
A

Payment Rules through Discriminant-Based Classifiers

PAUL DÜTTING, Stanford University, USA

FELIX FISCHER, University of Cambridge, UK

PICHAYUT JIRAPINYO, Bain & Company, Singapore

JOHN K. LAI, Harvard University, USA

BENJAMIN LUBIN, Boston University, USA

DAVID C. PARKES, Harvard University, USA

In mechanism design it is typical to impose incentive compatibility and then derive an optimal mechanism
subject to this constraint. By replacing the incentive compatibility requirement with the goal of minimizing
expected ex post regret, we are able to adapt statistical machine learning techniques to the design of
payment rules. This computational approach to mechanism design is applicable to domains with multi-
dimensional types and situations where computational efficiency is a concern. Specifically, given an outcome
rule and access to a type distribution, we train a support vector machine with a specific structure imposed
on the discriminant function, such that it implicitly learns a corresponding payment rule with desirable
incentive properties. We extend the framework to adopt succinct k-wise dependent valuations, leveraging
a connection with maximum a posteriori assignment on Markov networks to enable training to scale up
to settings with a large number of items; we evaluate this construction in the case where k = 2. We
present applications to multi-parameter combinatorial auctions with approximate winner determination,
and the assignment problem with an egalitarian outcome rule. Experimental results demonstrate that the
construction produces payment rules with low ex post regret, and that penalizing classification error is
effective in preventing failures of ex post individual rationality.

Categories and Subject Descriptors: J.4 [Computer Applications]: Social and Behavioral Sciences—
Economics; I.2.6 [Artificial Intelligence]: Learning

General Terms: Algorithms, Economics, Theory

Additional Key Words and Phrases: Computational Mechanism Design, Support Vector Machines

ACM Reference Format:

Paul Dütting, Felix Fischer, Pichayut Jirapinyo, John K. Lai, Benjamin Lubin, David C. Parkes, 2013.
Payment Rules through Discriminant-Based Classifiers. ACM V, N, Article A (January YYYY), 39 pages.
DOI:http://dx.doi.org/10.1145/0000000.0000000

1. INTRODUCTION

Mechanism design studies situations where a set of agents each hold private information
regarding their preferences over different outcomes. A mechanism receives claims about
agent preferences, selects and enforces an outcome, and optionally collects payments. The
classical approach is to impose incentive compatibility on the design, ensuring that agents
truthfully report their preferences in equilibrium. Subject to this incentive constraint, the
goal is to identify a mechanism, i.e., a way of choosing an outcome and payments based on
agents’ reports, that optimizes a given design objective such as welfare or revenue.

A preliminary version of the results presented in this article appeared in the Proceedings of the 13th ACM
Conference on Electronic Commerce.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or commercial advantage
and that copies show this notice on the first page or initial screen of a display along with the full citation.
Copyrights for components of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any
component of this work in other works requires prior specific permission and/or a fee. Permissions may be
requested from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA,
fax +1 (212) 869-0481, or permissions@acm.org.
c⃝ YYYY ACM 0000-0000/YYYY/01-ARTA $15.00
DOI:http://dx.doi.org/10.1145/0000000.0000000

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

A:2 P. Dütting et al.

There are, however, significant challenges associated with this classical approach. First, it
can be analytically cumbersome to derive optimal mechanisms for domains that are multi-
dimensional, in the sense that each agent’s private information is described through more
than a single number, and few results are known in this case. An example of a multi-
dimensional domain is a combinatorial auction, where an agent’s preferences are described
by a value for each of several different bundles of items. Second, incentive compatibility
can be costly, in that adopting it as a hard constraint can preclude mechanisms with other
desirable properties. For example, imposing the strongest form of incentive compatibility,
truthfulness in a dominant strategy equilibrium or strategyproofness, necessarily leads to
poor revenue, vulnerability to collusion, and vulnerability to false-name bidding in com-
binatorial auctions where valuations exhibit complementarities among items [Yokoo et al.
2004; Ausubel and Milgrom 2006; Rastegari et al. 2011].1 A third difficulty occurs when the
optimal mechanism has an outcome or payment rule that is computationally intractable. In
this case, the challenge is to simultaneously handle both the incentive constraints and the
requirements of worst-case tractability in the design.

1.1. Our Approach

In the face of these difficulties, we adopt statistical machine learning to automatically infer
mechanisms with good incentive properties. Rather than imposing incentive compatibility
as a hard constraint, we start from a given outcome rule, typically expressed as an algorithm,
and then use machine learning techniques to identify a payment rule that minimizes agents’
expected ex post regret. The ex post regret of an agent for truthful reporting in a given
instance, or just regret where it causes no confusion, is the maximum amount by which its
utility could increase through a misreport, while holding constant the reports of others. The
expected ex post regret is the average ex post regret over all agents and all preference types,
calculated with respect to a distribution on types. Our approach is applicable to domains
that are multi-dimensional, and domains for which the computational efficiency of outcome
rules is a concern. The methodology seeks a payment rule that obtains the best possible ex
post incentive properties, and views all other aspects related to payments, such as revenue,
as secondary. Rather, a designer needs to experiment with modified outcome rules in order
to achieve different payment desiderata.
In place of ex post incentives, an alternative design stance would adopt the goal of mini-

mizing interim regret. The interim regret for an agent with a particular type is the maximum
amount by which the agent’s expected utility, given the conditional distribution on types
of others, could increase through a misreport. The expected interim regret of a mechanism
would average interim regret over all possible types. Whereas a mechanism with zero ex-
pected ex post regret is strategyproof, a mechanism with zero expected interim regret is
Bayes-Nash incentive compatible, both with the exception of a set of types with measure
zero. In this sense, our design stance, being about ex post incentives, is more in the spirit
of strategyproofness than Bayes-Nash incentive compatibility.
Still, it is important to emphasize that the interesting application of our approach is to

settings in which there is no payment rule that can provide strategyproofness for the given
outcome rule. We thus depart in a significant way from the typical approach to mechanism
design, which assumes equilibrium behavior on the part of agents. We will not achieve an
expected ex post regret of zero, and will therefore not obtain strategyproof designs. The
analysis we provide is not an equilibrium analysis. This noted, we can make two observations

1By the revelation principle, this weakness should be ascribed to insisting on mechanisms that are analyzed
in equilibrium (dominant-strategy or otherwise), and not to the imposition of incentive constraints per se.
Our approach seeks approximate incentive compatibility, and we do not study the incentive compatible
analogues to the mechanisms that are designed through discriminant-based payment rules, nor do we study
the equilibrium properties of our designed mechanisms.

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

Payment Rules through Discriminant-Based Classifiers A:3

that start from ex post incentive properties but also yield interim incentive properties in
the usual way.
First, our formulation ensures that an agent’s payment, conditioned on an outcome, is

independent of its report. Because of this, the only way an agent can improve its utility
is by changing its report in a way that changes the outcome. Generically, this provides
mechanisms where there is no gain in utility from infinitesimal changes in reports around
an agent’s true report, i.e., no marginal benefit from misreports; this holds ex post, and thus
also ex interim for an agent with knowledge only of its own type. This local stability property
occurs in practice in the generalized second-price (GSP) auction used for sponsored search,
and has also been emphasized by Erdil and Klemperer [2010] in the context of combinatorial
auction design.
Second, if the expected ex post regret is bounded from above by some constant ϵ1 > 0,

then for a setting with finite types this immediately implies a bound of the following form:
the expected ex post regret for an agent with a type sampled from the type distribution
is at most ϵ2 > 0 with probability at least 1-δ, for some δ > 0, where ϵ2δ ≤ ϵ1. Since the
interim regret is bounded from above by the expected ex post regret of an agent with the
same type, we additionally have a bound of the following form: the interim regret for an
agent with a type sampled from the type distribution is at most ϵ2 > 0 with probability at
least 1-δ, for some δ > 0. The effect of this is that an agent for whom strategic behavior
is costly, and with interim beliefs about others’ types, would be truthful when the cost is
greater than the interim regret; in particular, if the cost is greater than ϵ2, then truthful
behavior would be optimal for the agent with probability at least 1− δ.
Returning now to the main theme, the approach that we take to the design of payment

rules is to recognize that the payment rule of a strategyproof mechanism can be thought
of as a classifier for predicting the outcome. In particular, the payment rule implies a price
to each agent for each outcome, and the selected outcome must simultaneously maximize
the reported value minus price for every agent. By limiting ourselves to discriminant-based
classifiers, which use a discriminant function to score different outcomes and predict the
outcome with the highest score, and in particular to discriminant functions with “value-
minus-price” structure where the price can be an arbitrary function of the outcome and
the reports of other agents, we obtain a remarkably direct connection between multi-class
classification and mechanism design.
For an appropriate loss function, the discriminant function of a classifier that minimizes

generalization error over a hypothesis class has a corresponding payment rule that minimizes
expected ex post regret among all payment rules corresponding to classifiers in this class.
Conveniently, an appropriate method exists for multi-class classification with large outcome
spaces that supports the specific structure of the discriminant function, namely the method
of structural support vector machines [Tsochantaridis et al. 2005; Joachims et al. 2009].
While use of this method restricts us to learning discriminant functions that are linear
in feature vectors depending on agents’ reported types, the restriction is not severe: the
feature vectors can be non-linear functions of the reported types, and as with standard
support vector machines it is possible to adopt non-linear kernels. This ultimately enables
discriminant functions and thus price functions that depend in a non-linear way on the
outcome and the reported types of agents.
The computational cost associated with our approach occurs offline during training, when

a payment rule is learned for a given outcome rule. The learned payment rules have a succinct
representation, through the standard support vector machine approach, and are fast to
evaluate at run-time in the context of a deployed mechanism. A challenge in the context of
structural support vector machines is to handle the large number of possible outcomes, or
labels of the classification problem, during training. One way to address this in our setting is
to work with valuation functions for which training can be formulated as a succinct convex
optimization problem. In particular, we adopt k-wise dependent valuations [Conitzer et al.

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

A:4 P. Dütting et al.

2005] and leverage a connection with maximum a posteriori assignment on Markov networks
to scale-up our framework in application to combinatorial auctions.

1.2. Evaluation

In illustrating the framework, we focus on three situations where strategyproof payment
rules are not available:

(i) multi-minded combinatorial auctions, in which each agent is interested in a constant
number of bundles, and where winner determination is provided through a greedy allo-
cation rule,

(ii) an assignment problem with multiple distinct items, agents with unit-demand valua-
tions, and an egalitarian outcome rule, i.e., an outcome rule that maximizes the mini-
mum value of any agent, and

(iii) combinatorial auctions with k-wise dependent valuations, in which each agent’s valua-
tion has a graphical representation, and where winner determination is provided through
a greedy allocation rule.

The egalitarian rule, also referred to as max-min fairness, has been used by others to
illustrate the challenge of truthful mechanism design; e.g., Lavi et al. [2003], who motivate
this in the context of Rawls’ theory of justice. Although one might also wish to define
fairness with regard to utility, i.e., including payments, we follow others in adopting the
egalitarian rule as a canonical example of a non-implementable outcome rule.
Our experimental results demonstrate low expected regret even when the 0/1 classification

accuracy is only moderately good, and better regret properties than those obtained through
the simple Vickrey-Clarke-Groves (VCG) based payment rules that we adopt as a baseline.
In addition, we give special consideration to the failure of ex post individual rationality
(IR), and introduce methods to bias the classifier to avoid these kinds of errors and also
post hoc methods to adjust trained payments, or even allocations, to reduce or eliminate
them.
For setting (i), we find that our learned rules perform similarly to VCG-based rules.

In setting (ii), our learned rules perform significantly better than VCG-based rules, which
is understandable given that the egalitarian objective is quite different from the welfare
maximization objectives for which the VCG idea is designed. In setting (iii), our learned
rules provide better regret properties than VCG-based rules for large numbers of items, and
allow us to trade off IR violation and regret more effectively than VCG-based rules. We
are able to scale to instances with tens of items in setting (iii), as our training problem is
polynomial in the number of items even though we are running a combinatorial auction.

1.3. Related Work

Conitzer and Sandholm [2002] introduced the agenda of automated mechanism design
(AMD) and formulated mechanism design as the search for an allocation rule and a payment
rule among a class of rules satisfying incentive constraints. While the basic idea of optimal
design is familiar from the seminal work of Myerson [1981], a novel aspect of AMD is its
formulation as a search problem over the space of all possible mappings from discrete type
profiles to outcomes and payments. AMD is intractable when an explicit representation of
the outcome and payment rules is used, because the type space is exponentially large in the
number of agents.
One way to make AMD more tractable is to search through a parameterized space of

incentive-compatible mechanisms [Guo and Conitzer 2010]. More recently, advances in
AMD have been made by considering domains with additive valuations and symmetry
among agents, and by adopting Bayes-Nash incentive compatibility (BIC) rather than strat-
egyproofness [Cai et al. 2012]. Still, these approaches seem limited to domains in which the

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

Payment Rules through Discriminant-Based Classifiers A:5

outcome rule can be succinctly represented, which likely is not the case for the kinds of
combinatorial auction problems we consider.
Lavi and Swamy [2005] describe a method that takes any approximation algorithm for

a set packing problem with a matching integrality gap and turns it into a mechanism
with the same approximation guarantee that is strategyproof in expectation. Set packing
includes combinatorial auctions as a special case. Bei and Huang [2011] and Hartline et al.
[2011] describe an approach for turning an allocation rule into a mechanism that yields
essentially the same expected amount of social welfare or social surplus and satisfies BIC.
The approach computes an allocation and prices based on types sampled from probability
distributions derived from the revealed types, and is applicable to both single-parameter
and multi-parameter domains.
The target of minimizing expected ex post regret and the imposition of agent-independent

prices make the incentive properties of mechanisms designed through our approach incom-
parable to BIC. On one hand, we are interested in minimizing statistics of ex post regret, and
thus provide stronger guarantees than those of BIC. On the other hand, we don’t guarantee
zero expected regret (which would imply strategyproofness, and therefore BIC.) Another
distinction is that our approach can accommodate objectives that are non-separable across
agents, such as in the egalitarian assignment problem.
In addition, in determining the outcome and payments for a given instance, the approach

of Bei and Huang and Hartline et al. evaluates the outcome rule on a number of randomly
perturbed replicas of that instance that is polynomial in the number of agents, the desired
approximation ratio, and a notion capturing the complexity of the type spaces. When type
spaces are large, as in the case of combinatorial auctions, this may become intractable. By
contrast, our approach evaluates the outcome rule and the trained payment rule once for a
given instance and incurs additional computational costs only during training.
The work of Lahaie [2009, 2010] precedes our work in adopting a kernel-based approach for

combinatorial auctions, but focuses not on learning a payment rule for a given outcome rule
but rather on solving the winner determination and pricing problem for a given instance of a
combinatorial auction. Lahaie introduces the use of kernel methods to compactly represent
non-linear price functions, which is also present in our work, but obtains incentive properties
more indirectly through a connection between regularization and price sensitivity. The main
distinction between the two lines of work is that Lahaie focuses on the design of scalable
methods for clearing and pricing approximately welfare-maximizing combinatorial auctions,
while we advance a framework for the automated design of payment rules that provide good
incentive properties for a given outcome rule, which need not be welfare-maximizing.
Our discussion of k-wise dependent valuations builds on valuation structure for combina-

torial auctions introduced by Conitzer et al. [2005] and Abraham et al. [2012]. Our tractable
training results rely on connections between k-wise dependent valuations and associative
Markov networks [Taskar et al. 2004].
Carroll [2011] and Lubin and Parkes [2012] provide surveys of related work on approx-

imate incentive compatibility, or incentive compatibility in the large-market limit. A fair
amount of attention has been devoted to regret-based metrics for quantifying the incentive
properties of mechanisms [e.g., Parkes et al. 2001; Day and Milgrom 2008; Lubin 2010;
Carroll 2011]. Pathak and Sönmez [2013] provide a qualitative ranking of different mech-
anisms without payments in terms of the number of manipulable instances. Budish [2011]
introduces an asymptotic, absolute design criterion regarding incentive properties in a large
replica economy limit. Lubin and Parkes [2009] provide experimental support that relates
the divergence between the payoffs in a mechanism and the payoffs in a strategyproof “ref-
erence” mechanism to the amount by which agents deviate from truthful bidding in the
Bayes-Nash equilibrium of a mechanism.

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

A:6 P. Dütting et al.

2. PRELIMINARIES

A mechanism design problem is given by a set N = {1, 2, . . . , n} of agents that interact to
select an element from a set Ω ⊆ !i∈NΩi of outcomes, where Ωi denotes the set of possible
outcomes for agent i ∈ N . Agent i ∈ N is associated with a type θi from a set Θi of possible
types, corresponding to the private information available to this agent.
We write θ = (θ1, . . . , θn) for a profile of types for the different agents, Θ = !i∈NΘi for

the set of possible type profiles, and θ−i ∈ Θ−i for a profile of types for all agents but i. Each
agent i ∈ N is further assumed to employ preferences over Ωi, represented by a valuation
function vi : Θi×Ωi → R. We assume that for all i ∈ N and θi ∈ Θi there exists an outcome
o ∈ Ω with vi(θi, oi) = 0.
A (direct) mechanism is a pair (g, p) of an outcome rule g : Θ → !i∈NΩi and a payment

rule p : Θ → Rn
≥0. The intuition is that the agents reveal to the mechanism a type profile

θ ∈ Θ, possibly different from their true types, and the mechanism chooses outcome g(θ)
and charges each agent i a payment of pi(θ) = (p(θ))i. We assume quasi-linear preferences,
so the utility of agent i with type θi ∈ Θi given a profile θ′ ∈ Θ of revealed types is
ui(θ′, θi) = vi(θi, gi(θ′)) − pi(θ′), where gi(θ) = (g(θ)i) denotes the outcome for agent i. A
crucial property of mechanism (g, p) is that its outcome rule is feasible, i.e., that g(θ) ∈ Ω
for all θ ∈ Θ.
Outcome rule g satisfies consumer sovereignty if for all i ∈ N , oi ∈ Ωi, and θ′−i ∈ Θ−i,

there exists θ′i ∈ Θi such that gi(θ′i, θ
′
−i) = oi; and reachability of the null outcome if for all

i ∈ N , θi ∈ Θi, and θ′−i ∈ Θ−i, there exists θ′i ∈ Θi such that vi(θi, gi(θ′i, θ
′
−i)) = 0.

Mechanism (g, p) is dominant strategy incentive compatible, or strategyproof, if each agent
maximizes its utility by reporting its true type, irrespective of the reports of the other agents,
i.e., if for all i ∈ N , θi ∈ Θi, and θ′ = (θ′i, θ

′
−i) ∈ Θ, ui((θi, θ′−i), θi) ≥ ui((θ′i, θ

′
−i), θi); it

satisfies individual rationality (IR) if agents reporting their true types are guaranteed non-
negative utility, i.e., if for all i ∈ N , θi ∈ Θi, and θ′−i ∈ Θ−i, ui((θi, θ′−i), θi) ≥ 0. Observe
that given reachability of the null outcome, strategyproofness implies individual rationality.
A mechanism (g, p) is strategyproof if and only if the payment of an agent is independent

of its reported type and the chosen outcome simultaneously maximizes the utility of all
agents, i.e., if for every type profile θ ∈ Θ,

pi(θ) = ti(θ−i, gi(θ)) for all i ∈ N, and (1)

gi(θ) ∈ argmax
o′i∈Ωi

(

vi(θi, o
′
i)− ti(θ−i, o

′
i)
)

for all i ∈ N, (2)

for a price function ti : Θ−i × Ωi → R. This simple characterization is crucial for our
approach, providing the basic insight into how to utilize the discriminant function of a clas-
sifier as a payment rule. The first property is the agent-independent property: conditioned
on reports of others, and an outcome, an agent’s payment is independent of its own report.
The second property is the agent-optimizing property: the outcome should maximize an
agent’s utility given these agent-independent prices and its reported valuation. The first
property is necessary since if it is violated, there exists some type vector θ where an agent
i can misreport its type and receive the same outcome but a lower payment. The second
property is necessary since if it is violated, there exists some type vector θ where an agent
i receives a preferred outcome and payment pair by misreporting its type.
Strategyproofness can also be characterized in regard to necessary and sufficient proper-

ties of outcome rules alone, and especially throughmonotonicity properties. These properties
characterize those outcome rules for which there exists a payment rule such that the out-
come rule and payment rule form a strategyproof mechanism [Saks and Yu 2005; Ashlagi
et al. 2010]. These monotonicity properties constrain the space of outcome rules for which
it is possible to learn a payment rule that provides full strategyproofness to a designed
mechanism.

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

Payment Rules through Discriminant-Based Classifiers A:7

We quantify the degree of strategyproofness of a mechanism in terms of the regret ex-
perienced by an agent when revealing its true type. The ex post regret of agent i ∈ N in
mechanism (g, p), given true type θi ∈ Θi and reported types θ′−i ∈ Θ−i of the other agents,
is

rgt i(θi, θ
′
−i) = max

θ′i∈Θi

ui

(

(θ′i, θ
′
−i), θi

)

− ui

(

(θi, θ
′
−i), θi

)

.

This is the maximum gain in utility the agent could achieve through a misreport θ′i,
holding the reports of others fixed. Analogously, the ex post violation of individual rationality
of agent i ∈ N in mechanism (g, p), given true type θi ∈ Θi and reported types θ′−i ∈ Θ−i

of the other agents, is

irv i(θi, θ
′
−i) = |min(ui((θi, θ

′
−i), θi), 0)|.

This quantity is zero when there is no violation of individual rationality (IR) for the agent
at this type profile, but positive when the agent’s utility is negative for the outcome and
payment.
We consider situations where type profiles θ are drawn from a distribution with probability

density function, D : Θ → R, such that D(θ) ≥ 0 and
∫

θ∈ΘD(θ) = 1. Given such a
distribution, and assuming that all agents report their true types, the expected ex post
regret of agent i ∈ N in mechanism (g, p) is Eθ∼D[rgt i(θi, θ−i)].
Outcome rule g is agent symmetric if for every permutation π of agents N , and all types

θ, θ′ ∈ Θ such that θi = θ′π(i) for all i ∈ N , gi(θ) = gπ(i)(θ
′) for all i ∈ N . This specifically

requires that Θi = Θj and Ωi = Ωj for all i, j ∈ N . Similarly, type distribution D is agent
symmetric if D(θ) = D(θ′), for every permutation π of N , and all types θ, θ′ ∈ Θ such that
θi = θ′π(i) for all i ∈ N . Given agent symmetry, a price function t1 : Θ−1 × Ωi → R for

agent 1 can be used to generate the payment rule p for a mechanism (g, p), with

p(θ) =
(

t1(θ−1, g1(θ)), t1(θ−2, g2(θ)), . . . , t1(θ−n, gn(θ))
)

,

so that the expected ex post regret is the same for every agent.
We assume agent symmetry going forward, which precludes outcome rules that break ties

based on agent identity, but obviates the need to train a separate classifier for each agent
while also providing some benefits in terms of simplifying the presentation of our results.2

3. PAYMENT RULES FROM MULTI-CLASS CLASSIFIERS

A multi-class classifier is a function h : X → Y , where X is an input domain and Y is a
discrete output domain. One could imagine, for example, a multi-class classifier that labels
a given image as a dog, cat, or some other animal. In the context of mechanism design, we
will be interested in classifiers that take as input a type profile and output an outcome.
What distinguishes this from an outcome rule is that we will impose restrictions on the
form the classifier can take.
Classification typically assumes an underlying target function h∗ : X → Y , and the

goal is to learn a classifier h that minimizes disagreements with h∗ on an input distri-
bution DX on X , based only on a finite set of training data {(x1, y1), . . . , (xℓ, yℓ)} =

2Technically, agent symmetric outcome rules would need to either break ties using randomization or by
not allocating anything to agents that are tied. In the former case, the outcome rule would then map to
a distribution over outcomes rather than a single outcome. The relation between multi-class classification
and mechanism design still holds in this setting, but perfect classification is no longer possible because the
outcome rule is not deterministic. We adopt agent symmetry to simplify the presentation of our results,
but without agent symmetry, we can still use the same methods to train a separate classifier for each agent
based on an agent-specific outcome rule. We also assume agent symmetry and train a single classifier for
all agents in the experimental results as ties occur with negligible probability for the settings and outcome
rules we study.

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

A:8 P. Dütting et al.

{(x1, h∗(x1)), . . . , (xℓ, h∗(xℓ))} with x1, . . . , xℓ drawn from DX . This may be challenging
because the amount of training data is limited, or because h is restricted to some hypothe-
sis class H with a certain simple structure, e.g., linear threshold functions. If h(x) = h∗(x)
for all x ∈ X , we say that h is a perfect classifier for h∗.
We consider classifiers that are defined in terms of a discriminant function f : X×Y → R,

such that

h(x) ∈ argmax
y∈Y

f(x, y)

for all x ∈ X . More specifically, we will be concerned with linear discriminant functions of
the form

fw(x, y) = wTψ(x, y)

for a weight vector w ∈ Rm and a feature map ψ : X × Y → Rm, where m ∈ N ∪ {∞}. The
function ψ maps input and output into an m-dimensional space, which allows non-linear
features to be expressed. In general, we allow w to have infinite dimension, while requiring
the inner product between w and ψ(x, y) to remain well-defined. Computationally, the
infinite-dimensional case is handled through kernels, as described in Section 4.1.1.

3.1. Mechanism Design as Classification

Given an outcome rule g and access to a distribution D over type profiles, our goal is
to design a payment rule p that gives the mechanism (g, p) the best possible incentive
properties, in the sense of expected regret.
Assuming agent symmetry, we focus on a partial outcome rule g1 : Θ → Ω1 and train a

classifier to predict the outcome to agent 1. To train a classifier, we generate examples by
drawing a type profile θ ∈ Θ from distribution D and applying outcome rule g to obtain
the target class g1(θ) ∈ Ω1.
We impose a special structure on the hypothesis class. A classifier hw : Θ → Ω1 is

admissible if it is defined in terms of a discriminant function fw of the form

fw(θ, o1) = w1v1(θ1, o1) + wT
−1ψ(θ−1, o1) (3)

for weights w such that w1 ∈ R>0 and w−1 ∈ Rm, and a feature map ψ : Θ−1 × Ω1 → Rm

for m ∈ N ∪ {∞}. The first term of fw(θ, o1) only depends on the type of agent 1, and
increases in its valuation for outcome o1, while the remaining terms ignore θ1 entirely.
This restriction to admissible discriminant functions is crucial because it allows us to

directly infer agent-independent prices from the discriminant function of a trained classifier.
For this, define the associated price function of an admissible classifier hw, as

tw(θ−1, o1) = −
1

w1
wT

−1ψ(θ−1, o1),

where we again focus on agent 1 for concreteness. By agent symmetry, we obtain the mech-
anism (g, pw) corresponding to classifier hw, by defining payment rule,

pw(θ) =
(

tw(θ−1, g1(θ)), tw(θ−2, g2(θ)), . . . , tw(θ−n, gn(θ))
)

.

Even requiring admissibility, the hope is that appropriate choices for the feature map ψ
can produce rich function spaces, and thus ultimately useful payment rules. Moreover, this
admissibility structure can be adopted in the context of structural support vector machines,
as discussed in Section 4.1.

3.2. Example: Single-Item Auction

Before proceeding further, we illustrate the ideas developed so far in the context of a single-
item auction. In a single-item auction, the type of each agent is a single number, corre-
sponding to its value for the item, and there are two possible allocations from the point

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

Payment Rules through Discriminant-Based Classifiers A:9

of view of an agent: one where it receives the item, and one where it does not. Formally,
Θ = Rn and Ω1 = {0, 1} (agent 1 is allocated, or it is not).
Consider a setting with three agents and a training set:

(θ1, o11) = ((1, 3, 5), 0), (θ2, o21) = ((5, 4, 3), 1), (θ3, o31) = ((2, 3, 4), 0),

and note that this training set is consistent with an optimal outcome rule, i.e., one that
assigns the item to an agent with maximum value.
Our goal is to learn an admissible classifier,

hw(θ) = argmax
o1∈{0,1}

fw(θ, o1) = argmax
o1∈{0,1}

w1v1(θ1, o1) + wT
−1ψ(θ−1, o1),

that performs well on the training set. Since there are only two possible outcomes, the
outcome chosen by hw is simply the one with the larger discriminant. A classifier that is
perfect on the training data must therefore satisfy the following constraints:

w1 · 0 + wT
−1ψ((3, 5), 0) > w1 · 1 + wT

−1ψ((3, 5), 1),

w1 · 5 + wT
−1ψ((4, 3), 1) > w1 · 0 + wT

−1ψ((4, 3), 0),

w1 · 0 + wT
−1ψ((3, 4), 0) > w1 · 2 + wT

−1ψ((3, 4), 1).

This can, for example, be achieved by setting w1 = 1, and

wT
−1ψ((θ2, θ3), o1) =

{

−max(θ2, θ3) if o1 = 1 and

0 if o1 = 0.

Recalling our definition of the price function as tw(θ−1, o1) = −(1/w1)wT
−1ψ(θ−1, o1), we

see that this choice of w and ψ corresponds to the second-price payment rule.
In practice, we are limited to hypotheses that are linear in features ψ((θ2, θ3), o1), and

should not expect that the classifier is exact on the training data or generally on the distri-
bution of inputs. Nevertheless, we will see in Section 4.1.1 that through the use of kernels
we can adopt choices of ψ that allow for rich, non-linear discriminant functions.

3.3. Perfect Classifiers and Implementable Outcome Rules

We now formally establish a connection between mechanism design and multi-class classi-
fication.

Theorem 3.1. Let (g, p) be a strategyproof mechanism with an agent symmetric outcome
rule g, and let t1 be the corresponding price function. Then, a perfect admissible classifier
hw for partial outcome rule g1 exists if argmaxo1∈Ω1

(v1(θ1, o1)− t1(θ−1, o1))) is unique for
every type profile θ.

Proof. By the first characterization of strategyproof mechanisms, g must select an
outcome that maximizes the utility of agent 1 at the current prices, i.e.,

g1(θ) ∈ argmax
o1∈Ω1

(v1(θi, o1)− t1(θ−1, o1)).

Consider the admissible discriminant f(1,1)(θ, o1) = v1(θ1, o1) − t1(θ−1, o1), which uses the
price function t1 as its feature map. Clearly, the corresponding classifier h(1,1) maximizes
the same quantity as g1, and the two must agree if there is a unique maximizer.

The relationship also works in the opposite direction: a perfect, admissible classifier hw

for outcome rule g can be used to construct a payment rule that turns g into a strategyproof
mechanism.

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

A:10 P. Dütting et al.

Theorem 3.2. Let g be an agent symmetric outcome rule, hw : Θ → Ω1 an admissible
classifier, and pw the payment rule corresponding to hw. If hw is a perfect classifier for the
partial outcome rule g1, then mechanism (g, pw) is strategyproof.

We prove this result by expressing the regret of an agent in mechanism (g, pw) in terms of
the discriminant function fw. Let Ωi(θ−i) ⊆ Ωi denote the set of partial outcomes for agent
i that can be obtained under g given reported types θ−i from all agents but i, keeping the
dependence on g silent for notational simplicity.

Lemma 3.3. Suppose that agent 1 has type θ1 and that the other agents report types
θ−1. Then the regret of agent 1 for bidding truthfully in mechanism (g, pw) is

1

w1

(

maxo1∈Ω(θ−1) fw(θ, o1)− fw(θ, g1(θ))
)

.

Proof. We have

rgt1(θ) = maxθ′
1
∈Θ1

(

v1(θ1, g1(θ
′
1, θ−1))− pw,1(θ

′
1, θ−1)

)

−
(

v1(θ1, g1(θ))− pw,1(θ)
)

= maxo1∈Ω1(θ−1)

(

v1(θ1, o1)− tw(θ−1, o1)
)

−
(

v1(θ1, g1(θ))− tw(θ−1, g1(θ))
)

= maxo1∈Ω1(θ−1)

(

v1(θ1, o1) +
1

w1
wT

−1ψ(θ−1, o1)
)

−
(

v1(θ1, g1(θ)) +
1

w1
wT

−1ψ(θ−1, g1(θ))
)

=
1

w1

(

maxo1∈Ω1(θ−1) fw(θ, o1)− fw(θ, g1(θ))
)

.

Proof of Theorem 3.2. If hw is a perfect classifier, then the discriminant function
fw satisfies argmaxo1∈Ω1

fw(θ, o1) = g1(θ) for every θ ∈ Θ. Since g1(θ) ∈ Ω1(θ−1), we thus
have that maxo1∈Ω1(θ−1) fw(θ, o1) = fw(θ, g1(θ)). By Lemma 3.3, the regret of agent 1 for
bidding truthfully in mechanism (g, pw) is always zero, which means that the mechanism is
strategyproof.

It bears emphasis that classifier hw is only used to derive the payment rule pw, while the
outcome is still selected according to g.
We might ask whether classifier hw could be used to obtain an agent symmetric outcome

rule gw, and, since hw is a perfect classifier for itself, a strategyproof mechanism (gw, pw).
In particular, for each agent i, the outcome rule gw would be defined to select the outcome
o∗i that maximizes, fw(θ, oi) = wivi(θi, oi) + wT

−iψ(θ−i, oi). But the problem is that this
need not be feasible: there need not be a set of outcomes, o∗ = (o∗1, . . . , o

∗
n), such that this

outcome is itself feasible. For example, in the context of an auction, the outcome rule gw
implied by the trained classifier might seek to give the same item to the more than one
agent.
The mechanism that we adopt, namely (g, pw), has in some sense the opposite problem—

it is guaranteed to be feasible because outcome rule g is feasible, but is only strategyproof
if hw is a perfect classifier for g. While the learned payment rule, pw, always satisfies the
agent-independent property (1), the agent-maximizing property (2) (the second requirement
for strategyproofness) is violated when hw(θ) ≠ g1(θ).

3.4. Approximate Classification and Approximate Strategyproofness

A perfect admissible classifier for outcome rule g provides a payment rule for a strategyproof
mechanism. We now show that this result extends gracefully to situations where no such
payment rule is available, by relating the expected ex post regret of a mechanism (g, p) to
a measure of the generalization error of a classifier for outcome rule g.
Fix a feature map ψ, and denote by Hψ the space of all admissible classifiers with this

feature map. The discriminant loss of a classifier hw ∈ Hψ with respect to a type profile θ

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

Payment Rules through Discriminant-Based Classifiers A:11

and an outcome o1 ∈ Ω1 is given by,

∆w(o1, θ) =
1

w1

(

fw(θ, hw(θ)) − fw(θ, o1)
)

.

Intuitively the discriminant loss measures how far, in terms of the normalized discriminant,
hw is from predicting the correct outcome for type profile θ, assuming the correct outcome
is o1. Note that ∆(o1, θ) ≥ 0 for all o1 ∈ Ω1 and θ ∈ Θ, and ∆(o1, θ) = 0 if o1 = hw(θ). In
addition, hw(θ) = hw′(θ) does not imply that ∆w(o1, θ) = ∆w′(o1, θ) for all o1 ∈ Ω1: even
if two classifiers predict the same outcome, one of them may still be closer to predicting the
correct outcome o1.
The generalization error of classifier hw ∈ Hψ with respect to a type distribution D and

a partial outcome rule g1 : Θ → Ω1, is given by

Rw(D, g) =

∫

θ∈Θ
∆w

(

g1(θ), θ
)

D(θ)dθ.

The following result establishes a connection between the generalization error and the ex-
pected ex post regret of the corresponding mechanism.

Theorem 3.4. Consider an outcome rule g, a space Hψ of admissible classifiers, and a
type distribution D. Let hw∗ ∈ Hψ be a classifier that minimizes generalization error with
respect to D and g among all classifiers in Hψ. Then the following holds:

(1) If g satisfies consumer sovereignty, then (g, pw∗) minimizes expected ex post regret with
respect to D among all mechanisms (g, pw) corresponding to classifiers hw ∈ Hψ.

(2) Otherwise, (g, pw∗) minimizes an upper bound on expected ex post regret with respect to
D amongst all mechanisms (g, pw) corresponding to classifiers hw ∈ Hψ.

Proof. For the second property, observe that

∆w(g1(θ), θ) =
1

w1

(

fw(θ, hw(θ))− fw(θ, g1(θ))
)

=
1

w1

(

maxo1∈Ω1
fw(θ, o1)− fw(θ, g1(θ))

)

≥
1

w1

(

maxo1∈Ω(θ−1) fw(θ, o1)− fw(θ, g1(θ))
)

= rgt1(θ),

where the last equality holds by Lemma 3.3. If g satisfies consumer sovereignty, then the
inequality holds with equality, and the first property follows as well.

Minimization of expected regret itself, rather than an upper bound, can also be achieved
even in the absence of consumer sovereignty (which holds for all the outcome rules studied
in this paper) if the learner has access to the set of available outcomes, Ω1(θ−1), that are
achievable for every θ−1 ∈ Θ−1.

4. A SOLUTION USING STRUCTURAL SUPPORT VECTOR MACHINES

In this section we discuss the method of structural support vector machines (structural
SVMs) [Tsochantaridis et al. 2005; Joachims et al. 2009]. In particular, we show how struc-
tural SVMs can be adapted for the purpose of learning classifiers with admissible discrimi-
nant functions.

4.1. Structural SVMs

Given an input space X , a discrete output space Y , a target function h∗ : X → Y , and a
set of training examples {(x1, h∗(x1)), . . . , (xℓ, h∗(xℓ))} = {(x1, y1), . . . , (xℓ, yℓ)}, structural
SVMs learn a multi-class classifier h that given input x ∈ X selects an output y ∈ Y to

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

A:12 P. Dütting et al.

maximize fw(x, y) = wTψ(x, y). For a given feature map ψ, the training problem is to find
a vector w for which hw has low generalization error.
For those readers familiar with SVMs (for binary classification), structural SVMs apply

similar insights to solve a multi-class classification problem. While SVMs try to find a
boundary that separates the positive examples from the negative examples and maximizes
the minimum distance (or margin) to any example, structural SVMs try to find weights
that separate the discriminant function values for the correct class from the discriminant
function values for all other classes as much as possible. By maximizing this re-defined
notion of margin, structural SVMs attempt to learn weights which induce discriminant
functions with low generalization error.
Given examples {(x1, y1), . . . , (xℓ, yℓ)}, training is achieved by solving the following con-

vex optimization problem:

min
w,ξ≥0

1

2
wTw +

C

ℓ

ℓ
∑

k=1

ξk (Training Problem 1)

s.t. wT
(

ψ(xk, yk)− ψ(xk, y)
)

≥ L(yk, y)− ξk for all k = 1, . . . , ℓ, y ∈ Y

ξk ≥ 0 for all k = 1, . . . , ℓ.

The goal is to find a weight vector w and slack variables ξk such that the objective function
is minimized while satisfying the constraints. The learned weight vector w parameterizes
the discriminant function fw, which in turn defines the classifier hw. The kth constraint
states that the value of the discriminant function on (xk, yk) should exceed the value of
the discriminant function on (xk, y) by at least L(yk, y), where L is a loss function that
penalizes misclassification, with L(y, y) = 0 and L(y, y′) ≥ 0 for all y, y′ ∈ Y . the loss
function is optional (since it can be set to 0 everywhere), but is a useful tool to tune the
classifiers that are learned. We generally use a 0/1 loss function, but consider an alternative
in Section 4.2.2 to improve ex post IR properties. Positive values for the slack variables ξk

allow the weight vector to violate some of the constraints.
The other term in the objective, the squared norm of the weights, penalizes larger weight

vectors. Without this, scaling up the weight vector w can arbitrarily increase the margin
between fw(xk, yk) and fw(xk, y), and make the constraints easier to satisfy. Smaller values
of w, on the other hand, increases the ability of the learned classifier to generalize by
decreasing the propensity to over-fit to the training data.
Parameter C ≥ 0 is a regularization parameter: larger values of C encourage small ξk and

larger w, such that more points are classified correctly, but with a smaller margin (and thus
perhaps with less generalization power).

4.1.1. The Feature Map and the Kernel Trick. Given a feature map ψ, the feature vector ψ(x, y)
for x ∈ X and y ∈ Y provides an alternate representation of the input-output pair (x, y). It
is useful to consider feature maps ψ for which ψ(x, y) = φ(χ(x, y)), where χ : X×Y → Rs for
some s ∈ N is an attribute map that combines x and y into a single attribute vector, χ(x, y),
which compactly represents the pair. Given this, function φ : Rs → Rm, for m > s, maps
the attribute vector to a higher-dimensional space and can introduce additional non-linear
interactions between attributes. In this way, SVMs can achieve non-linear classification in
the attribute space.
What is commonly described as “feature engineering” occurs in our setting through a

combination of designing the attribute map χ and the function φ.
The use of kernels allows for a large (even unbounded) m, because ψ(x, y) only appears

in the dual of Training Problem 1 within an inner product of the form ⟨ψ(x, y),ψ(x′, y′)⟩,
or, for a decomposable feature map, ⟨φ(q),φ(q′)⟩ where q = χ(x, y) and q′ = χ(x′, y′)
(see [Joachims et al. 2009] for a complete derivation of the dual). For computational

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

Payment Rules through Discriminant-Based Classifiers A:13

tractability it suffices that this inner product can be computed efficiently, and the kernel
“trick” is to choose φ such that ⟨φ(q),φ(q′)⟩ = K(q, q′) for a simple closed-form function
K, which is known as the kernel.
Two common kernels are the polynomial kernel Kpolyd , which is parameterized by degree

d ∈ N+, and the radial basis function (RBF) kernel KRBF , which is parameterized by
γ = 1/(2σ2) for σ ∈ R+:

Kpolyd(q, q
′) = (q · q′)d,

KRBF (q, q
′) = exp

(

−γ
(

∥q∥2 + ∥q′∥2 − 2q · q′
))

.

Both polynomial and RBF kernels use the standard inner product of their arguments, so
their efficient computation requires only that χ(x, y) · χ(x, y′) can be computed efficiently.
In our experimental results we adopt the RBF kernel for part of our study on combinatorial
auctions, but develop our other experimental results without making use of the kernel trick.

4.1.2. Dealing with an Exponentially Large Output Space. Training Problem 1 has Ω(|Y |ℓ) con-
straints, where Y is the output space and ℓ the number of training instances, and enumerat-
ing all of them is computationally prohibitive when Y is large. Joachims et al. [2009] address
this issue for structural SVMs through constraint generation: starting from an empty set
of constraints, this technique iteratively adds a constraint that is maximally violated by
the current solution until the violation is below a desired threshold ϵ′. Joachims et al. show
that this will happen after no more than O(Cϵ′) iterations, each of which requires O(ℓ)
(resp. O(ℓ2)) time and memory if linear (resp. polynomial or RBF) kernels are used.
However, this approach assumes the existence of an efficient separation oracle, which given

a weight vector w, an input xk, and a target yk, finds an output y ∈ argmaxy′∈Y fw(xk, y′)+
L(yk, y′). The subproblem solved by this separation oracle is referred to as the separation
problem. The existence of such an oracle remains an open question in application to multi-
minded combinatorial auctions; see Section 5.1.3 for additional discussion.
Sometimes the separation problem can be written as a polynomially sized linear program

of a particular form. We will see this in the context of succinct, graphical representations of
agent valuations in the combinatorial auction domain. In this case, we can modify Training
Problem 1 so that constraint generation is not needed, even when the output space is
exponential in the problem size [Taskar et al. 2004]. Indeed, adopting the approach of
Taskar et al. [2004], suppose that we can write maxy′∈Y fw(xk, y′) + L(yk, y) as a linear
program of the form:

max wBz (4)

subject to z ≥ 0, Az ≤ b,

where A,B, b are functions of xk. Assuming that this program is feasible and bounded, we
have a dual linear program that attains the same objective value:

min bT z′ (5)

subject to z′ ≥ 0, AT z′ ≥ (wB)T .

In this case, we can rewrite Training Problem 1 by replacing the many constraints for a
single training example with a single constraint that uses a max function:

min
w,ξ≥0

1

2
wTw +

C

ℓ

ℓ
∑

k=1

ξk

s.t. wTψ(xk, yk) + ξk ≥ max
y∈Y

(

wTψ(xk, y) + L(yk, y)
)

for all k = 1, . . . , ℓ

ξk ≥ 0 for all k = 1, . . . , ℓ.

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

A:14 P. Dütting et al.

We can now apply the LP formulation for finding the maximum value of fw(xk, y) +
L(x, y).

min
w,ξ≥0

1

2
wTw +

C

ℓ

ℓ
∑

k=1

ξk

s.t. wTψ(xk, yk) + ξk ≥ maxz≥0,Akz≤bk wB
kz for all k = 1, . . . , ℓ

ξk ≥ 0 for all k = 1, . . . , ℓ.

By LP duality, we can replace the max linear program with a min linear program.

min
w,ξ≥0

1

2
wTw +

C

ℓ

ℓ
∑

k=1

ξk

s.t. wTψ(xk, yk) + ξk ≥ minz≥0,(Ak)T z≥(wBk)T (b
k)T z for all k = 1, . . . , ℓ

ξk ≥ 0 for all k = 1, . . . , ℓ.

We can now drop the min on the right hand side and add the constraints under the
min directly into the linear program. This is valid since the only place z occurs is on the
right hand side of these constraints. As a result, even without explicitly minimizing, the
optimization will choose a value of z that allows for the most flexibility in the left hand side
of these constraints.
We therefore have a single, succinct primal convex program even though the number of

original constraints was exponentially large:

min
w,ξ≥0

1

2
wTw +

C

ℓ

ℓ
∑

k=1

ξk

s.t. wTψ(xk, yk) + ξk ≥ (bk)T zk, zk ≥ 0, (Ak)T zk ≥ (wBk)T for all k = 1, . . . , ℓ

ξk ≥ 0 for all k = 1, . . . , ℓ.

We apply these ideas in Section 5.2 to combinatorial auctions where agents have succinct,
graph-based value representations. This allows us to have a scalable training problem even
though the winner determination problem remains still NP-hard.
Though we work directly with the features ψ(xk, yk) in our experiments, it is still possible

to use kernels in conjunction with the succinct formulation of the convex program. This
would require working with the dual of the succinct primal convex program.

4.1.3. Required Information. In summary, the use of structural SVMs requires specification
of the following:

(1) The input space X , the discrete output space Y , and examples of input-output pairs.
(2) An attribute map χ : X × Y → Rs. This function generates an attribute vector that

combines the input and output data into a single object.
(3) A kernel function K(q, q′), typically chosen from a well-known set of candidates, e.g.,

polynomial or RBF. The kernel implicitly calculates the inner product ⟨φ(q),φ(q′)⟩,
e.g., between a mapping of the inputs into a high dimensional space.

(4) If the space Y is prohibitively large, a routine that allows for efficient separation, i.e., a
function that computes argmaxy∈Y fw(x, y) for a given w, x, or a compact representa-
tion of the separation problem, enabling a succinct formulation of the training problem
in the form of convex optimization.

In addition, the user needs to stipulate particular training parameters, such as the regu-
larization parameter C, and the kernel parameter γ if the RBF kernel is being used.

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

Payment Rules through Discriminant-Based Classifiers A:15

4.2. Structural SVMs for Mechanism Design

We now specialize structural SVMs such that the learned discriminant function will provide
a payment rule, for a given symmetric outcome function g and distribution D. In this
application, the input domain X is the space of type profiles Θ, and the output domain Y
is the space Ω1 of outcomes for agent 1.
We construct training data by sampling θ ∼ D and applying g to these inputs:

{(θ1, g1(θ1)), . . . , (θℓ, g1(θℓ))} = {(θ1, o11), . . . , (θ
ℓ, oℓ1)}. For admissibility of the learned hy-

pothesis hw(θ) = argmaxo1∈Ω1
wTψ(θ, o1), we require that

ψ(θ, o1) = (v1(θ1, o1),ψ
′(θ−1, o1))

For this reason, we must use an attribute map χ′ : Θ−1 × Ω1 → Rs rather than χ :
Θ × Ω1 → Rs, and the kernel φ′ we specify will only be applied to the output of χ′. This
results in the following more specialized training problem:

min
w,ξ≥0

1

2
wTw +

C

ℓ

ℓ
∑

k=1

ξk (Training Problem 2)

s.t. (w1v1(θ
k
1 , o

k
1) + wT

−1ψ
′(θk−1, o

k
1))− (w1v1(θ

k
1 , o1) + wT

−1ψ
′(θk−1, o1)) ≥ L(ok1 , o1)− ξk

for all k = 1, . . . , ℓ, o1 ∈ Ω1

ξk ≥ 0 for all k = 1, . . . , ℓ.

If w1 > 0 then the weights w together with the feature map ψ′ define a price function
tw(θ−1, o1) = −(1/w1)wT

−1ψ
′(θ−1, o1) that can be used to define payments pw(θ), as de-

scribed in Section 3.1. In this case, we can also relate the regret in the induced mechanism
(g, pw) to the classification error as described in Section 3.3.

Theorem 4.1. Consider training data {(θ1, o11), . . . , (θ
ℓ, oℓ1)}. Let g be an outcome func-

tion such that g1(θk) = ok1 for all k. Let w, ξk be the weight vector and slack variables output
by Training Problem 2, with w1 > 0. Consider corresponding mechanism (g, pw). For each
type profile θk in the training data,

rgt1(θ
k) ≤

1

w1
ξk

Proof. Consider input θk. The constraints in the training problem impose that for
every outcome o1 ∈ Ω1,

w1v1(θ
k
1 , o

k
1) + wT

−1ψ
′(θk−1, o

k
1)−

(

w1v1(θ
k
1 , o1) + wT

−1ψ
′(θk−1, o1)

)

≥ L(ok1 , o1)− ξk

Rearranging,

ξk ≥ L(ok1 , o1) +
(

w1v1(θ
k
1 , o1) + wT

−1ψ
′(θk−1, o1)

)

−
(

w1v1(θ
k
1 , o

k
1) + wT

−1ψ
′(θk−1, o

k
1)
)

⇒ ξk ≥ L(ok1 , o1) + fw(θ
k, o1)− fw(θ

k, ok1)

This inequality holds for every o1 ∈ Ω1, so

ξk ≥ max
o1∈Ω1

(

L(ok1 , o1) + fw(θ
k, o1)− fw(θ

k, ok1)
)

≥ max
o1∈Ω1

(

fw(θ
k, o1)− fw(θ

k, ok1)
)

≥ w1rgt1(θ
k),

where the second inequality holds because L(ok1 , o1) ≥ 0, and the final inequality follows
from Lemma 3.3. This completes the proof.

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

A:16 P. Dütting et al.

We choose not to enforce w1 > 0 explicitly in Training Problem 2, because adding this
constraint leads to a dual problem that references ψ′ outside of an inner product, and thus
makes computation of all but linear or low-dimensional polynomial kernels prohibitively
expensive. Instead, in our experiments we simply discard hypotheses where the result of
training is w1 ≤ 0. This is sensible since the discriminant function value should increase
as an agent’s value increases, and negative values of w1 typically mean that the training
parameter C or the kernel parameter γ (if the RBF kernel is used) are poorly chosen.
Looking forward to our experiments, this requirement of positive w1 did not present a

practical concern. For example, for multi-minded combinatorial auctions, 1049/1080 > 97%
of the trials had positive w1 for the trained classifier, and for the egalitarian assignment
problem all of the trained classifiers had w1 > 0.

4.2.1. Payment Normalization. One issue with the framework as stated is that the payments
pw computed from the solution to Training Problem 2 could be negative. We solve this
problem by normalizing payments, using a baseline outcome ob. If there exists a null outcome
o′, such that v1(θ1, o′) = 0 for every θ1, then this outcome provides the baseline. Otherwise,
we adopt as the baseline outcome the outcome ob with the lowest price to agent 1 for a given
set of types of other agents. For this, let tw(θ−1, o1) be the price function corresponding to
the solution w to Training Problem 2. Adopting the baseline outcome ob, the normalized
payments t′w(θ−1, o1), are defined as

t′w(θ−1, o1) = max(0, tw(θ−1, o1)− tw(θ−1, ob)).

Even when the baseline outcome is defined as that with the lowest price, it is still only
a function of the types of other agents θ−1, and so the prices t′w remain a function of θ−1

and o1 and are still agent independent.

4.2.2. Individual Rationality Violation. Even after normalization, the learned payment rule
pw may not satisfy individual rationality (IR). Recall that this requires that an agent’s
payment is no greater than its reported value for the outcome. We offer three solutions to
this problem, which can also be used in combination.

Payment offsets. One way to reduce IR violations is to make an additional adjustment to
prices, across all type reports, designed to reduce the prices. In particular, for a given offset
off > 0, and given normalized prices t′w, we can then further adjust prices by the offset to
obtain final prices t′′w(θ−1, o1) = max(0, t′w(θ−1, o1) − off). The effect is to leave the price
on the baseline outcome unchanged (since its price was already normalized to zero), but to
apply the offset where possible to other outcomes.
Although the use of a payment offset decreases the IR violation it might increase regret

because of the non-linearity in taking the max with zero. For instance, suppose there are
only two outcomes o11, o12, where o12 is the null outcome. Suppose agent 1 values o11 at
5 and receives the null outcome if he reports truthfully. Suppose further that payments tw
are 7 for o11 and 0 for the null outcome. With no payment offset, the agent experiences
no regret, since he receives utility 0 from the null outcome, but negative utility from o11.
However, if the payment offset is greater than 2, the agent’s regret becomes positive (as-
suming consumer sovereignty), because he could have reported differently and received o11
and received positive utility.

Adjusting the loss function L. We incur an IR violation when there is a null outcome
onull (for example allocating no items to an agent in a combinatorial auction), such that
g1(θ) ≠ onull and fw(θ, onull) > fw(θ, g1(θ)) for some type θ; i.e., the discriminant value of
the null outcome is greater than that for the actual outcome selected by the outcome rule.
This happens because the discriminant fw(θ, o1) is a scaled version of the agent’s utility for
outcome o1 under payments pw. If the utility for the null outcome is greater than the utility
for g1(θ), and the payment on null outcomes are zero, then the payment tw(θ−1, g1(θ)) must

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

Payment Rules through Discriminant-Based Classifiers A:17

be greater than v1(θ1, g1(θ)) (so that the discriminant value fw(θ, g1(θ)) < 0), causing an
IR violation.
Recognizing this, we can discourage these types of errors by modifying the constraints of

Training Problem 2: when ok1 ≠ onull and o1 = onull , we can increase L(ok1 , o1) to heavily
penalize misclassifications of this type. With a larger L(ok1 , o1), a larger ξk will be required if
fw(θ, ok1) < fw(θ, onull). As with payment offsets, this technique will decrease IR violations
but is not guaranteed to eliminate all of them. In our experimental results, we refer to this
as the null loss fix, and the null loss refers to the value we choose for L(ok1 , onull) where
outcome ok1 ≠ onull .

Deallocation. In settings that have a null outcome and are downward closed (i.e., settings
where a feasible outcome o remains feasible if oi is replaced with the null outcome), we
can also choose to modify the function g to allocate the null outcome whenever the price
function tw creates an IR violation. This reduces ex post regret, and in particular ensures
ex post IR for all instances. On the other hand, the total value to the agents necessarily
decreases under the modified allocation, and we begin to deviate from the intended outcome
rule. In our experimental results, we refer to this as the deallocation fix.

5. APPLYING THE FRAMEWORK

In this section, we discuss the application of our framework to three domains: multi-minded
combinatorial auctions, combinatorial auctions with k-wise dependent valuations, and egal-
itarian welfare in the assignment problem.

5.1. Multi-Minded Combinatorial Auctions

A combinatorial auction allocates items {1, . . . , r} among n agents, such that each agent
receives a possibly empty subset of the items. The outcome space Ωi for agent i is the
set of all subsets of the r items, and the type of agent i can be represented by a vector
θi ∈ Θi = R2r that specifies its value for each possible bundle. The set of possible type
profiles is then Θ = R2rn, and the value vi(θi, oi) of agent i for bundle oi is equal to the
entry in θi corresponding to oi.
We require that valuations are monotone, such that vi(θi, oi) ≥ vi(θi, o′i) for all oi, o′i ∈

Ωi with o′i ⊆ oi, and normalized such that vi(θi, ∅) = 0. Assuming agent symmetry and
adopting the view of agent 1, the partial outcome rule g1 : Θ → Ω1 specifies the bundle
g1(θ) allocated to agent 1. We require feasibility of outcome rules, so that no item is allocated
more than once.
In a multi-minded CA, each agent is interested in at most κ bundles for some constant

κ. The special case where κ = 1 is the well studied problem of single-minded CAs. We
choose to study multi-minded CAs rather than single-minded CAs because they provide an
example for which truthful, algorithmic mechanism design is not well understood. We choose
to study multi-minded CAs in particular, as an example of a multi-parameter mechanism
design problem, because the valuation profiles and thus the training data can be represented
in a compact way. In the case of multi-minded CAs, this is by explicitly writing down the
valuations for the bundles in which each agent is interested. In addition, the inner products
between valuation profiles, which are required to apply the kernel trick, can be computed
in constant time.

5.1.1. Attribute Maps. To apply structural SVMs to multi-minded CAs, we need to specify
an appropriate attribute map χ′. The approach that we take in choosing an attribute map is
to recognize that the attributes should expose to the classifier enough information about the
valuations of agents 2 through n to allow the discriminant function to accurately rank the
different bundles that could be allocated to agent 1. In particular, the classifier is accurate
when the discriminant function assigns the highest score to the bundle that is allocated to
agent 1 by the outcome rule.

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

A:18 P. Dütting et al.

Conceptually, we find it helpful in this exercise in feature engineering to conceptualize
an outcome rule as maximizing some objective function f̃(θ, o), for type profile θ ∈ Θ
and outcome o ∈ Ω, where this objective function might approximate social welfare, or
approximate max-min value. Given this, and the structure of discriminant function (3),
then the attribute map should expose attributes that allow for the accurate estimation of
the optimal objective value, when the outcome is restricted to assign bundle o1 to agent
1.3 In this sense, a good attribute map represents, perhaps in summary form, the valuation
functions of other agents given that bundle o1 has been assigned to agent 1.
With this in mind, we adopt two simple attribute maps χ′

1 : Θ−1 × Ω1 → R2r(2r(n−1))

and χ′
2 : Θ−1 × Ω1 → R2r(n−1) in our experiments, defined as follows:

χ′
1(θ−1, o1) =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0
· · ·
0
θ−1

0
· · ·
0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⎫

⎬

⎭

dec(o1)(2r(n− 1))

⎫

⎬

⎭

(2r − dec(o1)− 1)(2r(n− 1))

, χ′
2(θ−1, o1) =

⎡

⎢

⎢

⎣

θ2 \ o1
θ3 \ o1
. . .

θn \ o1

⎤

⎥

⎥

⎦

,

where dec(o1) =
∑r

j=1 2
j−1Ij∈o1 is a decimal index of bundle o1, where Ij∈o1 = 1 if j ∈ o1

and Ij∈o1 = 0 otherwise, and θi \ o1 denotes the valuation function that is obtained by
setting the value on all bundles that are non-disjoint with o1 to zero.
Attribute map χ′

1 stacks the vector θ−1 (with 2r(n − 1) entries), which represents the
valuations of all agents except agent 1, with zero vectors of the same dimension, where the
position of θ−1 is determined by the index of bundle o1.
We view attribute map χ′

1 as providing a baseline, since no effort is made to encode the
effect of assigning bundle o1 to agent 1 on the valuations of the other agents. Rather, the
choice of bundle o1 is encoded only indirectly, through the position of valuations θ−1 in the
attribute vector. An undesirable side effect is that two training instances in which bundle
o1 differs only slightly will have completely distinct sets of non-zero attributes. We might
expect this to reduce the generalization power of the classifier.
In comparison, attribute map χ′

2 is designed to encode very explicitly the effect of as-
signing bundle o1 to agent 1 on the valuations of other agents. In particular, this attribute
vector stacks vectors θi \o1, which are obtained from valuation type θi by setting the entries
for all bundles that share one or more items with bundle o1 to zero. This captures the fact
that another agent cannot be allocated a bundle that intersects with o1.
Both χ′

1 and χ′
2 are defined for a particular number of items and agents, and in our

experiments we train a different classifier for each number of agents and items. An attractive
alternative to adopt in practice would be to pad out items and agents by setting bids to
zero, allowing a single classifier to be trained.

5.1.2. Efficient Computation of Inner Products. Efficient computation of inner products is pos-
sible for both χ′

1,χ
′
2. A full discussion of the approach that we take for this is provided

in Appendix A.

3In the single-item example in Section 3.2, we could have obtained an exact classifier by setting
wT

−1
ψ((θ2, θ3), o1) = 0 if o1 = 1 and max(θ2, θ3) if o1 = 0, and then obtaining the second-price pay-

ment rule by first normalizing the payment rule as described in Section 4.2.1. In this way, the discriminant
rule fw(θ, o1) would be exactly the objective value for the optimal assignment that is constrained to respect
assignment o1 to agent 1.

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

Payment Rules through Discriminant-Based Classifiers A:19

Shoe
Polish
(2)

Left
Shoe
(1)

Right
Shoe
(2)

5 6

10

Fig. 1. An example of a 2-wise dependent valuation. The values listed in the nodes give the agent’s weights
for the corresponding items. Each item has some small value on its own, but complementarities exist
between pairs of items which give added utility to the agent. Note that while this graph is complete, this is
not necessary. Absent edges are assumed to have weight 0.

5.1.3. Dealing with an Exponentially Large Output Space. Recall that Training Problems 1 and 2
have constraints for every training example (θk, ok1) and every possible bundle of items
o1 ∈ Ω1. For CAs, there will be exponentially many such bundles. In lieu of an efficient
separation oracle, a workaround exists when the discriminant function ensures that the
induced prices weakly increase as items are added to a bundle. Given this property of item
monotonicity, it suffices to include constraints for bundles that have a strictly larger value to
the agent than any of their respective subsets. Coupled with the assumption that valuations
in CAs are monotone, and the admissibility property of the discriminant function, no other
bundles can have a greater discriminant value than these bundles.
But we are not able to impose item monotonicity directly on the training problem with a

small number of constraints.4 For this reason, the baseline experimental results in Section 6
do not assume item monotonicity, and instead use an inefficient separation oracle, that
simply iterates over all possible bundles o1 ∈ Ω1.
An alternative that we have also studied is to optimistically assume item monotonicity,

and only include the constraints associated with bundles that are explicit in agent valuations.
We also present experimental results that test this optimistic approach, and while there is a
degradation in performance, results are mostly comparable. This provides a useful approach
to scaling up training for representation languages such as the XOR representation adopted
for multi-minded CAs for which it is simple to identify the small set of bundles that are
candidates for maximizing the discriminant function (= agent utility.)

5.2. Combinatorial Auctions with Positive k-wise Dependent Valuations

We also study combinatorial auctions where agents have positive k-wise dependent valua-
tions [Conitzer et al. 2005]. This setting allows us to apply the ideas discussed in Section
4.1.2 to attain a polynomial time training formulation despite the exponential size of Ω1.
When an agent has a k-wise dependent valuation, the agent’s valuation is described by a

hypergraphG = (R,E) where R is a set of nodes and E is a set of hyperedges of size at most
k. The nodes in the graph correspond to the items being auctioned (which is why we use
j ∈ R to refer to both nodes and items), and the hyperedges to groups of these items. These

4For polynomial kernels and certain attribute maps, a possible sufficient condition for item monotonicity is
to force the weights w−1 to be negative. However, as with the discussion of enforcing w1 > 0 directly, these
weight constraints do not dualize conveniently and results in the dual formulation to no longer operate on
inner products ⟨ψ′(θ−1, o1),ψ′(θ′

−1
, o′

1
)⟩. As a result, we would be forced to work in the primal, and incur

extra computational overhead that increases polynomially with the kernel degree d. We have performed some
preliminary experiments with polynomial kernels, but we have not looked into reformulating the primal to
enforce item monotonicity.

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

A:20 P. Dütting et al.

nodes and hyperedges are each assigned weights z1(j) and z1(e) respectively. An agent’s
value for a subset of items o1 ∈ Ω1 is the sum of the weights of nodes and hyperedges
contained in o1, i.e.,

∑

j∈R,j∈o1
z1(j) +

∑

e∈E,e⊆o1
z1(e). Figure 1 gives a pictorial view of a

simple 2-wise valuation over 3 items.
A positive k-wise dependent valuation adds the restriction that hyperedge weights are

positive. This restriction is required for our results, and is also studied by Abraham et al.
[2012]. This forces agent valuations to be supermodular, i.e., vi(θi, o1∩o2)+vi(θi, o1∪o2) ≥
vi(θi, o1) + vi(θi, o2) for all sets of items o1, o2 ∈ Ω1. When we have multiple agents, we
use zi(j) and zi(e) to denote the weights that agent i assigns to nodes j and edges e. For
convenience, zi(e) for an edge not in the agent’s edge set is defined to be 0. If we are given
the agent’s type θi, then it can be convenient to write zi(θi, j) or zi(θi, e) to represent the
weights in the agent’s underlying graph when its valuation function is θi.
Though these valuations are very different from the multi-minded valuations we discussed

earlier, the winner determination problem for positive k-wise dependent valuations is still
NP-hard when k = 2 and hence for any values of k > 1 [Conitzer et al. 2005]. Because the
winner determination problem is NP-hard, we seek to learn a payment rule for a greedy
allocation algorithm.
Going forward, we specialize to the case of k = 2, which represents the case where the

agent’s hypergraph is just a graph. For this case, it is possible to make Training Problem
1 tractable by carefully choosing the attribute map. We discuss extensions to k > 2 at the
end of Section 5.2.3.

5.2.1. A Greedy Algorithm. We first introduce a simple greedy algorithm, that tries to find
an allocation with good welfare. We use this greedy algorithm both in defining the attribute
map, and as an outcome rule in our experimental results.
Let R = {1, . . . , r} denote the set of all items. Given some subset of items R′ ⊆ R, the

greedy algorithm orders the items by index and assigns the items incrementally. At each
step, the algorithm computes the gain in welfare of assigning the item to each agent and
chooses the agent that provides the maximum gain in welfare. Note that if an item j has
been assigned to an agent i, then when considering the assignment for item k the gain in
welfare of assigning it to agent i includes agent i’s node weight for item k as well as agent
i’s edge weight for edge (j, k) (if the edge exists in the agent’s valuation graph). We let
GREEDYi(R′) denote agent i’s allocation when this greedy algorithm is run on R′.

5.2.2. A Concrete Example. To clarify the construction, we introduce a simple example where
agents have 2-wise dependent valuations. Consider a setting where we have 3 agents and 3
items. We denote the agents and items using indices 1, 2, 3 but the association should be
clear from context. The agents have the following 2-wise dependent valuations:

z1(1) = 1, z1(2) = 4, z1(3) = 2, z1(1, 2) = 4

z2(1) = 2, z2(2) = 6, z2(3) = 2, z2(2, 3) = 3, z2(1, 3) = 6

z3(1) = 5, z3(2) = 3, z3(3) = 1, z3(1, 2) = 2, z3(1, 3) = 7

Applied to this example, the greedy algorithm first considers the assignment of item 1.
Agent 3 has the highest value, so 1 goes to agent 3. We then consider item 2. The gain in
giving this to agent 1 is 4, the gain to agent 2 is 6, and the gain to agent 3 is 3 + 2 = 5 (for
agent 3, we add in both z3(2) and z3(1, 2) since 1 was given to agent 3). As a result, agent
2 has the highest gain and we give the item to agent 2. Then for item 3, the gains are 2,
2 + 3 = 5, and 1 + 7 = 8 respectively. As a result, item 3 is assigned to agent 3.

5.2.3. Attribute Map. Before defining our attribute map, we provide some intuition for why
we use our particular attribute map. Our goal is to apply the techniques described in Section

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

Payment Rules through Discriminant-Based Classifiers A:21

4.1.2, which require us to write maxo′
1
∈Ω1

fw(θ, o′1) + L(o′1, o1) as a linear program. Going
forward, we assume that L(o′1, o1) is 0 everywhere to simplify the presentation.5

At first glance, Ω1 has size that is exponential in the number of items being allocated. It
may be possible to write an integer program that solves this maximization, but we require a
linear program to apply the ideas of Section 4.1.2. We rely on a result of Taskar et al. [2004]
for Markov Random Fields, which, when translated to our setting, shows that if a single
agent has what we call a semi-positive 2-wise dependent valuation, then it is possible to find
the bundle of items that maximizes the agent’s utility. Of course if an agent’s valuation is
positive 2-wise dependent, then the value maximizing bundle is always the set of all items. A
semi-positive 2-wise dependent valuation allows an agent to have a weight for not receiving
an item or not receiving any item of a given pair of items, and the weights associated with
receiving and not receiving a single item can be negative (though the weights for receiving
both items in a pair or not receiving any item in a pair must be non-negative). More
concretely, a semi-positive 2-wise dependent valuation can be written as:

v(θ1, o1) =
∑

j∈o1

z1(j) +
∑

1≤j1<j2≤r,
{j1,j2}⊆o1

z1(j1, j2) +
∑

j /∈o1

z′1(j) +
∑

1≤j1<j2≤r,
{j1,j2}∩o1=∅

z′1(j1, j2),

where z1(j) and z′1(j) can take on negative values, and z1(j1, j2) and z′1(j1, j2) are non-
negative. While z1 is active when an item or a pair of items is included in o1, z′1 is active
when an item is not in o1 or neither of a pair of items is in o1. This flexibility allows for
richer valuation functions which are not permitted with positive 2-wise valuations.
If an agent’s valuation is semi-positive 2-wise dependent, then though Ω1 is of exponential

size in the number of items, there is a polynomially sized linear program that finds the bundle
o1 that maximizes v(θ1, o1).
Our goal in defining an attribute map χ′

3, is therefore to convert fw(θ, o′1) into a semi-
positive 2-wise dependent valuation. It is informative to write out fw(θ, o′1) when specialized
to the case where agents have positive 2-wise dependent valuations:

fw(θ, o1) = w1v(θ1, o1)− wT
−1χ

′
3(θ−1, o1)

= w1

∑

j∈R

(

z1(θ1, j) I(j∈o1) +
∑

1≤j1<j2≤r

z1(θ1, (j1, j2)) I({j1, j2}⊆o1)

)

− wT
−1χ

′
3(θ−1, o1).

The part representing agent 1’s value for o1 already has the structure of a positive 2-
wise dependent valuation (after all, we have assumed that all agents have this valuation
structure). What remains is to design χ′

3 so that the entire expression, when summed
together, resembles a semi-positive 2-wise dependent valuation. If we can accomplish this,
then it will be possible to write the maximization maxo1∈Ω1

fw(θ1, o1) as a linear program.
The trick is to construct the attribute map in a way such that the right hand side of the
above expression decomposes into a sum over individual terms, each of which corresponds
to a weight for a node or an edge in a semi-positive 2-wise dependent valuation.
In addition to ensuring this structure for our attribute map, we still want the attribute

map to capture the effect of an assignment of bundle o1 to agent 1 on the valuations of the
other agents, so that the total value of the outcome rule constrained to allocate o1 to agent
1 can be estimated. In this case, we use the greedy outcome rule in an explicit way to define
our attribute map.

5As will become clear in the discussion below, we only require that L(o′
1
, o1) be expressed as a sum of

products where each product consists of a weight multiplied by: a.) an indicator of whether o1 contains a
given subset of items; or b.) an indicator of whether o1 does not intersect a given subset of items. As a
result, we can adjust the null loss by using an indicator for o1 not intersecting the entire set of items.

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

A:22 P. Dütting et al.

The attribute map χ′
3(θ−1, o1) maps from Θ−1 × Ω1 → R2r+r(r−1). For each possible

item j ∈ {1, . . . , r} that can be in bundle o1, we include two entries in the attribute vector
χ′
3(θ−1, o1):

µj(0) · I(j /∈ o1), µj(1) · I(j ∈ o1),

where I is an indicator variable. µj(0) is designed to represent the “gain” to others of not
allocating item j to agent 1. We calculate this directly as zi(j) in the case that some agent
i ≠ 1 is allocated item j in GREEDYi(R), otherwise we set the value µj(0) to 1. Value
µj(1) does the opposite, approximating the “cost” to others of allocating item j to agent 1.
We calculate this as welfare(GREEDY−1(R))−welfare(GREEDY−1(R \ {j}))), where welfare

returns the total value of the assignment and GREEDY
−1 is GREEDY with agent 1 removed.

We also include two entries in attribute vector χ′
3(θ−1, o1) for each pair of items j1, j2:

µj1,j2(0) · I({j1, j2} ∩ o1 = ∅), µj1,j2(1) · I({j1, j2} ⊆ o1),

where µj1,j2(0) and µj1,j2(1) indicate the value to the other agents when agent 1 is not
assigned either j1 or j2 and assigned both j1 and j2 respectively. Note that we do not
specify values for the cases where exactly one of j1, j2 is contained in o1 as these types of
weights are not permitted in a semi-positive 2-wise dependent valuation.
The values for µj1,j2 are obtained by considering the allocation of GREEDY

−1 when
applied to all items, and considering whether items j1 and j2 are assigned to the same
agent i. If they are not, then they are set to zero. Otherwise, they are set to −zi(j1, j2).
The negative sign here is important for tractability since only non-negative edge weights
are permitted in a semi-positive 2-wise dependent valuation. The intuition for why we do
not make µj1,j2(1) equal to the “cost” of allocating items j1, j2 is that if {j1, j2} ⊆ o1 then
this cost is already accounted for in µj1(1) and µj2(1). In fact, the cost is double-counted
since in both GREEDY

−1(R \ {j1}) and GREEDY
−1(R \ {j2}) no agents can derive value

from edge (j1, j2) since one of the items is missing in both cases.
Returning to our example from Section 5.2.2, recall that when run on all agents, the

greedy algorithm gives items 1 and 3 to agent 3 and item 2 to agent 2. The total welfare in
this case is 19. The total value to agents 2 and 3 is also 19 since agent 1 does not receive
any items. In this case, we then have the following attribute values:

— µ1(0): Agent 3 receives item 1, so this is set to z3(1) = 5.
— µ2(0): Agent 2 receives item 2, so this is set to z2(2) = 6.
— µ3(0): Agent 3 receives item 3, so this is set to z3(3) = 1.
— µ1(1): We consider the greedy allocation where item 1 cannot be allocated. The greedy

algorithm gives item 2 to agent 2, and then item 3 to agent 2 as well (since the gain will
be 5 versus 1). As a result, the total welfare is 11. The welfare difference for the other
agents is 8, so µ1(1) = 8.

— µ2(1): Without item 2, the greedy algorithm gives item 1 to agent 3 and then item 3 to
agent 3 as well (gain of 8 for agent 3 versus gain of 2 for agent 1). The total welfare is
13, so µ2(1) = 19− 13 = 6.

— µ3(1): Without item 3, item 1 goes to agent 3 and item 2 goes to agent 2. The total
welfare is 11, so µ3(1) = 19− 11 = 8.

— µ1,2(0), µ1,2(1): The original allocation allocates items 1 and 2 to different agents, so
these values are 0.

— µ1,3(0), µ1,3(1): Items 1 and 3 are allocated to agent 3, so this is set to −z3((1, 3)) = −7.
— µ2,3(0), µ2,3(1): The original allocation allocates items 2 and 3 to different agents, so

these values are 0.

A useful way to think of this attribute map χ′
3 is that it modifies agent 1’s 2-wise valu-

ation, while still maintaining the structure of a semi-positive 2-wise dependent valuation.

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

Payment Rules through Discriminant-Based Classifiers A:23

Item 1
1

Item 2
4

Item 3
2

4

v1(θ1,·)

Item 1
8[5]

Item 2
10[6]

Item 3
6[1]

7[7]

Χ(θ-1,·)

Item 1
-7[-5]

Item 2
-6[-6]

Item 3
-4[-1]

4 -7[-7]

v1(θ1,·) - Χ(θ-1,·)

- =

Fig. 2. A pictorial representation of the attribute map χ′

3
for our concrete example. We make the attribute

map χ′

3
resemble a 2-wise dependent valuation (with weights for not being assigned a node and not being

assigned any of the items for an edge) so that when combined with agent 1’s valuation, we have a modified
single-agent problem. The weights are not shown here, but they would be multiplied by the values in χ′

3
as

illustrated in the graph.

Pictorially, we can think of this as combining agent 1’s valuation graph with the valuation
graph induced by the feature map. See Figure 2 for an illustration. While we specialize to
the case of positive 2-wise dependent valuations, the same approach should be applicable
to positive k-wise dependent valuations. Semi-positive k-wise dependent valuations, where
an agent can have weights for hyperedges, can also be tractably optimized, and a similar
approach can be applied where the attribute vector is carefully chosen so that fw(θ1, o1)
looks like a semi-positive k-wise dependent valuation.

5.2.4. A Tractable Training Problem. We have now given the attribute map χ′
3, with an eye

on making fw(θ1, o1) look like a semi-positive 2-wise dependent valuation. Before proving
the main result of this section, namely that we can solve maxo1∈Ω1

fw(θ1, o1) in polynomial
time, we need to impose positivity constraints on certain elements of the vector w. This
restriction of the space of possible weights enables us to make sure that fw(θ1, o1) is a semi-
positive 2-wise dependent valuation at the possible loss of some pricing accuracy. It also
prevents us from using the kernel trick over the positive-restricted weights, although we can
still use kernels on the rest. In the present analysis we choose not to add this complexity
and work with a linear kernel only.
Before proving our theorem, we formally show that we can find an agents’ maximum

value if the agent as a semi-positive 2-wise dependent valuation.

Lemma 5.1. If an agent has a semi-positive 2-wise dependent valuation, then it is pos-
sible to find the agent’s value-maximizing bundle in time polynomial in r, the number of
items in the auction.

Proof. Our proof relies on a connection between semi-positive 2-wise dependent val-
uations and Markov networks. Finding the value maximizing bundle for an agent with a
semi-positive 2-wise dependent valuation is equivalent to finding a maximum a posteriori
assignment on a particularly defined Markov network. Consider a Markov network with a
node for each item and edges between pairs of nodes. Let each node be a binary variable,
and let the node potentials be defined based on the coefficients in the above maximization.
The potential values for setting a node j to be 0 or 1 be exp(z1(j)) and exp(z′1(j)) and the
potential values for an edge j1, j2 being set to 0, 0 and 1, 1 be exp(z1(j1, j2)), exp(z′1(j1, j2))
respectively. The potential values for setting edges to 0, 1 and 1, 0 are set to 1 = exp(0).
Finding the value-maximizing bundle for an agent with a semi-positive 2-wise dependent
valuation defined by z1 and z′1 is equivalent finding a maximum a posteriori assignment in
the Markov network we have defined.
Applying this connection and using the ideas of Taskar et al. [2004], we see that our

maximization problem can be solved by the following integer program. The integer pro-

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

A:24 P. Dütting et al.

gram has a binary variable corresponding to each of the indicator variables in the above
maximization.

max
∑

j∈R

z1(j)Ij,1 +
∑

j∈R

z′1(j)Ij,0 +
∑

1≤j1<j2≤r

z1(j1, j2)Ij1,j2,1 +
∑

1≤j1<j2≤r

z′1(j1, j2)Ij1,j2,0

s.t. Ij,0 + Ij,1 = 1 for all j ∈ R

Ij1,j2,p ≤ Ij1,p, Ij1,j2,p ≤ Ij2,p for all 1 ≤ j1 < j2 ≤ r, p ∈ {0, 1}

Ij,p ∈ {0, 1} for all j ∈ R, p ∈ {0, 1}

Ij1,j2,p ∈ {0, 1} for all 1 ≤ j1 < j2 ≤ r, p ∈ {0, 1}.

The first set of constraints ensures that exactly one of Ij,0 and Ij,1 is active. The second
set of constraints ensures that Ij1,j2,p is active if and only if Ij1,p and Ij2,p are active. Note
that the if direction follows because the objective coefficients of Ij1,j2,p are non-negative, so
the second set of constraints will be tight if Ij1,p and Ij2,p are both set to 1. Therefore, the
value of the objective corresponds to the single agent’s value for o, where o consists of the
items j for which Ij,1 is set to one.
To complete the proof, we apply Theorem 3.1 from Taskar et al. [2004] to show that the LP

relaxation of this integer program is integral if z1(j1, j2) and z′1(j1, j2) are non-negative.

Theorem 5.2. When agents have positive 2-wise dependent valuations and we use at-
tribute map χ′

3 without a kernel, then we can solve the structural SVM training problem
(with added constraints on the weight vector w discussed above) in time polynomial in r,
the number of items in the auction and n, the number of agents.

Proof. To prove this theorem, we just need to show that fw(θ1, o1) can be written as
v′(θ1, o1) where v′ is a semi-positive 2-wise dependent valuation.
We observe that χ′

3(θ−1, o1) is a vector with 2r+ r(r− 1) elements. Therefore, the weight
vector w−1 will have the same number of elements. We index elements of these vectors using
notation similar to the notation we use for χ′

3(θ−1, o1). That is, we let wj(p) correspond
to the attribute term that includes µj(p), where p ∈ {0, 1}. Similarly, we let wj1,j2(p)
correspond to the attribute term that includes µj1,j2(p), where p ∈ {0, 1}.
In the primal formulation of Training Problem 1, we add the constraints that wj1,j2(p) ≥ 0

for p ∈ {0, 1} and all j1, j2. While not strictly necessary, we also impose that w1 = 1 (as we
are working with the primal formulation, the enforcement of such a constraint is available
to us; alternatively, we could forgo this constraint and operate in the dual, enabling the use
of kernels over the unconstrained attributes of the feature map).

fw(θ, o1) = v(θ1, o1)− wT
−1χ

′
3(θ−1, o1)

=
∑

j∈R

z1(θ1, j)I(j ∈ o1) +
∑

1≤j1<j2≤r

z1(θ1, (j1, j2))I({j1, j2} ⊆ o1)−

∑

j∈R

(wj(0)µj(0)I(j /∈ o1) + wj(1)µj(1)I(j ∈ o1))−

∑

1≤j1<j2≤r

(wj1,j2(0)µj1,j2(0)I({j1, j2} ∩ o1 = ∅)−

∑

1≤j1<j2≤r

(wj1,j2(0)µj1,j2(0) + wj1,j2(1)µj1,j2(1)I({j1, j2} ⊆ o1))

=
∑

j∈R

wj(0)µj(0)I(j /∈ o1) +
∑

j∈R

(z1(θ1, j) + wj(1)µj(1)) I(j ∈ o1) +

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

Payment Rules through Discriminant-Based Classifiers A:25

∑

1≤j1<j2≤r

(−wj1,j2)µj1,j2(0)I({j1, j2} ∩ o1 = ∅) +

∑

1≤j1<j2≤r

(z1(θ1, (j1, j2))− wj1,j2µj1,j2(1))I({j1, j2} ⊆ o1).

Because we impose the constraints that wj1,j2 are non-negative, the coefficients of the in-
dicator variables for the edges (j1, j2) will be positive. Indeed, as we defined in Section 5.2.3,
µj1,j2(0) = µj1,j2(1) ≤ 0. Combining this with the assumption that z1(θ1, (j1, j2)) ≥ 0 and
our constraint that wj1,j2 ≥ 0, we see that the coefficients of the indicator variables for the
edges (j1, j2) are positive. Having argued that the coefficients of the indicator variables for
edges are positive, it is straightforward to conclude that there exists a semi-positive 2-wise
dependent v′ such that fw(θ1, o1) = v′(θ1, o1).
We can now draw a connection to Markov networks. The k-wise Maximization Problem is

equivalent to finding a maximum a posteriori assignment on a particularly defined Markov
network. Consider a Markov network with a node for each item and edges between pairs of
nodes. Let each node be a binary variable, and let the node potentials be defined based on
the coefficients in the above maximization. The potential values for setting a node j to be 0
or 1 are exp(wj(0)µj(0)) and exp(z1(θ1, j) +wj(1)µj(1)) respectively. The potential values
for an edge j1, j2 being set to 0, 0 and 1, 1 are exp(−wj1,j2µj1,j2(0) and exp(z1(θ1, (j1, j2))−
wj1,j2µj1,j2(1)) respectively. The potential values for setting edges to 0, 1 and 1, 0 are set to
1 = exp(0). Solving the k-wise Maximization Problem is equivalent to finding a maximum
a posteriori assignment in the Markov network we have defined.
Applying this connection and using the ideas of Taskar et al. [2004], we see that our

maximization problem can be solved by the following integer program. The integer pro-
gram has a binary variable corresponding to each of the indicator variables in the above
maximization.

max
∑

j∈R

wj(0)µj(0)Ij,0 +
∑

j∈R

(z1(θ1, j) + wj(1)µj(1))Ij,1 +

∑

1≤j1<j2≤r

(−wj1,j2(0)µj1,j2(0))Ij1,j2,0 +

∑

1≤j1<j2≤r

(z1(θ1, (j1, j2))− wj1,j2(1))Ij1,j2,1

s.t. Ij,0 + Ij,1 = 1 for all j ∈ R

Ij1,j2,p ≤ Ij1,p, Ij1,j2,p ≤ Ij2,p for all 1 ≤ j1 < j2 ≤ r, p ∈ {0, 1}

Ij,p ∈ {0, 1} for all j ∈ R, p ∈ {0, 1}

Ij1,j2,p ∈ {0, 1} for all 1 ≤ j1 < j2 ≤ r, p ∈ {0, 1}.

The first set of constraints ensures that exactly one of Ij,0 and Ij,1 is active. The second
set of constraints ensures that Ij1,j2,p is active if and only if Ij1,p and Ij2,p are active. Note
that the if direction follows because the objective coefficients of Ij1,j2,p are non-negative, so
the second set of constraints will be tight if Ij1,p and Ij2,p are both set to 1. Therefore, the
value of the objective corresponds to fw(θ, o), where o consists of the items j for which Ij,1
is set to one.
To complete the proof, we apply Theorem 3.1 of Taskar et al. [2004] to show that the LP

relaxation of this integer program is integral.

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

A:26 P. Dütting et al.

5.3. The Assignment Problem

In the assignment problem, we are given a set of n agents and a set {1, . . . , n} of items,
and wish to assign each item to exactly one agent. The outcome space of agent i is thus
Ωi = {1, . . . , n}, and its type can be represented by a vector θi ∈ Θi = Rn. The set of

possible type profiles is Θ = Rn2

.
We consider an outcome rule that maximizes egalitarian welfare in a lexicographic man-

ner: first, the minimum value of any agent is maximized; if more than one outcome achieves
the minimum, the second lowest value is maximized, and so forth. This outcome rule can be
computed by solving a sequence of integer programs. As such, our focus in this application
is not on studying the framework for the setting of tractable outcome rules, but rather
for understanding its performance on an objective that is far from welfare maximizing. We
continue to assume agent symmetry, and adopt the view of agent 1.
To complete our specification of the structural SVM framework for this application, we

need to again define an attribute map. In this case, we follow the same approach as the
definition of attribute map χ′

2 for the multi-minded combinatorial auction application. The
attribute map, χ′

4(θ−1, j), where the second argument indexes the item assigned to agent
1, is constructed as,

χ′
4(θ−1, j) = (θ2[−j], θ3[−j], . . . , θn[−j]) ∈ R

(n−1)2 ,

where θi[−j] denotes the vector obtained by removing the jth entry from valuation type θi.
The attribute map reflects the effect of assigning item j to agent 1 on the valuations of the
other agents, capturing the fact that the item cannot be assigned to any other agent. For
this set of experiments, we choose not to apply non-linear kernels on top of this attribute
vector in order to evaluate the effect of a simple feature map.

6. EXPERIMENTAL EVALUATION

We perform a series of experiments to test our theoretical framework. To run our exper-
iments, we use the SVM struct package [Joachims et al. 2009], which allows for the use of
custom kernel functions, attribute maps, and separation oracles.

6.1. Setup

We begin by briefly discussing our experimental methodology, performance metrics, and
optimizations used to speed up the experiments.

6.1.1. Methodology. For each of the settings we consider, we generate three data sets: a
training set, a validation set, and a test set. The training set is used as input to Training
Problem 2, which in turn yields classifiers hw and corresponding payment rules pw. For
each choice of the parameter C of Training Problem 2, and the parameter γ if the RBF
kernel is used, a classifier hw is learned based on the training set and evaluated based on
the validation set. The classifier with the highest accuracy on the validation set is then
chosen and evaluated on the test set. During training, we take the perspective of agent 1,
and so a training set size of ℓ means that we train an SVM on ℓ examples. Once a partial
outcome rule has been learned, however, it can be used to infer payments for all agents.
We exploit this fact during testing, and report performance metrics across all agents for a
given instance in the test set.

6.1.2. Metrics. We employ three metrics to measure the performance of the learned classi-
fiers. These metrics are computed over the test set {(θk, ok)}ℓk=1.

Classification accuracy. Classification accuracy measures the accuracy of the trained clas-
sifier in predicting the outcome. Each instance of the ℓ instances has n agents, so in total

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

Payment Rules through Discriminant-Based Classifiers A:27

we measure accuracy over nℓ instances:6

accuracy = 100 ·

∑ℓ
k=1

∑n
i=1 I(hw(θki , θ

k
−i) = oki))

nℓ
.

Ex post regret. We measure ex post regret by summing over the ex post regret experienced
by all agents in each of the ℓ instances in the dataset, i.e.,

regret =

∑ℓ
k=1

∑n
i=1 rgt i(θ

k
i , θ

k
−i)

nℓ
.

Individual rationality violation. This metric measures the fraction of individual rationality
violation across all agents:

ir-violation =

∑ℓ
k=1

∑n
i=1 I(irv i(θki , θ

k
−i) > 0)

nℓ
.

Expected individual rationality violation. This metric measures the expected amount of
individual rationality violation across all agents:

exp-ir-viol =

∑ℓ
k=1

∑n
i=1 min(ui(θki , θ

k
−i), 0)

nℓ

We also measure exp-cond-ir-viol which only averages over agents with negative utility.

Individual rationality violation percentiles. ir-viol-95 measures the threshold at which 95%
of agents have utility at least the negative of this value. So if this metric is 0.2, this means
that 95% of agents have utility at least -0.2. Similarly, we measure cond-ir-viol-95, which
provides the same threshold but limited to users with negative utility.

6.1.3. Optimizations. In the case of multi-minded CAs, we first map the inputs θ−1 into a
smaller space, which allows us to learn more effectively with smaller amounts of data.7 For
this step, we use instance-based normalization, which normalizes the values in θ−1 by the
highest observed value and then rescales the computed payment appropriately, and sorting,
which orders agents based on bid values.
Before passing examples θ to the learning algorithm or learned classifier, they are nor-

malized by a positive multiplier so that the value of the highest bid by agents other than
agent 1 is exactly 1, before passing it to the learning algorithm or classifier. The values and
the solution are then transformed back to the original scale before computing the payment
rule pw. This technique of instance-based normalization leverages the observation that agent
1’s allocation depends on the relative values of the other agent’s reports, so that scaling
all reports by a factor does not affect the outcome chosen. We apply this to multi-minded
CAs and the assignment problem, but not to our experiments on CAs with positive k-wise
dependent valuations.
In the sorting step, instead of choosing an arbitrary ordering of agents in θ−i, we choose

a specific ordering based on the maximum value the agent reports. For example, in a single-
item setting, this amounts to ordering agents by their value. In the multi-minded CA setting,
agents are ordered by the value they report for their most desired bundle. The intuition
behind sorting is that we can again decrease the space of possible θ−i reports the learner
sees and learn more quickly. In the single-item case, we know that the second price payment

6For a given instance θ, there are actually many ways to choose (θi, θ−i) depending on the ordering of
all agents but agent i. We discuss a technique we refer to as sorting in Section 6.1.3, which will choose a
particular ordering. When this technique is not used, for example in application to the assignment problem,
we fix an ordering of the other agents for each agent i, and use the same ordering across all instances.
7The barrier to using more data is not the availability of the data itself, but the time required for training,
because training time scales quadratically in the size of the training set due to the use of non-linear kernels.

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

A:28 P. Dütting et al.

rule only depends on the maximum value across all other agents, and sorting places this
value in the first coordinate of θ−i. We apply sorting to the assignment problem by ordering
agents by their maximum value for any item. We do not apply sorting to our experiments
with k-wise dependent valuations in CAs.8

6.2. Single-Item Auction

As a sanity check, we first perform experiments in application to a single-item auction with
the efficient outcome rule, where the agent with the highest bid receives the item. For the
distribution D on value profiles, we simply draw each agent’s value independently from a
uniform distribution on [0, 1]. The outcome rule g allocates the item to the agent with the
highest value. We use a training set size of 300, and validation and test set sizes of 1000.
We use an RBF kernel and parameters C ∈ {104, 105} and γ ∈ {0.01, 0.1, 1}.
In this case, we know that the associated payment function that makes (g, p) strategyproof

is the second price payment rule.
The results reported in Table I and Figure 3 are for attribute maps χ′

1 and χ′
2, which can

be applied to this setting by observing that single-item auctions are a special case of multi-
minded CAs. In particular, letting 0 be the 0 vector of dimension n−1, χ′

1(θ−1, o1) = (θ−1, 0)
if o1 = ∅ and χ′

1(θ−1, o1) = (0, θ−1) if o1 = {1} and χ′
2(θ−1, o1) = θ−1 if o1 = ∅ and

χ′
2(θ−1, o1) = 0 if o1 = {1}. For both choices of the attribute map we obtain excellent

accuracy and very close approximation to the second-price payment rule. This shows that
the framework is able to automatically learn the payment rule of Vickrey’s auction.9

Table I. Performance metrics for single-item auction.

n
accuracy regret ir-violation

χ1 χ2 χ1 χ2 χ1 χ2

2 99.7 93.1 0.000 0.003 0.00 0.07

3 98.7 97.6 0.000 0.000 0.01 0.00

4 98.4 99.1 0.000 0.000 0.00 0.01

5 97.3 96.6 0.001 0.001 0.02 0.00

6 97.6 97.4 0.000 0.001 0.00 0.02

!"

!"#$

!"#%

!"#&

!"#'

!"#(

!"#)

!"#*

!"#+

!"#,

!$

!" !"#% !"#' !"#) !"#+ !$

-.
/0

1.
2!
3/

45
.1

6

7/89.!:;!/<.16!%

=>? $
!.=:12!30?=.

!"

!"#$

!"#%

!"#&

!"#'

!(

!(#$

!" !"#$!"#% !"#& !"#' !(

)*
+,
-*

.!
/+

01
*-

2

3+45*!67!+8*-2!$

9:;<$
=*96-.!/,;9*

Fig. 3. Learned payment rule vs. second-price payment rule for single-item auction with 2 agents, for χ′

1

(left) and χ′

2
(right).

8Sorting may be effective in this domain as well, but we did not try this out in our experiments.
9Given that we apply sorting, the good performance is not surprising since the payment rule is a linear
function of the sorted valuations. While we do not report on it here, we observe similar performance even
if we do not apply sorting.

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

Payment Rules through Discriminant-Based Classifiers A:29

6.3. Multi-Minded CAs

6.3.1. Type Distribution. Recall that in a multi-minded setting, there are r items, and each
agent is interested in exactly κ > 1 bundles. For each bundle, we use the following proce-
dure to determine which items are included in the bundle. We first assign an item to the
bundle uniformly at random. Then with probability α, we add another random item (chosen
uniformly from the remaining items), and with probability (1 − α) we stop. We continue
this procedure until we stop or have exhausted the items. This procedure is inspired by
Sandholm’s decay distribution for the single-minded setting [Sandholm 2002], and we use
α = 0.75 to be consistent with that setting, where this parameter value generated harder
instances of the winner determination problem.
Once the bundle identities have been determined, we sample values for these bundles. Let

c be an r-dimensional vector with entries chosen uniformly from (0, 1]. For each agent i,
let di be an r-dimensional vector with entries chosen uniformly from (0, 1]. Each entry of
c denotes the common value of a specific item, while each entry of di denotes the private
value of a specific item for agent i. The value of bundle Sij is then given by

vij = min
Sij′≤Sij

(

⟨Sij′ ,βc+ (1− β)di⟩

r

)ζ

for parameters β ∈ [0, 1] and ζ > 1. The inner product in the numerator corresponds to a
sum over values of items, where common and private values for each item are respectively
weighted with β and (1 − β). The denominator normalizes all valuations to the interval
(0, 1]. Parameter ζ controls the degree of complementarity among items: ζ > 1 implies that
goods are complements, whereas ζ < 1 means that goods are substitutes. Choosing the
minimum over bundles Sij′ contained in Sij finally ensures that the resulting valuations are
monotonic.

6.3.2. Outcome Rules. We use two outcome rules in our experiments on multi-minded CAs.
For the optimal outcome rule, the payment rule pvcg makes the mechanism (gopt , pvcg)
strategyproof. Under this payment rule, agent i pays the externality it imposes on other
agents. That is,

pvcg,1(θ) =

⎛

⎝max
o∈Ω

∑

i≠1

vi(θi, oi)

⎞

⎠ −
∑

i≠1

vi(θi, gi(θ)).

The second outcome rule with which we experiment is a generalization of the greedy
outcome rule for single-minded CA [Lehmann et al. 2002]. Our generalization of the greedy
rule is as follows. Let θ be the agent valuations and oi(j) denote the jth bundle desired by
agent i. For each bundle oi(j), assign a score vi(θi, oi(j))/

√

|oi(j)|, where |oi(j)| indicates
the total items in bundle oi(j). The greedy outcome rule orders the desired bundles by this
score, and takes the bundle oi(j) with the next highest score as long as agent i has not
already been allocated a bundle and oi(j) does not contain any items already allocated.
While this greedy outcome rule has an associated payment rule that makes it strategyproof
in the single-minded case, it is not implementable in the multi-minded case, as evidenced
by the example in Appendix B.

6.3.3. Description of Experiments. We experiment with training sets of sizes 100, 300, and
500, and validation and test sets of size 1000. All experiments we report on are for a setting
with 5 agents, 5 items, and 3 bundles per agent, and use β = 0.5, the RBF kernel, and
parameters C ∈ {104, 105} and γ ∈ {0.01, 0.1, 1}.

6.3.4. Basic Results. Table II presents the basic results for multi-minded CAs with optimal
and greedy outcome rules, respectively. For both outcome rules, we present the results for

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

A:30 P. Dütting et al.

Table II. Results for multi-minded CA with training set size 500.

Optimal outcome rule Greedy outcome rule

accuracy regret ir-violation accuracy regret ir-violation

n ζ pvcg χ1 χ2 pvcg χ1 χ2 pvcg χ1 χ2 pvcg χ1 χ2 pvcg χ1 χ2 pvcg χ1 χ2

2 0.5 100 70.7 91.9 0 0.014 0.002 0.0 0.06 0.03 50.9 59.1 40.6 0.079 0.030 0.172 0.22 0.12 0.33

3 0.5 100 54.5 75.4 0 0.037 0.017 0.0 0.19 0.10 55.4 57.9 54.7 0.070 0.030 0.088 0.18 0.21 0.36

4 0.5 100 53.8 67.7 0 0.042 0.031 0.0 0.22 0.18 61.1 58.2 57.9 0.056 0.033 0.056 0.14 0.20 0.31

5 0.5 100 15.8 67.0 0 0.133 0.032 0.0 0.26 0.19 64.9 61.3 63.0 0.048 0.027 0.042 0.13 0.19 0.24

6 0.5 100 61.1 68.2 0 0.037 0.032 0.0 0.22 0.20 66.6 63.8 63.8 0.041 0.034 0.045 0.12 0.20 0.24

2 1.0 100 84.5 93.4 0 0.008 0.001 0.0 0.08 0.02 87.8 86.6 84.0 0.007 0.005 0.008 0.04 0.06 0.09

3 1.0 100 77.1 83.5 0 0.012 0.005 0.0 0.13 0.09 85.3 86.7 85.7 0.006 0.006 0.006 0.04 0.07 0.05

4 1.0 100 74.6 81.1 0 0.014 0.009 0.0 0.16 0.12 82.4 86.5 84.2 0.006 0.006 0.007 0.05 0.08 0.08

5 1.0 100 73.4 77.4 0 0.018 0.011 0.0 0.19 0.12 82.7 85.8 84.9 0.007 0.009 0.009 0.04 0.10 0.10

6 1.0 100 75.0 77.7 0 0.020 0.013 0.0 0.20 0.16 80.0 87.4 88.1 0.006 0.007 0.005 0.04 0.08 0.07

2 1.5 100 91.5 96.9 0 0.004 0.000 0.0 0.06 0.02 94.7 91.1 91.7 0.002 0.002 0.002 0.02 0.04 0.04

3 1.5 100 91.0 93.4 0 0.004 0.001 0.0 0.05 0.03 97.1 92.8 93.2 0.001 0.002 0.001 0.01 0.02 0.04

4 1.5 100 92.5 94.2 0 0.003 0.001 0.0 0.03 0.04 96.4 91.5 92.1 0.001 0.003 0.002 0.02 0.07 0.07

5 1.5 100 91.7 93.9 0 0.004 0.002 0.0 0.06 0.03 97.5 90.5 91.4 0.001 0.004 0.002 0.01 0.06 0.04

6 1.5 100 91.9 93.7 0 0.003 0.001 0.0 0.05 0.04 98.4 92.2 92.8 0.000 0.003 0.002 0.01 0.06 0.06

pvcg as a baseline. Because pvcg is the strategyproof payment rule for the optimal outcome
rule, pvcg always has accuracy 100, regret 0, and IR violation 0 for the optimal outcome
rule. The main findings are that our learned payment rule has low regret for the optimal
outcome rule and regret that is about the same as or better than the regret of pvcg when
the outcome rule is greedy. Given that greedy winner determination is seeking to maximize
total welfare it is natural the VCG-based payments would perform reasonably well in this
environment.
Across all instances, as expected, accuracy is negatively correlated with regret and ex

post IR violation. The degree of complementarity between items, ζ, as well as the outcome
rule chosen, has a major effect on the results. Instances with low complementarity (ζ = 0.5)
yield payment rules with higher regret, and χ′

1 performs better on the greedy outcome rule
while χ′

2 performs better on the optimal outcome rule. For high complementarity between
items the greedy outcome tends to allocate all items to a single agent, and the learned price
function sets high prices for small bundles to capture this property. For low complemen-
tarity the allocation tends to be split and less predictable. Still, the best classifiers achieve
average ex post regret of less than 0.032 (for values normalized to [0,1]) even though the
corresponding prediction accuracy can be as low as 67%.
For the greedy outcome rule, the performance of pvcg is comparable for ζ ∈ {1.0, 1.5} but

worse than the payment rule learned in our framework in the case of ζ = 0.5, where the
greedy outcome rule becomes less optimal.

6.3.5. Effect of Training Set Size. Table III charts performance as the training set size is
varied for the greedy outcome rule. While training data is readily available (we can simply
sample from D and run the outcome rule g), training time becomes prohibitive10 for larger
training set sizes. Table III shows that regret decreases with larger training sets, and for a
training set size of 500, the best of χ′

1 and χ
′
2 outperforms pvcg for ζ = 0.5 and is comparable

to pvcg for ζ ∈ {1.0, 1.5}.

6.3.6. IR Fixes. Tables IV and V summarize our results regarding the various fixes to IR
violations, for the particularly challenging case of the greedy outcome rule and ζ = 0.5.

10Training took on the order to a few days for the largest problem sizes and training set sizes we considered.

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

Payment Rules through Discriminant-Based Classifiers A:31

Table III. Effect of training set size on accuracy of learned classifier. Multi-minded CA, greedy outcome rule.
Training set size is given in the column labels for χ′

1
,χ′

2
. pvcg does not have a training set size.

n ζ
accuracy 100 300 500 regret 100 300 500

pvcg χ′

1
χ′

2
χ′

1
χ′

2
χ′

1
χ′

2
pvcg χ′

1
χ′

2
χ′

1
χ′

2
χ′

1
χ′

2

2 0.5 50.9 54.3 48.2 57.0 46.9 59.1 40.6 0.079 0.045 0.195 0.032 0.098 0.030 0.172

3 0.5 55.4 50.1 49.8 55.7 54.4 57.9 54.7 0.070 0.054 0.078 0.038 0.082 0.030 0.088

4 0.5 61.1 53.4 56.2 56.4 58.5 58.2 57.9 0.056 0.050 0.059 0.040 0.061 0.033 0.056

5 0.5 64.9 14.2 57.9 61.0 61.8 61.3 63.0 0.048 0.173 0.064 0.038 0.048 0.027 0.042

6 0.5 66.6 58.4 58.8 62.2 63.9 63.8 63.8 0.041 0.039 0.059 0.037 0.049 0.034 0.045

2 1.0 87.8 80.7 80.5 84.4 84.1 86.6 84.0 0.007 0.010 0.010 0.009 0.008 0.005 0.008

3 1.0 85.3 74.9 78.0 83.0 80.6 86.7 85.7 0.006 0.020 0.011 0.009 0.009 0.006 0.006

4 1.0 82.4 78.5 80.1 84.2 83.1 86.5 84.2 0.006 0.015 0.014 0.008 0.009 0.006 0.007

5 1.0 82.7 81.0 81.8 84.3 84.3 85.8 84.9 0.007 0.020 0.014 0.010 0.009 0.009 0.009

6 1.0 80.0 81.8 83.7 87.6 88.3 87.4 88.1 0.006 0.062 0.018 0.008 0.005 0.007 0.005

2 1.5 94.7 83.3 88.1 89.3 89.8 91.1 91.7 0.002 0.008 0.003 0.003 0.002 0.002 0.002

3 1.5 97.1 86.9 87.6 90.3 91.5 92.8 93.2 0.001 0.005 0.004 0.003 0.002 0.002 0.001

4 1.5 96.4 88.4 90.7 89.3 90.8 91.5 92.1 0.001 0.005 0.003 0.004 0.003 0.003 0.002

5 1.5 97.5 87.2 88.5 91.4 90.5 90.5 91.4 0.001 0.006 0.004 0.003 0.003 0.004 0.002

6 1.5 98.4 86.3 86.8 91.4 92.5 92.2 92.8 0.000 0.011 0.007 0.004 0.002 0.003 0.002

Table IV. Impact of payment offset and null loss fix for ζ = 0.5 and greedy outcome rule, training set
size 300. All results are for χ′

2
, null loss values across columns.

payment
offset

accuracy regret ir-violation ir-fix-welfare-avg

0.5 1.0 1.5 0.5 1.0 1.5 0.5 1.0 1.5 0.5 1.0 1.5

0 0.639 0.639 0.628 0.058 0.049 0.043 0.279 0.248 0.191 0.345 0.407 0.529

0.05 0.639 0.635 0.606 0.051 0.046 0.046 0.226 0.192 0.142 0.446 0.522 0.635

0.1 0.627 0.613 0.575 0.050 0.049 0.053 0.181 0.144 0.097 0.541 0.622 0.733

0.15 0.613 0.589 0.536 0.053 0.056 0.065 0.135 0.103 0.065 0.636 0.713 0.813

0.2 0.591 0.546 0.489 0.060 0.066 0.080 0.096 0.069 0.042 0.726 0.795 0.873

0.25 0.553 0.506 0.449 0.070 0.080 0.097 0.068 0.047 0.027 0.792 0.856 0.914

Table V. Impact of payment offset and null loss fix for ζ = 0.5 and greedy outcome rule, training set size
300. All results are for χ′

2
, null loss values across columns.

payment
offset

exp-ir-viol exp-cond-ir-viol ir-viol-95 cond-ir-viol-95

0.5 1.0 1.5 0.5 1.0 1.5 0.5 1.0 1.5 0.5 1.0 1.5

0 0.049 0.037 0.025 0.177 0.151 0.131 0.293 0.242 0.180 0.463 0.390 0.351

0.05 0.036 0.026 0.017 0.161 0.138 0.117 0.243 0.192 0.130 0.435 0.363 0.323

0.1 0.026 0.018 0.011 0.145 0.125 0.109 0.193 0.142 0.080 0.398 0.336 0.301

0.15 0.018 0.012 0.007 0.136 0.116 0.102 0.143 0.092 0.030 0.385 0.328 0.292

0.2 0.013 0.008 0.004 0.132 0.113 0.096 0.093 0.042 0.000 0.365 0.326 0.272

0.25 0.009 0.005 0.002 0.127 0.104 0.086 0.043 0.000 0.000 0.358 0.315 0.234

The extent of IR violation decreases with larger payment offset and null loss. Regret tends
to move in the opposite direction, but there are cases where IR violation and regret both
decrease. The three rightmost columns of Table IV list the average ratio between welfare
after and before the deallocation fix, across the instances in the test set. With a payment
offset of 0, a large welfare hit is incurred if we deallocate agents with IR violations. However,
this penalty decreases with increasing payment offsets and increasing null loss. At the most
extreme payment offset and null loss adjustment, the IR violation is as low as 2%, and the
deallocation fix incurs a welfare loss of only 7%. Table V provides detail on the amount
by which IR is violated. The expected amount of IR violation is low, though this becomes

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

A:32 P. Dütting et al.

!"

!"#$

!"#%

!"#&

!"#'

!"#"' !"#"(!"#") !"#$!"#$%

*+
!,
-.
/0
1-.

2

+34531

26//!/.77!8!"#9"
26//!/.77!8!$#""
26//!/.77!8!$#9"
26//!/.77!8!%#""

!"

!"#$

!"#%

!" !"#"% !"#"& !"#"' !"#"(!"#$!"#$% !"#$&

)*
!+
,-
./
0,-

1

*23420

15..!.-66!7!"#8"
15..!.-66!7!$#""
15..!.-66!7!$#8"
15..!.-66!7!%#""

Fig. 4. Impact of payment offset and null loss fix for greedy outcome rule, training set size 300.

Table VI. Comparison of performance with and without optimisti-
cally assuming item monotonicity. (i-mon) indicates a payment
rule learned by optimistically assuming item monotonicity. Greedy
outcome rule. Training set size 300.

n ζ
accuracy regret ir-violation

χ2 χ2 (i-mon) χ2 χ2 (i-mon) χ2 χ2 (i-mon)

2 0.5 46.9 46.3 0.098 0.232 0.28 0.38

3 0.5 54.4 8.6 0.082 0.465 0.33 0.06

4 0.5 58.5 48.2 0.061 0.811 0.31 0.25

5 0.5 61.8 57.0 0.048 0.136 0.26 0.26

6 0.5 63.9 61.3 0.049 0.078 0.25 0.20

2 1.0 84.1 82.2 0.008 0.010 0.06 0.08

3 1.0 80.6 80.1 0.009 0.010 0.10 0.09

4 1.0 83.1 79.7 0.009 0.012 0.11 0.11

5 1.0 84.3 77.2 0.009 0.020 0.10 0.11

6 1.0 88.3 83.9 0.005 0.013 0.08 0.11

2 1.5 89.8 89.1 0.002 0.003 0.03 0.06

3 1.5 91.5 91.3 0.002 0.003 0.04 0.04

4 1.5 90.8 89.7 0.003 0.003 0.06 0.06

5 1.5 90.5 87.3 0.003 0.005 0.04 0.05

6 1.5 92.5 70.8 0.002 0.081 0.06 0.17

more significant when we condition on agents with IR violations. Larger payment offsets
decrease all of these metrics as expected.
Figure 4 shows a graphical representation of the impact of payment offsets and null losses.

Each line in the plot corresponds to a payment rule learned with a different null loss, and
each point on a line corresponds to a different payment offset. The payment offset is zero
for the top-most point on each line, and equal to 0.29 for the lowest point on each line.
Increasing the payment offset always decreases the rate of IR violation, but may decrease or
increase regret. Increasing null loss lowers the top-most point on a given line, but arbitrarily
increasing null loss can be harmful. Indeed, in the figure on the left, a null loss of 1.5 results
in a slightly higher top-most point but significantly lower regret at this top-most point
compared to a null loss of 2.0. It is also interesting to note that these adjustments have
much more impact on the hardest distribution with ζ = 0.5.

6.3.7. Item Monotonicity. Table VI presents a comparison of a payment rule learned with
explicit enumeration of all bundle constraints (the default that we have been using for our
other results) and a payment rule learned by optimistically assuming item monotonicity (see
Section 5.1.3). Performance is affected when we drop constraints and optimistically assume
item monotonicity, although the effects are small for ζ ∈ {1.0, 1.5} and larger for ζ = 0.5.

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

Payment Rules through Discriminant-Based Classifiers A:33

Table VII. Basic results for valuations with ρ = 0.1.
Metrics for 10 and 20 items are computed using an
approximation based on the tractable separation oracle
for our training problem. Metrics are not computed for
VCG-based rules because computation requires brute
force enumeration over all possible bundles (but can
be efficiently computed for the succinctly represented,
trained payment rule).

agents items
accuracy regret

χ pvcg χ pvcg

6 2 94.9 97.3 0.006 0.008

6 4 70.7 82.7 0.020 0.022

6 6 53.1 66.4 0.027 0.031

6 10 28.3 – 0.033 –

6 20 – – – –

Because item monotonicity allows for the training problem to be succinctly specified, we
may be able to train on more data, and this seems a very promising avenue for further
consideration (perhaps coupled with heuristic methods to add additional constraints to the
training problem).

6.4. Combinatorial Auctions with Positive k-wise Dependent Valuations

We experiment with our framework on combinatorial auctions with positive k-wise de-
pendent valuations. We find that our learned payment rules can outperform VCG-based
payment rules in terms of regret for settings with large numbers of items, and outperform
VCG-based payment rules in terms of the trade-off between IR violation and regret. Be-
cause we have an efficient separation oracle as discussed in Section 5.2.4, we are able to
train payment rules and compute regret for larger instances.
In order to experiment with positive k-wise dependent valuations in combinatorial auc-

tions, we need a way to generate such valuations. To construct agent i’s valuation, we first
specify the nodes and edges in a graph (R,E), and then assign weights zi(j) and zi(e) over
the nodes j ∈ R and edges e ∈ E. For every possible edge (j1, j2), we add the edge to the
agents’ graph with probability ρ. Value zi(j) is sampled uniformly at random from [0, 1]; the
weight for each added edge is also sampled uniformly at random from [0, 1]. With this setup,
the edge probability parameter ρ lets us generate test instances of varying edge density. So
that our regret numbers are comparable across different size instances, we normalize each
agent’s weights by the expected value for the set of all items.
The outcome rule we use is the greedy outcome rule outlined in Section 5.2.1. We use

a training set size of 1000 and validation and test sets of size 500. We compare against a
VCG-based payment rule which runs the greedy allocation rule on all agents and on all
agents excluding agent i and charges agent i the difference in value to agents other that i
in the two allocations.
Tables VII and VIII and Figure 5 compare our learned payment rules (with 0 null loss) to

the VCG-based payment rule for ρ = 0.1 and ρ = 0.9. The learned payment rule has better
regret, despite having worse accuracy. However, the learned payment rule incurs significant
IR violation. We examine the IR violation issue in Figure 6. Here we implement the two IR
fixes of increasing the null loss value and applying payment offsets. We see that across all
instances, we can find settings of the null loss for which our IR / regret curve lies beneath
that of the VCG-based payment rule, indicating that we have settings which have better
regret and lower IR violation. We also see that despite having significant IR failures when
we have no payment offset, we can significantly decrease IR violation at the cost of a small
amount of regret increase by using a payment offset.

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

A:34 P. Dütting et al.

Table VIII. Basic results for valuations with ρ = 0.9.
Metrics for 10 and 20 items are computed using an
approximation based on the tractable separation oracle
for our training problem. Metrics are not computed for
VCG-based rules because computation requires brute
force enumeration over all possible bundles (but can
be efficiently computed for the succinctly represented,
trained payment rule).

agents items
accuracy regret

χ pvcg χ pvcg

6 2 79.9 82.1 0.024 0.028

6 4 64.0 51.8 0.038 0.056

6 6 61.6 42.7 0.030 0.062

6 10 61.6 – 0.026 –

6 20 – – – –

!"
!"#"$
!"#"%
!"#"&
!"#"'
!"#"(
!"#")
!"#"*

!% !' !) !+ !$" !$% !$' !$) !$+ !%"

,-
./
-0

10-23

45.-!6/7898:;:0<!"#$

=>.?893-5
;-9/ -5

!"#"$

!"#"%

!"#"&

!"#"'

!"#"(

!"#")

!"#"*

!% !' !) !+ !$" !$% !$' !$) !$+ !%"

,-
./

-0

10-23

45.-!6/7898:;:0<!"#=

>?. 893-5
;-9/!-5

Fig. 5. Regret v. Number of Items for learned payment rule and VCG-based payment rules. For 10 and 20
items, we do not have regret number for the VCG-based rules because computing regret requires enumeration
over all possible bundles. In this case, the regret for learned payment rules and 10 and 20 items is an upper
bound on the true regret obtained by applying our tractable separation oracle.

!"

!"#"$

!"#%

!"#%$

!"#&

!"#&$

!"#"& !"#"' !"#"(!"#") !"#% !"#%& !"#%'

*+
!,
-.
/0
1-.

2

+34531

(!0432167!(!-13867!3943!:5.;!"#%

2<//!/.66!=!"#""
2<//!/.66!=!"#%"
2<//!/.66!=!"#&"

,>4?;0639

!"
!"#"$
!"#%

!"#%$
!"#&

!"#&$
!"#'

!"#'$
!"#(

!"#($

!"#"& !"#"(!"#") !"#"* !"#% !"#%& !"#%(

+,
!-
./
01
2./

3

,45642

)!1543278!%"!.24978!4:54!;6/<!"#%

3=00!0/77!>!"#""
3=00!0/77!>!"#%"
3=00!0/77!>!"#&"

!"
!"#$
!"#%
!"#&
!"#'
!"#(
!"#)
!"#*

!"#"% !"#"' !"#") !"#"+ !"#$!"#$% !"#$'

,-
!.
/0
12
3/0

4

-56753

)!2654389!%"!/35:89!5;65!<70=!"#$

4>11!1088!?!"#""
4>11!1088!?!"#$"
4>11!1088!?!"#%"

!"

!"#"$

!"#%

!"#%$

!"#&

!"#&$

!" !"#"$!"#%!"#%$!"#&!"#&$!"#'!"#'$!"#(!"#($!"#$

)*
!+

,-
./

0,-
1

*23420

5!/321067!5!,02867!2932!:4-;!"#<

1=..!.-66!>!"#""
1=..!.-66!>!"#%"
1=..!.-66!>!"#&"

+?3 ;/629

!"

!"#"$

!"#%

!"#%$

!"#&

!"#&$

!" !"#"$!"#%!"#%$!"#&!"#&$!"#'!"#'$!"#(!"#($!"#$

)*
!+
,-
./
0,-

1

*23420

5!/321067!%"!,02867!2932!:4-;!"#<

1=..!.-66!>!"#""
1=..!.-66!>!"#%"
1=..!.-66!>!"#&"

!"

!"#"$

!"#%

!"#%$

!"#&

!"#&$

!"#"$!"#% !"#%$!"#& !"#&$!"#' !"#'$!"#(!"#($!"#$

)*
!+
,-
./
0,-

1

*23420

5!/321067!&"!,02867!2932!:4-;!"#<

1=..!.-66!>!"#""
1=..!.-66!>!"#%"
1=..!.-66!>!"#&"

Fig. 6. Regret v. IR Violation trade-off for learned payment rule and VCG-based payment rule for k-wise
dependent valuations. We do not have regret numbers for the VCG-based rule and 10 and 20 items because
computing regret requires brute force enumeration over all possible bundles. In this case, the regret numbers
for the learned payment rule are an upper bound on regret obtained by using our tractable separation oracle.

6.5. The Egalitarian Assignment Problem

In the assignment problem, agents’ values for the items are sampled uniformly and indepen-
dently from [0, 1]. We use a training set of size 600, validation and test sets of size 1000, and

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

Payment Rules through Discriminant-Based Classifiers A:35

Table IX. Results for assignment problem with egalitarian outcome rule

n
accuracy regret ir-violation

vcg tot-vcg eg-vcg pw vcg tot-vcg eg-vcg pw vcg tot-vcg eg-vcg pw

2 64.3 67.5 67.5 89.0 0.018 0.015 0.015 0.023 0.03 0.01 0.01 0.03

3 48.0 52.1 42.5 77.9 0.070 0.077 0.127 0.041 0.06 0.07 0.03 0.04

4 40.6 43.1 30.8 71.0 0.111 0.123 0.199 0.054 0.07 0.09 0.03 0.02

5 32.4 35.3 24.5 63.9 0.157 0.169 0.254 0.071 0.10 0.12 0.03 0.01

6 27.1 29.9 20.0 59.0 0.189 0.208 0.290 0.074 0.10 0.13 0.03 0.01

the RBF kernel with parameters C ∈ {10, 1000, 100000} and γ ∈ {0.1, 0.5, 1.0}. We find that
our learned payment rules have significantly better accuracy and regret than VCG-based
payment rules. We explain the improvement over VCG-based payments by observing that
the egalitarian rule is not maximizing total welfare, and thus not compatible in this sense
with VCG-based ideas.
The performance of the learned payment rules is compared to that of three VCG-based

payment rules. For this, let W be the total welfare of all agents other than i under the
outcome chosen by g, and Weg be the minimum value any agent other than i receives under
this outcome. We consider the following payment rules:

(1) the vcg payment rule, where agent i pays the difference between the maximum total
welfare of the other agents under any allocation and W ;
(2) the tot-vcg payment rule, where agent i pays the difference between the total welfare

of the other agents under the allocation maximizing egalitarian welfare and W ; and
(3) the eg-vcg payment rule, where agent i pays the difference between the minimum value

of any agent under the allocation maximizing egalitarian welfare and Weg .

The results are shown in Table IX. We see that the learned payment rule pw yields
significantly lower regret than any of the VCG-based payment rules, and average ex post
regret less than 0.074 for values normalized to [0, 1]. Since we are not maximizing the sum of
values of the agents, it is not very surprising that VCG-based payment rules perform rather
poorly. The learned payment rule pw can adjust to the outcome rule, and also achieves a
low fraction of ex post IR violation of at most 3%.

7. CONCLUSIONS

We have introduced a new paradigm for computational mechanism design, in which statisti-
cal machine learning is adopted to design payment rules for outcome rules, and have shown
encouraging experimental results. The mechanism design domain can be multi-parameter,
and the outcome rules can be specified algorithmically and need not be designed for ob-
jectives that are separable across agents. Central to our approach is to relax incentive
compatibility as a hard constraint on mechanism design, adopting in its place the goal of
minimizing expected regret while requiring agent-independent prices.
Future directions of interest include: (1) considering alternative learning paradigms, in-

cluding formulations of the problem as a regression rather than classification problem; (2) de-
veloping formulations that can impose constraints on properties of the learned payment rule,
concerning for example the core, budgets, or individual-rationality properties; (3) develop-
ing methods that learn classifiers that induce feasible outcome rules, so that these learned
outcome rules can be used directly; (4) extending the approach to domains without money
by developing a structure on discriminant functions appropriate to the incentive consider-
ations facing rational self-interested agents in such domains; (5) investigating the extent to
which alternative goals can be achieved through machine learning, such as regret percentiles
(maximizing the probability that the ex post regret is no greater than some amount λ > 0),
or directly minimizing the expected interim regret; (6) explore alternate attribute maps
(e.g., it would be interesting to adopt attributes that encode economic concepts such as the

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

A:36 P. Dütting et al.

total externality imposed on others by by assigning a bundle of items to agent 1), kernels,
and succinct valuation representations.

Acknowledgments

We thank Shivani Agarwal, Ruggiero Cavallo, Vince Conitzer, Amy Greenwald, Jason Hart-
line, Sébastien Lahaie, and Tim Roughgarden for valuable discussions, and the anony-
mous referees for helpful feedback. All errors remain our own. This material is based upon
work supported in part by the National Science Foundation under grant CCF-1101570, the
Deutsche Forschungsgemeinschaft under grant FI 1664/1-1, an EURYI award, an NDSEG
fellowship, and an SNF Postdoctoral Fellowship.

REFERENCES

Abraham, I., Babaioff, M., Dughmi, S., and Roughgarden, T. 2012. Combinatorial
auctions with restricted complements. In Proceedings of the 13th ACM Conference on
Electronic Commerce. 3–16.

Ashlagi, I., Braverman, M., Hassidim, A., and Monderer, D. 2010. Monotonicity
and implementability. Econometrica 78, 5, 1749–1772.

Ausubel, L. M. and Milgrom, P. 2006. The lovely but lonely Vickrey auction. In
Combinatorial Auctions, P. Cramton, Y. Shoham, and P. Steinberg, Eds. MIT Press,
Chapter 1, 17–40.

Bei, X. and Huang, Z. 2011. Bayesian incentive compatibility via fractional assignments.
In Proceedings of the 22nd Annual ACM-SIAM Symposium on Discrete Algorithms. 720–
733.

Budish, E. 2011. The combinatorial assignment problem: Approximate competitive equi-
librium from equal incomes. Journal of Political Economy 119, 1061–1103.

Cai, Y., Daskalakis, C., and Weinberg, S. M. 2012. An algorithmic characterization
of multi-dimensional mechanisms. In Proceedings of the 44th Annual ACM Symposium
on Theory of Computing. 459–478.

Carroll, G. 2011. A quantitative approach to incentives: Application to voting rules.
Tech. rep., MIT.

Conitzer, V. and Sandholm, T. 2002. Complexity of mechanism design. In Proceedings
of the 18th Annual Conference on Uncertainty in Artificial Intelligence. 103–110.

Conitzer, V., Sandholm, T., and Santi, P. 2005. Combinatorial auctions with k-
wise dependent valuations. In Proceedings of the 20th AAAI Conference on Artificial
Intelligence. 248–254.

Day, R. and Milgrom, P. 2008. Core-selecting package auctions. International Journal
of Game Theory 36, 3–4, 393–407.

Erdil, A. and Klemperer, P. 2010. A new payment rule for core-selecting package
auctions. Journal of the European Economic Association 8, 2–3, 537–547.

Guo, M. and Conitzer, V. 2010. Computationally feasible automated mechanism design:
General approach and case studies. In Proceedings of the 24th AAAI Conference on
Artificial Intelligence.

Hartline, J. D., Kleinberg, R., and Malekian, A. 2011. Bayesian incentive com-
patibility via matchings. In Proceedings of the 22nd Annual ACM-SIAM Symposium on
Discrete Algorithms. 734–747.

Joachims, T., Finley, T., and Yu, C.-N. J. 2009. Cutting-plane training of structural
SVMs. Machine Learning 77, 1, 27–59.

Lahaie, S. 2009. A kernel method for market clearing. In Proceedings of the 21st Interna-
tional Joint Conference on Artificial Intelligence. 208–213.

Lahaie, S. 2010. Stability and incentive compatibility in a kernel-based combinatorial
auction. In Proceedings of the 24th AAAI Conference on Artificial Intelligence. 811–816.

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

Payment Rules through Discriminant-Based Classifiers A:37

Lavi, R., Mu’alem, A., and Nisan, N. 2003. Towards a characterizatiotowards a char-
acterization of truthful combinatorial auctions. In Proc. 44th Annual IEEE Symp. on
Foundations of Computer Science (FOCS). 574–583.

Lavi, R. and Swamy, C. 2005. Truthful and near-optimal mechanism design via lin-
ear programming. In Proceedings of the 46th Symposium on Foundations of Computer
Science. 595–604.

Lehmann, D., O’Callaghan, L. I., and Shoham, Y. 2002. Truth revelation in approx-
imately efficient combinatorial auctions. Journal of the ACM 49, 577–602.

Lubin, B. 2010. Combinatorial markets in theory and practice: Mitigating incentives and
facilitating elicitation. Ph.D. thesis, Department of Computer Science, Harvard Univer-
sity.

Lubin, B. and Parkes, D. C. 2009. Quantifying the strategyproofness of mechanisms
via metrics on payoff distributions. In Proceedings of the 25th Annual Conference on
Uncertainty in Artificial Intelligence. 349–358.

Lubin, B. and Parkes, D. C. 2012. Approximate strategyproofness. Current Sci-
ence 103, 9, 1021–1032.

Myerson, R. B. 1981. Optimal auction design. Mathematics of operations research 6, 1,
58–73.

Parkes, D. C., Kalagnanam, J., and Eso, M. 2001. Achieving budget-balance with
Vickrey-based payment schemes in exchanges. In Proceedings of the 17th International
Joint Conference on Artificial Intelligence. 1161–1168.

Pathak, P. and Sönmez, T. 2013. School admissions reform in Chicago and England:
Comparing mechanisms by their vulnerability to manipulation. American Economic Re-
view 103, 80–106.

Rastegari, B., Condon, A., and Leyton-Brown, K. 2011. Revenue monotonicity
in deterministic, dominant-strategy combinatorial auctions. Artificial Intelligence 175,
441–456.

Saks, M. and Yu, L. 2005. Weak monotonicity suffices for truthfulness on convex domains.
In Proceedings of the 6th ACM Conference on Electronic Commerce. 286–293.

Sandholm, T. 2002. Algorithm for optimal winner determination in combinatorial auc-
tions. Artificial Intelligence 135, 1-2, 1–54.

Taskar, B., Chatalbashev, V., and Koller, D. 2004. Learning associative markov
networks. In Proceedings of the 21st International Conference on Machine Learning.

Tsochantaridis, I., Joachims, T., Hofmann, T., and Altun, Y. 2005. Large mar-
gin methods for structured and interdependent output variables. Journal of Machine
Learning Research 6, 1453–1484.

Yokoo, M., Sakurai, Y., and Matsubara, S. 2004. The effect of false-name bids in com-
binatorial auctions: new fraud in internet auctions. Games and Economic Behavior 46, 1,
174–188.

A. EFFICIENT COMPUTATION OF INNER PRODUCTS

For both χ′
1 and χ′

2, computing inner products reduces to the question of whether inner
products between valuation profiles are efficiently computable. For χ′

1, we have that

〈

χ′
1(θ−1, o1),χ

′
1(θ

′
−1, o

′
1)
〉

= Io1=o′
1

n
∑

i=2

⟨θi, θ
′
i⟩ ,

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

A:38 P. Dütting et al.

where indicator Io1=o′
1
= 1 if o1 = o′1 and Io1=o′

1
= 0 otherwise. For χ′

2,

〈

χ′
2(θ−1, o1),χ

′
2(θ

′
−1, o

′
1)
〉

=
n
∑

i=2

⟨θi \ o1, θ
′
i \ o1⟩ .

We next develop efficient methods for computing the inner products ⟨θi, θ′i⟩ on compactly
represented valuation functions. The computation of ⟨θi \ o1, θ′i \ o1⟩ can be done through
similar methods.
In the single-minded setting, let θi correspond to a bundle Si ⊆ {1, . . . , r} of items with

value vi, and θ′i correspond to a set S′
i ⊆ {1, . . . , r} of items valued at v′i.

Each set containing both Si and S′
i contributes viv

′
i to θ

T
i θ

′
i, while all other sets contribute

0. Since there are exactly 2r−|Si∪S′
i| sets containing both Si and S′

i, we have

θTi θ
′
i = viv

′
i2

r−|Si∪S′
i|.

This is a special case of the formula for the multi-minded case.

Lemma A.1. Consider a multi-minded CA and two bid vectors x1 and x′
1 correspond-

ing to sets S = {S1, . . . , Ss} and S′ = {S′
1, . . . , S

′
t}, with associated values v1, . . . , vs and

v′1, . . . , v
′
t. Then,

xT
1 x

′
1 =

∑

T⊆S,T ′⊆S′

(

(−1)|T |+|T ′| · (min
Si∈T

vi) · (min
S′
j∈T ′

v′j) · 2
r−|(

⋃
Si∈T Si)∪(

⋃
S′
j
∈T ′ S

′
j)|
)

. (6)

Proof. The contribution of a particular bundle B′ of items to the inner product is
(maxSi∈S,Si⊆B′ vi) · (maxS′

j∈S′,S′
j⊆B′ v′j), and thus

xT
1 x

′
1 =

∑

B′

(

(max
Si∈S

Si⊆B′

vi) · (max
S′
j
∈S′

S′
j
⊆B′

v′j)
)

.

By the maximum-minimums identity, which asserts that for any set {x1, . . . , xn} of n num-
bers, max{x1, . . . , xn} =

∑

Z⊆X((−1)|Z|+1 · (minxi∈Z xi)),

max
Si∈S

Si⊆B′

vi =
∑

T⊆S
⋃
Si∈T Si⊆B′

(

(−1)|T |+1 · (min
Si∈T

vi)
)

and

max
S′
j
∈S′

S′
j
⊆B′

v′j =
∑

T ′⊆S′
⋃
S′
j
∈T ′ S′

j⊆B′

(

(−1)|T
′|+1 · (min

S′
j∈T ′

v′j)
)

.

The inner product can thus be written as

θT1 θ
′
1 =

∑

B′

∑

T⊆S,T ′⊆S′
⋃
Si∈T Si⊆B′

⋃
S′
j
∈T ′ S′

j
⊆B′

(

(−1)|T |+|T ′| · (min
Si∈T

vi) · (min
S′
j∈T ′

v′j)
)

.

Finally, for given T ⊆ S and T ′ ⊆ S′, there exist exactly 2
r−|(

⋃
Si∈T Si)∪(

⋃
S′
j
∈T ′ S

′
j)| bundles

B′ such that
⋃

Si∈T Si ⊆ B′ and
⋃

S′
j∈T ′ S′

j ⊆ B′, and we obtain

θT1 θ
′
1 =

∑

T⊆S,T ′⊆S′

(

(−1)|T |+|T ′| · (min
Si∈T

vi) · (min
S′
j∈T ′

v′j) · 2
m−|(

⋃
Si∈T Si)∪(

⋃
S′
j
∈T ′ S

′
j)|
)

.

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

Payment Rules through Discriminant-Based Classifiers A:39

If S and S′ have constant size, then the sum on the right hand side of (6) ranges over a
constant number of sets and can be computed efficiently.

B. GREEDY ALLOCATION RULE IS NOT WEAKLY MONOTONE

Consider a setting with a single agent and four items.
If the valuations θ1 of the agent are

v1(θ1, o1) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

20 if o1 = {1, 2, 3, 4},

12 if 1 ∈ o1 and j /∈ o1 for some j ∈ {2, 3, 4}, and

0 otherwise,

then the allocation is {1}.
If the valuations are θ′1 such that

v1(θ
′
1, o1) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

12 if o1 = {1, 2, 3, 4},

5 if 1 ∈ o1 and j /∈ o1 for some j ∈ {2, 3, 4}, and

0 otherwise,

then the allocation is {1, 2, 3, 4}.
We have v1(θ′1, {1, 2, 3, 4}) − v1(θ′1, {1}) < v1(θ1, {1, 2, 3, 4}) − v1(θ1, {1}) contradicting

weak monotonicity.

ACM Journal Name, Vol. V, No. N, Article A, Publication date: January YYYY.

