6,190 research outputs found

    Genetic variability, stability and heritability for quality and yield characteristics in provitamin A cassava varieties

    Get PDF
    Open Access Article; Published online: 25 Jan 2020Cassava is widely consumed in many areas of Africa, including Ghana, and is a major part of most household diets. These areas are characterized by rampant malnutrition, because the tuberous roots are low in nutritional value. Provitamin A biofortified cassava varieties have been developed by the International Institute for Tropical Agriculture, but adoption of these varieties in Ghana will largely depend on their agronomic performance, including fresh root yield, dry matter content, resistance to major pests and diseases, mealiness, starch content and the stability of these traits. Eight provitamin A varieties with two white checks were planted in three environments for two seasons to determine stability and variability among the varieties for important traits. There were significant variations in performance between varieties and between environments for cassava mosaic disease, root number, fresh root yield and starch content. High broad-sense heritability and genetic advance were observed in all traits, except for storage root number, and could be exploited through improvement programs. This study identified the best performing enhanced provitamin A varieties for traits that are key drivers of variety adoption in Ghana. In view of this, some varieties can be recommended for varietal release after on-farm testing. The study also showed the possibility of tapping heterosis after careful selection of parents

    Real-time observation of fluid flows in tissue during stress relaxation using Raman spectroscopy

    Get PDF
    This paper outlines a technique to measure fluid levels in articular cartilage tissue during an unconfined stress relaxation test. A time series of Raman spectrum were recorded during relaxation and the changes in the specific Raman spectral bands assigned to water and protein were monitored to determine the fluid content of the tissue. After 1000 s unconfined compression the fluid content of the tissue is reduced by an average of 3.9% ± 1.7%. The reduction in fluid content during compression varies between samples but does not significantly increase with increasing strain. Further development of this technique will allow mapping of fluid distribution and flows during dynamic testing making it a powerful tool to understand the role of interstitial fluid in the functional performance of cartilage

    Test Facility and Preliminary Performance of a 100 kW Class MPD Thruster

    Get PDF
    A 260 kW magnetoplasmadynamic (MPD) thruster test facility was assembled and used to characterize thrusters at power levels up to 130 kW using argon and helium propellants. Sensitivities of discharge characteristics to arc current, mass flow rate, and applied magnetic field were investigated. A thermal efficiency correlation developed by others for low power MPD thrusters defined parametric guidelines to minimize electrode losses in MPD thrusters. Argon and helium results suggest that a parameter defined as the product of arc voltage and the square root of the mass flow rate must exceed 0.7 V/kg(sup 1/2)/sec(sup 1/2) in order to obtain thermal efficiencies in excess of 60 percent

    Derivation and Performance of Standardized Enhanced Liver Fibrosis (ELF) Test Thresholds for the Detection and Prognosis of Liver Fibrosis

    Get PDF
    INTRODUCTION: Noninvasive tests are increasingly used to assess liver fibrosis and determine prognosis but suggested test thresholds vary. We describe the selection of standardized thresholds for the Enhanced Liver Fibrosis (ELF) test for the detection of liver fibrosis and for prognostication in chronic liver disease. METHODS: A Delphi method was used to identify thresholds for the ELF test to predict histological liver fibrosis stages, including cirrhosis, using data derived from 921 patients in the EUROGOLF cohort. These thresholds were then used to determine the prognostic performance of ELF in a subset of 457 patients followed for a mean of 5 years. RESULTS: The Delphi panel selected sensitivity of 85% for the detection of fibrosis and >95% specificity for cirrhosis. The corresponding thresholds were 7.7, 9.8, and 11.3. Eighty-five percent of patients with mild or worse fibrosis had an ELF score ≥7.7. The sensitivity for cirrhosis of ELF ≥9.8 was 76%. ELF ≥11.3 was 97% specific for cirrhosis. ELF scores show a near-linear relationship with Ishak fibrosis stages. Relative to the <7.7 group, the hazard ratios for a liver-related outcome at 5 years were 21.00 (95% CI, 2.68-164.65) and 71.04 (95% CI, 9.4-536.7) in the 9.8 to <11.3 and ≥11.3 subgroups, respectively. CONCLUSION: The selection of standard thresholds for detection and prognosis of liver fibrosis is described and their performance reported. These thresholds should prove useful in both interpreting and explaining test results and when considering the relationship of ELF score to Ishak stage in the context of monitoring

    Payment Rules through Discriminant-Based Classifiers

    Get PDF
    pdf: publications/dfjo_svmmd.pdf ps: publications/dfjo_svmmd.ps.gz tr: http://arxiv.org/abs/1208.1184 slides: publications/slides_svmmd.pdf http: http://dx.doi.org/10.1145/2559049 keywords: web,journal,selected,recent webnote: Earlier version appeared in the proc13thecold sort: 1401a cvnote: \contrib16%\selectedpdf: publications/dfjo_svmmd.pdf ps: publications/dfjo_svmmd.ps.gz tr: http://arxiv.org/abs/1208.1184 slides: publications/slides_svmmd.pdf http: http://dx.doi.org/10.1145/2559049 keywords: web,journal,selected,recent webnote: Earlier version appeared in the proc13thecold sort: 1401a cvnote: \contrib16%\selecte

    A low friction, biphasic and boundary lubricating hydrogel for cartilage replacement

    Get PDF
    Partial joint repair is a surgical procedure where an artificial material is used to replace localised chondral damage. These artificial bearing surfaces must articulate against cartilage, but current materials do not replicate both the biphasic and boundary lubrication mechanisms of cartilage. A research challenge therefore exists to provide a material that mimics both boundary and biphasic lubrication mechanisms of cartilage. In this work a polymeric network of a biomimetic boundary lubricant, poly(2-methacryloyloxyethyl phosphorylcholine) (PMPC), was incorporated into an ultra-tough double network (DN) biphasic (water phase + polymer phase) gel, to form a PMPC triple network (PMPC TN) hydrogel with boundary and biphasic lubrication capability. The presence of this third network of MPC was confirmed using ATR-FTIR. The PMPC TN hydrogel had a yield stress of 26 MPa, which is an order of magnitude higher than the peak stresses found in the native human knee. A preliminary pin on plate tribology study was performed where both the DN and PMPC TN hydrogels experienced a reduction in friction with increasing sliding speed which is consistent with biphasic lubrication. In the physiological sliding speed range, the PMPC TN hydrogel halved the friction compared to the DN hydrogel indicating the boundary lubricating PMPC network was working. A biocompatible, tough, strong and chondral lubrication imitating PMPC TN hydrogel was synthesised in this work. By complementing the biphasic and boundary lubrication mechanisms of cartilage, PMPC TN hydrogel could reduce the reported incidence of chondral damage opposite partial joint repair implants, and therefore increase the clinical efficacy of partial joint repair. Statement of Significance This paper presents the synthesis, characterisation and preliminary tribological testing of a new biomaterial that aims to recreate the primary chondral lubrication mechanisms: boundary and biphasic lubrication. This work has demonstrated that the introduction of an established zwitterionic, biomimetic boundary lubricant can improve the frictional properties of an ultra-tough hydrogel. This new biomaterial, when used as a partial joint replacement bearing material, may help avoid damage to the opposing chondral surface—which has been reported as an issue for other non-biomimetic partial joint replacement materials. Alongside the synthesis of a novel biomaterial focused on complementing the lubrication mechanisms of cartilage, your readership will gain insights into effective mechanical and tribological testing methods and materials characterisation methods for their own biomaterials

    A selected ion flow tube study of the ion-molecule reactions of monochloroethene, trichloroethene and tetrachloroethene

    Get PDF
    Data for the rate coefficients and product cations of the reactions of a large number of atomic and small molecular cations with monochloroethene, trichloroethene and tetrachloroethene in a selected ion flow tube at 298 K are reported. The recombination energy of the ions range from 6.27 eV (H3_3O+^+) through to 21.56 eV (Ne+^+). Collisional rate coefficients are calculated by modified average dipole orientation theory and compared with experimental values. Thermochemistry and mass balance predict the most feasible neutral products. Together with previously reported results for the three isomers of dichloroethene (J. Phys. Chem. A., 2006, 110, 5760), the fragment ion branching ratios have been compared with those from threshold photoelectron photoion coincidence spectroscopy over the photon energy range 9-22 eV to determine the importance or otherwise of long-range charge transfer. For ions with recombination energy in excess of the ionisation energy of the chloroethene, charge transfer is energetically allowed. The similarity of the branching ratios from the two experiments suggest that long-range charge transfer is dominant. For ions with recombination energy less than the ionisation energy, charge transfer is not allowed; chemical reaction can only occur following formation of an ion-molecule complex, where steric effects are more significant. The products that are now formed and their percentage yield is a complex interplay between the number and position of the chlorine atoms with respect to the C=C bond, where inductive and conjugation effects can be important

    Tribological evaluation of a novel hybrid for repair of articular cartilage defects

    Get PDF
    The friction and wear properties of silica/poly(tetrahydrofuran)/poly(ε-caprolactone) (SiO2/PTHF/PCL-diCOOH) hybrid materials that are proposed as cartilage tissue engineering materials were investigated against living articular cartilage. A testing rig was designed to allow testing against fresh bovine cartilage. The friction force and wear were compared for five compositions of the hybrid biomaterial articulating against freshly harvested bovine cartilage in diluted bovine calf serum. Under a non-migrating contact, the friction force increased and hence shear force applied to the opposing articular cartilage also increased, resulting in minor damage to the cartilage surface. This worse case testing scenario was used to discriminate between material formulations and revealed the increase in friction and damaged area was lowest for the hybrid containing the most silica. Further friction and wear tests on one hybrid formulation with an elastic modulus closest to that of cartilage were then conducted in a custom incubator system. This demonstrated that over a five day period the friction force, cell viability and glucosaminoglycan (GAG) release into the lubricant were similar between a cartilage-cartilage interface and the hybrid-cartilage interface, supporting the use of these materials for cartilage repair. These results demonstrate how tribology testing can play a part in the development of new materials for chondral tissue engineering

    Zirconia phase transformation in retrieved, wear simulated and artificially aged ceramic femoral heads

    Get PDF
    Zirconia in Zirconia toughened alumina ceramic hip replacements exists in an unstable state and can transform in response to stress giving the material improved fracture toughness. Phase transformation also occurs under hydrothermal conditions such as exist in vivo. To predict the hydrothermal aging that will occur in vivo accelerated aging procedures have been used, but validation of these models requires the study of retrieved hip joints. Here 26 retrievals are analysed to determine the degree of phase transformation in vivo. These were compared with virgin heads, heads that had undergone the accelerated aging process and heads wear tested to 5 million cycles in a hip simulator. Monoclinic content and surface roughness were measured using Raman spectroscopy and white light interferometry respectively. The monoclinic content for retrieved heads was 28.5% ± 7.8, greater than twice that in virgin, aged or wear tested heads and did not have a significant correlation with time, contrary to the predictions of the hydrothermal aging model. The surface roughness for retrieved heads in the unworn area was not significantly different to that in virgin, aged or unworn areas of wear tested heads. However in worn areas of the retrieved heads, the surface roughness was higher than observed in wear simulator testing. These results indicate that current testing methodologies do not fully capture the operational conditions of the material and the real performance of future new materials may not be adequately predicted by current pre-clinical testing methods. This article is protected by copyright. All rights reserve

    Synthesis and characterization of a series of nickel(II) alkoxide precursors and their utility for Ni(0) nanoparticle production

    Get PDF
    A series of nickel(ii) aryloxide ([Ni(OAr)2(py)x]) precursors was synthesized from an amide-alcohol exchange using [Ni(NR2)2] in the presence of pyridine (py). The H-OAr selected were the mono- and di-ortho-substituted 2-alkyl phenols: alkyl = methyl (H-oMP), iso-propyl (H-oPP), tert-butyl (H-oBP) and 2,6-di-alkyl phenols (alkyl = di-iso-propyl (H-DIP), di-tert-butyl (H-DBP), di-phenyl (H-DPhP)). The crystalline products were solved as solvated monomers and structurally characterized as [Ni(OAr)2(py)x], where x = 4: OAr = oMP (1), oPP (2); x = 3: OAr = oBP (3), DIP (4); x = 2: OAr = DBP (5), DPhP (6). The excited states (singlet or triplet) and various geometries of 1-6 were identified by experimental UV-vis and verified by computational modeling. Magnetic susceptibility of the representative compound 4 was fit to a Curie Weiss model that yielded a magnetic moment of 4.38(3)μB consistent with a Ni2+ center. Compounds 1 and 6 were selected for decomposition studied under solution precipitation routes since they represent the two extremes of coordination. The particle size and crystalline structure were characterized using transmission electron microscopy (TEM) and powder X-ray diffraction (PXRD). The materials isolated from 1 and 6 were found by TEM to form irregular shape nanomaterials (8-15 nm), which by PXRD were found to be Ni0 hcp (PDF: 01-089-7129) and fcc (PDF: 01-070-0989), respectively
    • …
    corecore