187 research outputs found

    Self‐consistent intermediate Hamiltonians : A coupled cluster type formulation of the singles and doubles configuration interaction matrix dressing

    Get PDF
    This paper presents a new self‐consistent dressing of a singles and doubles configuration interaction matrix which insures size‐consistency, separability into closed‐shell subsystems if localized molecular orbitals (MOs) are used, and which includes all fourth order corrections. This method yields, among several schemes, a reformulation of the coupled cluster method, including fully the cluster operators of single and double excitations, and partially those of the triples (Bartlett’s algorithm named CCSDT‐1a). Further improvement can be easily included by adding exclusion principle violating corrections. Since it leads to a matrix diagonalization, the method behaves correctly in case of near degeneracies between the reference determinant and some doubles. Due to its flexibility this formulation offers the possibility of consistent combination with less expensive treatments for the study of very large [email protected] ; [email protected]

    A self-consistent perturbative evaluation of ground state energies: application to cohesive energies of spin lattices

    Full text link
    The work presents a simple formalism which proposes an estimate of the ground state energy from a single reference function. It is based on a perturbative expansion but leads to non linear coupled equations. It can be viewed as well as a modified coupled cluster formulation. Applied to a series of spin lattices governed by model Hamiltonians the method leads to simple analytic solutions. The so-calculated cohesive energies are surprisingly accurate. Two examples illustrate its applicability to locate phase transition.Comment: Accepted by Phys. Rev.

    Analysis of the magnetic coupling in binuclear complexes. I. Physics of the coupling

    Get PDF
    Accurate estimates of the magnetic coupling in binuclear complexes can be obtained from ab initio configuration interaction ~CI! calculations using the difference dedicated CI technique. The present paper shows that the same technique also provides a way to analyze the various physical contributions to the coupling and performs numerical analysis of their respective roles on four binuclear complexes of Cu (d9) ions. The bare valence-only description ~including direct and kinetic exchange! does not result in meaningful values. The spin-polarization phenomenon cannot be neglected, its sign and amplitude depend on the system. The two leading dynamical correlation effects have an antiferromagnetic character. The first one goes through the dynamical polarization of the environment in the ionic valence bond forms ~i.e., the M1¯M2 structures!. The second one is due to the double excitations involving simultaneously single excitations between the bridging ligand and the magnetic orbitals and single excitations of the environment. This dispersive effect results in an increase of the effective hopping integral between the magnetic orbitals. Moreover, it is demonstrated to be responsible for the previously observed larger metal-ligand delocalization occurring in natural orbitals with respect to the Hartree–Fock one

    Local character of magnetic coupling in ionic solids

    Get PDF
    Magnetic interactions in ionic solids are studied using parameter-free methods designed to provide accurate energy differences associated with quantum states defining the Heisenberg constant J. For a series of ionic solids including KNiF3, K2NiF4, KCuF3, K2CuF4, and high- Tc parent compound La2CuO4, the J experimental value is quantitatively reproduced. This result has fundamental implications because J values have been calculated from a finite cluster model whereas experiments refer to infinite solids. The present study permits us to firmly establish that in these wide-gap insulators, J is determined from strongly local electronic interactions involving two magnetic centers only thus providing an ab initio support to commonly used model Hamiltonians

    Direct generation of local orbitals for multireference treatment and subsequent uses for the calculation of the correlation energy

    Get PDF
    We present a method that uses the one-particle density matrix to generate directly localized orbitals dedicated to multireference wave functions. On one hand, it is shown that the definition of local orbitals making possible physically justified truncations of the CAS ~complete active space! is particularly adequate for the treatment of multireference problems. On the other hand, as it will be shown in the case of bond breaking, the control of the spatial location of the active orbitals may permit description of the desired physics with a smaller number of active orbitals than when starting from canonical molecular orbitals. The subsequent calculation of the dynamical correlation energy can be achieved with a lower computational effort either due to this reduction of the active space, or by truncation of the CAS to a shorter set of references. The ground- and excited-state energies are very close to the current complete active space self-consistent field ones and several examples of multireference singles and doubles calculations illustrate the interest of the procedur

    Ab initio evaluation of local effective interactions in αâ€ČNaV2O5\alpha^\prime NaV_2O_5

    Full text link
    We will present the numerical evaluation of the hopping and magnetic exchange integrals for a nearest-neighbor t−Jt-J model of the quarter-filled αâ€ČNaV2O5\alpha^\prime NaV_2O_5 compound. The effective integrals are obtained from valence-spectroscopy {\em ab initio} calculations of embedded crystal fragments (two VO5VO_5 pyramids in the different geometries corresponding to the desired parameters). We are using a large configurations interaction (CI) method, where the CI space is specifically optimized to obtain accurate energy differences. We show that the αâ€ČNaV2O5\alpha^\prime NaV_2O_5 system can be seen as a two-dimensional asymmetric triangular Heisenberg lattice where the effective sites represent delocalized V−O−VV-O-V rung entities supporting the magnetic electrons.Comment: 24 pages, 5 figure

    The McKean-Vlasov Equation in Finite Volume

    Get PDF
    We study the McKean--Vlasov equation on the finite tori of length scale LL in dd--dimensions. We derive the necessary and sufficient conditions for the existence of a phase transition, which are based on the criteria first uncovered in \cite{GP} and \cite{KM}. Therein and in subsequent works, one finds indications pointing to critical transitions at a particular model dependent value, ξ♯\theta^{\sharp} of the interaction parameter. We show that the uniform density (which may be interpreted as the liquid phase) is dynamically stable for Ξ<ξ♯\theta < \theta^{\sharp} and prove, abstractly, that a {\it critical} transition must occur at Ξ=ξ♯\theta = \theta^{\sharp}. However for this system we show that under generic conditions -- LL large, d≄2d \geq 2 and isotropic interactions -- the phase transition is in fact discontinuous and occurs at some \theta\t < \theta^{\sharp}. Finally, for H--stable, bounded interactions with discontinuous transitions we show that, with suitable scaling, the \theta\t(L) tend to a definitive non--trivial limit as L→∞L\to\infty

    Proposal of an extended t-J Hamiltonian for high-Tc cuprates from ab initio calculations on embedded clusters

    Get PDF
    A series of accurate ab initio calculations on Cu_pO-q finite clusters, properly embedded on the Madelung potential of the infinite lattice, have been performed in order to determine the local effective interactions in the CuO_2 planes of La_{2-x}Sr_xCuO_4 compounds. The values of the first-neighbor interactions, magnetic coupling (J_{NN}=125 meV) and hopping integral (t_{NN}=-555 meV), have been confirmed. Important additional effects are evidenced, concerning essentially the second-neighbor hopping integral t_{NNN}=+110meV, the displacement of a singlet toward an adjacent colinear hole, h_{SD}^{abc}=-80 meV, a non-negligible hole-hole repulsion V_{NN}-V_{NNN}=0.8 eV and a strong anisotropic effect of the presence of an adjacent hole on the values of the first-neighbor interactions. The dependence of J_{NN} and t_{NN} on the position of neighbor hole(s) has been rationalized from the two-band model and checked from a series of additional ab initio calculations. An extended t-J model Hamiltonian has been proposed on the basis of these results. It is argued that the here-proposed three-body effects may play a role in the charge/spin separation observed in these compounds, that is, in the formation and dynamic of stripes.Comment: 24 pages, 4 figures, submitted to Phys. Rev.

    Many-body-QED perturbation theory: Connection to the Bethe-Salpeter equation

    Full text link
    The connection between many-body theory (MBPT)--in perturbative and non-perturbative form--and quantum-electrodynamics (QED) is reviewed for systems of two fermions in an external field. The treatment is mainly based upon the recently developed covariant-evolution-operator method for QED calculations [Lindgren et al. Phys. Rep. 389, 161 (2004)], which has a structure quite akin to that of many-body perturbation theory. At the same time this procedure is closely connected to the S-matrix and the Green's-function formalisms and can therefore serve as a bridge between various approaches. It is demonstrated that the MBPT-QED scheme, when carried to all orders, leads to a Schroedinger-like equation, equivalent to the Bethe-Salpeter (BS) equation. A Bloch equation in commutator form that can be used for an "extended" or quasi-degenerate model space is derived. It has the same relation to the BS equation as has the standard Bloch equation to the ordinary Schroedinger equation and can be used to generate a perturbation expansion compatible with the BS equation also for a quasi-degenerate model space.Comment: Submitted to Canadian J of Physic
    • 

    corecore