TLE) is a common form of focal epilepsy. Serum biomarkers to predict cognitive performance in TLE patients without psychiatric comorbidities and the link with gray matter (GM) atrophy have not been fully explored.</p> <p>Methods</p> <p>Thirty-four patients with TLE and 34 sex - and age-matched controls were enrolled for standardized cognitive tests, neuroimaging studies as well as measurements of serum levels of heat shock protein 70 (HSP70), S100ß protein (S100ßP), neuronal specific enolase (NSE), plasma nuclear and mitochondrial DNA levels.</p> <p>Results</p> <p>Compared with the controls, the patients with TLE had poorer cognitive performances and higher HSP70 and S100ßP levels (<it>p </it>< 0.01). The patients with higher frequencies of seizures had higher levels of HSP70, NSE and S100ßP (<it>p </it>< 0.01). Serum HSP70 level correlated positively with duration of epilepsy (σ = 0.413, <it>p </it>< 0.01), and inversely with memory scores in the late registration (σ = −0.276, <it>p </it>= 0.01) and early recall score (σ = −0.304, <it>p </it>= 0.007). Compared with the controls, gray matter atrophy in the hippocampal and parahippocampal areas, putamen, thalamus and supplementary motor areas were found in the patient group. The HSP70 levels showed an inverse correlation with hippocampal volume (R square = 0.22, <it>p </it>= 0.007) after controlling for the effect of age.</p> <p>Conclusions</p> <p>Our results suggest that serum biomarkers were predictive of higher frequencies of seizures in the TLE group. HSP70 may be considered to be a stress biomarker in patients with TLE in that it correlated inversely with memory scores and hippocampal volume. In addition, the symmetric extratemporal atrophic patterns may be related to damage of neuronal networks and epileptogenesis in TLE.</p

    An unusual ryanodine receptor 1 (RYR1) phenotype: Mild calf-predominant myopathy

    Get PDF
    Objective To identify the genetic defect causing a distal calf myopathy with cores.Methods Families with a genetically undetermined calf-predominant myopathy underwent detailed clinical evaluation, including EMG/nerve conduction studies, muscle biopsy, laboratory investigations, and muscle MRI. Next-generation sequencing and targeted Sanger sequencing were used to identify the causative genetic defect in each family.Results A novel deletion-insertion mutation in ryanodine receptor 1 (RYR1) was found in the proband of the index family and segregated with the disease in 6 affected relatives. Subsequently, we found 2 more families with a similar calf-predominant myopathy segregating with unique RYR1-mutated alleles. All patients showed a very slowly progressive myopathy without episodes of malignant hyperthermia or rhabdomyolysis. Muscle biopsy showed cores or core-like changes in all families.Conclusions Our findings expand the spectrum of RYR1-related disorders to include a calf-predominant myopathy with core pathology and autosomal dominant inheritance. Two families had unique and previously unreported RYR1 mutations, while affected persons in the third family carried 2 previously known mutations in the same dominant allele.</div

    Unusual multisystemic involvement and a novel BAG3 mutation revealed by NGS screening in a large cohort of myofibrillar myopathies

    Get PDF
    Background: Myofibrillar myopathies (MFM) are a group of phenotypically and genetically heterogeneous neuromuscular disorders, which are characterized by protein aggregations in muscle fibres and can be associated with multisystemic involvement. Methods: We screened a large cohort of 38 index patients with MFM for mutations in the nine thus far known causative genes using Sanger and next generation sequencing (NGS). We studied the clinical and histopathological characteristics in 38 index patients and five additional relatives (n = 43) and particularly focused on the associated multisystemic symptoms. Results: We identified 14 heterozygous mutations (diagnostic yield of 37%), among them the novel p.Pro209Gln mutation in the BAG3 gene, which was associated with onset in adulthood, a mild phenotype and an axonal sensorimotor polyneuropathy, in the absence of giant axons at the nerve biopsy. We revealed several novel clinical phenotypes and unusual multisystemic presentations with previously described mutations: hearing impairment with a FLNC mutation, dysphonia with a mutation in DES and the first patient with a FLNC mutation presenting respiratory insufficiency as the initial symptom. Moreover, we described for the first time respiratory insufficiency occurring in a patient with the p.Gly154Ser mutation in CRYAB. Interestingly, we detected a polyneuropathy in 28% of the MFM patients, including a BAG3 and a MYOT case, and hearing impairment in 13%, including one patient with a FLNC mutation and two with mutations in the DES gene. In four index patients with a mutation in one of the MFM genes, typical histological findings were only identified at the ultrastructural level (29%). Conclusions: We conclude that extraskeletal symptoms frequently occur in MFM, particularly cardiac and respiratory involvement, polyneuropathy and/or deafness. BAG3 mutations should be considered even in cases with a mild phenotype or an adult onset. We identified a genetic defect in one of the known genes in less than half of the MFM patients, indicating that more causative genes are still to be found. Next generation sequencing techniques should be helpful in achieving this aim

    IBMPFD disease-causing mutant VCP/p97 proteins are targets of autophagic-lysosomal degradation

    Get PDF
    The ubiquitin-proteasome system (UPS) degrades soluble proteins and small aggregates, whereas macroautophagy (autophagy herein) eliminates larger protein aggregates, tangles and even whole organelles in a lysosome-dependent manner. VCP/p97 was implicated in both pathways. VCP/p97 mutations cause a rare multisystem disease called IBMPFD (Inclusion Body Myopathy with Paget's Disease and Frontotemporal Dementia). Here, we studied the role IBMPFD-related mutants of VCP/p97 in autophagy. In contrast with the wild-type VCP/p97 protein or R155C or R191Q mutants, the P137L mutant was aggregate-prone. We showed that, unlike commonly studied R155C or R191Q mutants, the P137L mutant protein stimulated both autophagosome and autolysosome formation. Moreover, P137L mutant protein itself was a substrate of autophagy. Starvation- and mTOR inhibition-induced autophagy led to the degradation of the P137L mutant protein, while preserving the wild-type and functional VCP/p97. Strikingly, similar to the P137L mutant, other IBMPFD-related VCP/p97 mutants, namely R93C and G157R mutants induced autophagosome and autolysosome formation; and G157R mutant formed aggregates that could be cleared by autophagy. Therefore, cellular phenotypes caused by P137L mutant expression were not isolated observations, and some other IBMPFD disease-related VCP/p97 mutations could lead to similar outcomes. Our results indicate that cellular mechanisms leading to IBMPFD disease may be various, and underline the importance of studying different disease-associated mutations in order to better understand human pathologies and tailor mutation-specific treatment strategies
    • 

    corecore