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We present a method that uses the one-particle density matrix to generate directly localized orbitals
dedicated to multireference wave functions. On one hand, it is shown that the definition of local
orbitals making possible physically justified truncations of the CAS~complete active space! is
particularly adequate for the treatment of multireference problems. On the other hand, as it will be
shown in the case of bond breaking, the control of the spatial location of the active orbitals may
permit description of the desired physics with a smaller number of active orbitals than when starting
from canonical molecular orbitals. The subsequent calculation of the dynamical correlation energy
can be achieved with a lower computational effort either due to this reduction of the active space,
or by truncation of the CAS to a shorter set of references. The ground- and excited-state energies are
very close to the current complete active space self-consistent field ones and several examples of
multireference singles and doubles calculations illustrate the interest of the procedure. ©2002
American Institute of Physics.@DOI: 10.1063/1.1476312#

I. INTRODUCTION

The Lewis representation of molecules in terms of bonds
and lone pairs of electrons commonly used in chemistry is
probably the first example of a relevant local description.
Before the success of Koopmans’ theorem1 induced a preva-
lence of the delocalized treatments, several localized meth-
ods providing interesting physical analysis were proposed.
The valence bond method,2 which gives a physically moti-
vated hierarchy of the determinants in terms of neutral, sin-
gly ionic, doubly ionic, etc., is one of the best examples of
such treatments. Later on, it was shown3 for single reference
~single determinantal! problems that both local and nonlocal
descriptions are equivalent, since one may always define a
unitary transformation to go from the delocalized occupied
orbitals to the localized occupied ones so that a single refer-
ence is preserved. The Fock operator, which is diagonal in
the canonical set, becomes block diagonal, i.e., the elements
between occupied and virtual molecular orbitals~MO! re-

main null, according to Brillouin’s theorem.4 The equiva-
lence of these descriptions may be extended to multirefer-
ence~CAS! problems, provided that the transformations are
only made inside the different blocks of inactive, active, and
virtual orbitals.

The more recent growth of interest for localized descrip-
tions was initially due to the possible neglect of small
enough bielectronic integrals when localized orbitals are
used, and then widely motivated by the calculation of the
correlation energy for a lower computational effort. Indeed,
since the number of virtual orbitals needed for the correlation
of each electron pair may be dramatically reduced in a local
description, significant savings of CPU time could also be
obtained for the correlated methods. In that philosophy, sev-
eral local correlated treatments have recently been proposed,
the computational cost of which scales linearly with the mo-
lecular size. Among the most important ones, one may cite
the Møller–Plesset perturbation theory~MP2, MP3,
MP4!,5–11 the singles and doubles configuration interaction
~CISD!,12 and singles and doubles coupled clustera!Electronic-mail: daniel.maynau@irsamc.ups-tlse.fr
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~CCSD!12,13 and CCSD~T!.14 All these proposals are single
reference methods. However, the benefit of a local descrip-
tion for the calculation of the correlation energy is not an
attribute singular to the single reference description. One
may in fact reduce the computational effort for multirefer-
ence descriptions too, when using a set of localized orbitals.

In several problems requiring multireference descrip-
tions, the active orbitals are often concentrated in a local
region. This is the case, for instance, when we consider bond
breaking, magnetic systems with singly occupied orbitals lo-
calized on metal atoms, as well as spectroscopic problems
that imply local excitations. An accurate description of such
systems generally requires highly correlated treatments that
have been, up to now, only accessible for the smaller ones.
The interest of a local picture is twofold.

~i! The first advantage is qualitative, and concerns the
nature and the size of the active space. Let us con-
sider, for instance, the case of a bond breaking. In a
delocalized description, the active orbitals are the
ones that bring the largest correlation energy; there-
fore, there is no control over their spatial location.
Using local active orbitals, on the contrary, it becomes
possible to restrict them to those that are actually bro-
ken during the chemical reaction.

~ii ! The second advantage concerns the possible reduction
of the size of the reference space. The use of complete
active space~CAS! of canonical MOs is responsible
for a very steep increase of the number of references
included in the calculation. This may be easily under-
stood when considering localized active orbitals ob-
tained from the delocalized ones by unitary transfor-
mations, for instance. The isodimensional reference
space generated by the CAS~now in localized orbit-
als! contains determinants in which all the electrons
are concentrated in a certain region of space~highly
ionic in the VB sense!, and therefore whose weight in
the wave function is close to zero. As shown in Ref.
15, a localized multireference description instead of
the CAS would be both physically justified and sig-
nificantly less expensive. It is then intuitively clear
that the definition of localized active orbitals com-
bined with an appropriate multireference space would
be more effective for the treatment of these problems.
Although this work will not address the question of
N-scaling behavior of the calculations, let us notice
that the use of a complete set of local orbitals allows
the possible neglect of small enough bielectronic in-
tegrals as well as the local treatment of electron cor-
relation.

The method uses the one-particle density matrix calcu-
lated from the CI of the single excitations acting on the mul-
tireference space. It will be presented in the second section.
In the third section, different applications illustrate the effi-
ciency of the proposed density matrix based multiconfigura-
tion method in localized orbitals. The energies obtained from
CASCI ~configuration interaction inside the CAS! calcula-
tions carried out using the obtained set of localized orbitals
are very close to the current complete active space self-

consistent field~CASSCF! ones, for the ground state as well
as for the excited ones. Calculations at the MR1SD ~multi-
reference singles and doubles! level have been performed for
several chemical systems, and a systematic comparison be-
tween the results obtained for truncated and nontruncated CI
calculations will be presented. Different outlooks for taking
advantage of the localized description in the scaling of the
correlation energy calculations are discussed in the Conclu-
sion.

II. PRESENTATION OF THE METHOD

We propose ana priori method. It may be decomposed
in two steps. The first one provides an initial guess of local-
ized orbitals that will then be optimized in a second step.
They may be obtained through different procedures provided
that the orbitals are strongly localized and define an orthogo-
nal set.

A. What kind of local orbitals?

The molecular orbitals commonly used in standard
chemistry calculations are obtained through self-consistent
field ~SCF! or CASSCF procedures.

It is possible to replace the occupied~respectively, unoc-
cupied! orbitals by a linear combination of themselves with-
out changing the SCF energy. As well as in the canonical
SCF orbitals, the choice of orbitals localized on bonds en-
ables one to build a single determinant wave function. Notice
that not only covalent bonds are concerned; it is also possible
to build core or lone pair orbitals in the same way. In that
case, the orbitals are atom centered and doubly occupied.

It is also possible to use singly occupied atom-centered
orbitals, like the two 1s orbitals of the H2 molecule, for
example. The VB tradition uses such orbitals. The general-
ized valence bond~GVB!16 method variationally optimizes
valence orbitals centered on a given atom with appropriate
tail. Using singly occupied atom-centered orbitals, it is not
possible to build a single determinant which gives the SCF
energy. However, as will be shown later on, this can be an
interesting solution. In the case of quasidegenerate systems,
for instance, a correct description can be obtained only
through a CI calculation involving several determinants. If
the CI space is very large, it may be necessary to truncate it
and perform a selected CI. In this case, the size of the se-
lected space required to have a correct result will not be the
same depending on the considered orbitals, as will be shown
in the examples of Sec. III.

In this work, we develop a formalism that permits all the
above possibilities. The orbitals can be localized on a single
atom ~for example, a core orbital or a lone pair!, or a group
of atoms~a bond or a fragment such as a complete aromatic
ring, for instance!.

B. A priori methods: The generation of localized SCF
orbitals

When looking for a localization method, the determina-
tion of localized Hartree–Fock~HF! molecular orbitals
~MOs! seems to be a rational choice, as far as single refer-
ence problems are concerned. Several methods are usinga
posteriori relocalizing unitary transformations, for instance
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the methods of Boys,17 Edminston and Ruedenberg,18

Pipek,19 and Angeliet al.,20 which define an intrinsic crite-
rion of localization~i.e., they maximize a localization func-
tion!. Relocalizations that use an extrinsic criterion3 of local-
ization ~such as projecting localized MOs on the canonical
ones! work equally well.

A direct way to obtain localized orbitals, i.e., one that
avoids the passage through the determination of canonical
MOs, was opened by thea priori methods. Some of them use
a localization potential in the SCF equations.21–23 Other
methods start from guess-localized orbitals and use a proce-
dure of orbital optimization that keeps their local nature. As
well as in delocalized descriptions, the optimization process
can be based on an energy minimization or use the one-
particle density matrix. While in the delocalized descriptions
the density matrix is directly diagonalized, giving the delo-
calized natural orbitals, keeping the local character of the
orbitals requires avoidance of such diagonalization and con-
trol of the rotations between the orbitals.

1. Determination of guess of local orbitals

The set of chosen atomic orbitals$x l% should preferably
be of ANO ~atomic natural orbital! type.24 In this way, the
occupied and antibonding molecular orbitals have large co-
efficients on the minimal basis set only. It is constituted of
core orbitals, valence orbitals, and some additional nonva-
lence orbitals for extended basis calculations. Through the
following procedure, we will build orthogonal atomic orbit-
als ~OAO! in a first step, and localized MOs~LMOs! which
are linear combinations of the OAOs. In the present ap-
proach, a great flexibility is permitted to the localized orbit-
als. An LMO can be atom centered for lone pairs or core~in
that case, it is equal to an OAO!, or bond centered, or even
delocalized on a molecular fragment. These orbitals are dis-
tributed in the two classes~occupied and virtual!.

The procedure starts by the generation of OAO through
a hierarchical orthogonalization of the atomic orbitals that
does not mix the different types~core, valence, and addi-
tional nonvalence! of orbitals. One uses a hierarchical block-
Schmidt orthogonalization scheme, where the usual normal-
ization step is replaced by anS21/2 orthogonalization inside
each block corresponding to a different type of orbital.S
being the overlap matrix, the core orbitals that must be kept

pure for an accurate guess have the highest priority, so they
will just be orthogonalized among themselves using anS21/2

method.
The valence orbitals are orthogonalized to the core ones

by projecting out the core components and, then, among
themselves by anS21/2 orthogonalization. Finally, the addi-
tional nonvalence orbitals receive the same treatment as the
valence ones~they are orthogonalized to the two previous
sets! and the complete set of OAO$x̃ l% is obtained.

We want now to obtain LMOs that correctly describe
bonds or molecular fragments. The method proceeds through
the calculation of a mono-electronic~SCF, Huckel...! density
matrix, which was already used in the past to determine
atom-centered orbitals appropriate for nondynamical correla-
tion calculations.25,26The density matrix is then expressed in
the OAOs basis$x̃ l%

Ri j 5^F0uai
1aj uF0&. ~1!

Let us introduce an orthogonal projector on an atomK of the
molecule as being the sum of the projectors on its OAOs
~this definition is commonly used19!

PK5 (
l PK

ux̃ l&^x̃ l u. ~2!

A projector on a fragmentF ~for instance, two bonded atoms
if one looks for a bond LMO! may be defined as the sum of
the projectors on the atoms belonging to that fragment

PF5 (
KPF

PK . ~3!

The density matrices calculated on the projected functions
PFF0 are then diagonalized to get a new set of LMOs. The
left orbitals are distributed in the classes of occupied and
virtual LMOs according to their occupation numbers~typi-
cally close to 2 and 0, respectively!. The orbitals exhibiting
other occupation numbers are simply rejected.

As an example, let us follow the construction of guess
orbitals for the butadiene molecule. In this simple case, the
choice is quite straightforward. In addition to the core orbit-
als of the carbons, the bonds to be constructed correspond to
the Lewis graph of the C4H6 molecule. From the density
matrix expressed in the basis of the OAOs, partial density
matrices are extracted for each bond.

Table I presents an example of generation of guess or-
bitals for both single and double C–C bonds. The dimension

TABLE I. Butadiene molecule. Occupation of the local bond orbitals of the single C1C2 and the double C1C3

bonds. Thes bonding ands* antibonding orbitals clearly appear in both bonds with occupations close to zero.
The same applies for thep andp* orbitals in the double bond. The delocalization of thesep orbitals on the
single bonds is illustrated by thep occupations of 1.28 and 0.66 on the single bond. The other orbitals~h! are
hybrid orbitals~see the text!.

C1C2 ~single bond!

Occupation 1.95 1.28 1.22 1.04 1.01 0.92 0.66 0.02
Orbitals s p h h h h p* s*

C1C3 ~double bond!

Occupation 1.96 1.93 1.25 1.15 0.99 0.92 0.05 0.03
Orbitals s p h h h h p* s*

10062 J. Chem. Phys., Vol. 116, No. 23, 15 June 2002 Maynau et al.
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of the partial density matrix is 838, which corresponds to
the four 2s, 2p orbitals on each atom. Once diagonalized,
this partial density matrix automatically gives one or two~for
the single or double bond! occupied orbitals and their corre-
sponding antibonding ones. The other eigenvalues corre-
spond to occupations of the remaining bonds of the carbon
atoms. They are hybrid orbitals which belong to other bonds,
and they are discarded. On may notice that thep bonding
orbital occupation on the single bond is quite large, even if it
is clearly unoccupied. This phenomenon corresponds to the
delocalization of thep cloud between the double bonds
through the central one. The correspondingp* antibonding
orbital has also an occupation rather far from zero.

There are six 434 density submatrices for the C–H
bonds. At the end, one has threes C–C, sixs C–H, and two
p C–C bonds. In the OAO basis, the valences andp orbitals
of C and H are replaced by the bond C–C and C–H orbitals.
The core and virtual OAO remain unchanged. If one wants to
use atomicp orbitals instead ofp bonds, it is possible to
keep thep OAOs and to ignore thep andp* local orbitals.
In this case, a single reference calculation is impossible.

Of course, the new basis is nonorthogonal. A new hier-
archical orthogonalization is applied on these orbitals, as it
was done to build the OAOs.

This procedure, after being repeated on all bonds, pro-
vides a nonorthogonal set of localized orbitals. The genera-
tion of an orthogonal space is achieved using a hierarchical
orthonormalization similar to the one described for the first
set of atomic orbitals. The highest priority is given to the
inactive LMOs, then to the active ones, and finally to the
virtual ones, each class of orbitals being orthogonalized by
an S21/2 procedure.

Let us recall some advantages of the method:

~i! Due to the use of a hierarchical orthogonalization
scheme, the procedure provides an orthogonal set of
strongly localized orbitals.

~ii ! The method avoids the problem of relocalizing the
virtual nonvalence orbitals by considering the or-
thogonal atomic ones.

~iii ! Finally, for local symmetry reasons, a proper hybrid-
ization of the orbitals is obtained.

2. Optimization of the localized orbitals: General
approach

The molecular orbitalsf i obtained from an SCF proce-
dure fulfill two properties.

~1! The energy ^F0uHuF0& is minimal, where F0

5uf1f1¯fnfnu, n being the number of occupied or-
bitals.

~2! The single configuration interaction~CIS! density matrix
is diagonal, with eigenvalues 2 for the occupied, and 0
for virtual orbitals.

These properties are not independent. In an SCF procedure,
the energy is minimized and, as a consequence, the second
property is verified. One could choose to fulfill property~2!
first and to obtain the SCF energy in this way. The method

presented here follows this scheme and provides, among all
the possible orbitals giving the SCF energy, a set of localized
ones.

The procedure starts from the definition of a single ref-
erenceF0 built on a set of occupied strongly localized guess
orbitals that is then separated in two classes, the inactive I
and the virtual V orbitals. Then, from the singly excited de-
terminantsar

1aiF0 , wherear
1 ~respectively,ai! is the cre-

ation ~respectively, annihilation! operator of an electron in
the virtual orbitalr ~respectively, occupiedi!, the CIS matrix
is calculated. The diagonalization of this matrix provides the
coefficients of the singly excited determinantsCir in the
CCIS wave function, which can be written in intermediate
normalization~the coefficient of the referenceF0 is C051!

CCIS5F01(
i ,r

Cir ar
1aiF0 . ~4!

These coefficients are then used to compute the density
matrix R corresponding toCCIS. The off-diagonal elements
of R are given by

Rir 5^CCISuar
1ai uCCIS&5Cir . ~5!

The diagonalization ofR gives the quasinatural orbitals
~NOs! corresponding toCCIS. A new CIS performed using
these NOs will give a new wave functionCCIS8 , which ap-
pears to be of lower energy in all practical cases

^CCISuHuCCIS&,^CCIS8 uHuCCIS8 &. ~6!

The new density matrixR8 will have smaller off-
diagonal matrix elements and the diagonal elements will be
closer to 2 or 0. At convergence, the process gives a diagonal
density matrix (Rir 5Cir 50). The Brillouin theorem is veri-
fied, and the SCF energy is reached.

The diagonalization of the density matrix would delocal-
ize the orbitals, and the original locality of the guess orbitals
would be lost. One must notice, however, that if we consider
a matrix diagonalization as rotation of orbitals, only the ro-
tations between occupied and virtual are useful to converge
toward a solution with HF energy. At each iteration, rotations
between occupied and virtual orbitals may be frozen. This
technique of partial diagonalization gives a set of localized
orbitals and the energy ofF0 is the SCF energy. Notice that
the converged density matrix is diagonal, even if we proceed
through partial diagonalizations.

The way to keep the local character of the orbitals along
the iterations is similar to the one proposed in Ref. 27. Let us
briefly recall the general features of this previous method.
The coefficients ofCCIS are used as first-order corrections to
the one electron orbitals according to the equations

i 85 i 1(
t

Cir r , ~7!

r 85r 2(
r

Cir i , ~8!

wherei andr ~i 8 andr 8! are the initial~new! set of occupied
and virtual orbitals, respectively, andCir the coefficient of a
singly excited determinantar

1aiF0 . The new set ofi 8 and
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r 8 orbitals is then orthogonalized and the method is iterated
until convergence is achieved as in the proposed procedure.

3. Optimization of the localized orbitals: Technical
aspects

The technique that we use to impose the block diagonal
shape of the density matrix at each iteration consists of mix-
ing the orbitals belonging to both classes I and V using the
exact passage matrixUD that fully diagonalizes the density
matrix, while preventing as much as possible the inside
block ~intraclass! rotations of these orbitals.

The diagonal density matrixRD is obtained by the uni-
tary passage matrixUD according to the equation

RD5UD
1RUD . ~9!

The matrixRD gives completely delocalized natural orbitals.
However, the inside~intrablock! rotations may be approxi-
mately calculated by projecting the matrixUD onto the three
blocks corresponding to the I and V subspaces of the density
matrix. Since the so-obtained vectors are no more orthogonal
inside each block, anS21/2 orthogonalization is performed,
providing a block diagonal unitary passage matrixUP . The
application of the matrixUP to the diagonal density matrix
leads to a mixing of the vectors inside each subspace that
restores the local nature of the initial orbitals. The block
diagonal density matrixRDP obeys the equation

RDP5UPRDUP
1 . ~10!

Notice that ifR is already block diagonal thenRDP5R. The
RDP matrix might be directly obtained by the unitary passage
matrix W5UDUP

1 , so that

RDP5UPRDUP
15UP~UD

1RUD!UP
15W1RW. ~11!

This procedure provides a set of orbitals on which the
referencesF I as well as the singly excited determinants
ar

1aiF I are expanded again and the method is iterated until
the convergence is achieved, i.e., the density matrix is sta-
tionary and diagonal from one iteration to the other.

C. Multireference local orbitals

The iterations proceed through the calculation of the
density matrix from a CAS plus singles and the calculation
of quasinatural orbitals, as sometimes done in post-CASSCF
calculations.28

As SCF~HF! localized orbitals seem to be a rational
choice for single reference descriptions, CASSCF localized
orbitals would be desirable for multireference ones. In the
CIS space used above, the single reference determinantF0 is
replaced by the CAS or, if we want to use a selected ap-
proach, by a subset of the CAS. There are now three classes
of orbitals, namely the inactive, active, and virtual~I, A, V !.

The guess orbitals are obtained in the same way as in the
single reference case. Concerning the active orbitals, they
can be atom centered~they allow a VB picture of the CAS
function!, or bond centered~both bonding and antibonding
orbitals must be taken as active!.

In the optimization process, there are now three classes
and, therefore, during the partial diagonalization of the den-
sity matrix, the rotations also will be forbidden among active

orbitals. The optimization process is, however, not strictly
equivalent. One must notice that, while starting from the
single reference SCF determinantF0 , the CIS does not
change the energy at convergence; this is no more true when
one starts from a CAS. Even if CASSCF orbitals are used,
the weight of some singly excited configurations is not zero,
and therefore the diagonalization of the CAS plus singles
~CAS-CIS! gives an energy slightly lower than the diagonal-
ization of the CAS~CAS-CI!. Only if one performs a con-
tracted CI~taking care of all possible linear dependencies!,
where

CCASCIS-contracted5CCAS1(
i ,r

Cir ar
1aiCCAS, ~12!

and imposes the generalized Brillouin theorem,29,30 the two
energies would be equal. In that case, the energy would be
equal to a standard CASSCF result, and the three spaces
corresponding to the I, A, and V classes would be equivalent
to those obtained by a standard CASSCF. The inactive~re-
spectively, active, virtual! local orbitals could be obtained by
rotations of the CASSCF orbitals of the same class.

The uncontracted alternative used in this work consists
of working in the space defined by the references and all the
nonidentical singly excited determinants. Let us callS
5$F I% the set of the references of the CAS. The optimiza-
tion of the localized orbitals may therefore be achieved
within the spaceS8 containingSand all the singly nonredun-
dant excited determinantsar

1aiF I

S85$F I%ø$ar
1aiF i%. ~13!

Although the procedure will lead to an energy higher
than the CASSCF one, working with such a wave function
has two advantages over the previous proposition:~i! the
corresponding space is orthogonal;~ii ! the wave function
incorporates dynamical polarization effects, i.e., instanta-
neous response of the inactive electrons to the fluctuating
field created by the active electrons, while the CASSCF
function only takes into account the mean field of the active
electrons. One must notice, however, that the contracted and
uncontracted schemes give very similar orbitals.

The presented method may easily be generalized to a
selected multireference space included in the CAS, the space
S containing now the set of the selected references, leading
to an approximate MCSCF description. Passing from a CAS
to an MR space will be especially beneficial when subse-
quently calculating the dynamical correlation energy,
through an MR1SD calculation for instance, the list of sin-
gly and doubly excited determinants being significantly re-
duced.

Notice that the generalization of the previous procedure
to state average calculations is straightforward when consid-
ering a mean density matrix31 ~averaged for several states
1,2,...,N! of the form

R1,...,N5 (
K51,N

aKRK, ~14!
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whereaK is a weight that is adjusted according to the physi-
cal problem andRK the density matrix calculated for the
stateK.

III. APPLICATIONS

The applications presented in this section will illustrate
both the computational benefit of using localized orbitals,
through possible reduction of the number of references, and
the control of the location of the active orbitals when bond
breaking is considered.

A. Study of the ground state and the two first singlet
d\p* excited states of the bichromophoric trans -
bicyclo †3.3.0‡ octane-3,7-dione „BOD… molecule

The BOD molecule is a bichromophoric molecule con-
stituted of two ketone chromophores connected by a satu-
rated bridge.32 In such systems, intramolecular electronic en-
ergy transfer occurs between the two chromophoric groups.
The excitation energy is transferred from the excited donor
chromophore to the ground-state acceptor. This process is
involved in photosynthesis, polymer photophysics, and pho-
tochemical synthesis and is thus of fundamental importance.
The qualitative picture of the intramolecular energy transfer
that is commonly used is a two-state model generating a
double-well potential energy surface. In this compound, the
energy transfer process is known to be nonadiabatic, since
the energy difference between the two adiabatic excited
statesS1 andS2 involved in the process is very small, result-
ing from a weak interchromophoric electronic coupling. The
determination of this coupling requires an accurate calcula-
tion of the energy difference between the two singlet states,
therefore, the so-called difference-dedicated configuration in-
teraction DDCI33 ~CAS-DDCI and MR-DDCI! method has
been used. CAS1SD and MR1SD calculations have also
been performed to calculate the energy of the ground state
S0 .

Because of the size of the molecule, and since we were
essentially interested in checking the performances of our
method at the CAS1SD level, STO-3G basis sets34 have
been used. The geometries used in our calculations have
been fully optimized35 for the ground state and for the sec-
ond excited states~that corresponds to theS1 /S2 conical
intersection! at the CASSCF~8,6! level in a delocalized de-
scription. The canonical active orbitals have the same physi-
cal content as the chosen localized active orbitals described
in the next paragraph.

In order to choose the correct minimal active space, let
us consider the ketone group. The study of then→p* exci-
tation requires to take as active thep andp* orbitals of the
CO bond and the nonbondingn orbital of the oxygen lone
pair. Notice that for a better analysis of the physics we have
chosen to take two active LMOs~p andp* ! instead of the
two p atomic orbitals. Since the molecule is bichromophoric,
one has 8 electrons in 6 orbitals, leading to an active space
@CAS~8,6!# containing 225 references, if no symmetry is im-
posed.

The optimization of the orbitals has been performed in a
different manner for the ground state and for the excited
states. The orbitals of the ground state have been optimized

using the density matrix of the ground-state function
CCAS1S . Concerning the calculation of theS12S2 energy
difference, an orbital optimization using an average density
matrix, the mean between the two density matrices of the
singlet excited statesCCAS1S

S1 and CCAS1S
S2 , was preferable.

The so-obtained orbitals are therefore adapted to both ex-
cited states, as would be the case for orbitals resulting from
an average CASSCF procedure. To exhibit the strongly lo-
calized character of the optimized orbitals, we have repre-
sented in Fig. 1 a bonding LMO and an antibonding one,
optimized for the ground state. Concerning the ground state,
it has been possible to restrict the CAS to an MR space
containing only the 18 determinants of major weight in the
CASCI wave function without affecting the accuracy of the
results at the MRCI~diagonalization of the references space!
level as well as at the MR1SD level. Comparisons of the
obtained results~for truncated and nontruncated spaces! with
the delocalized CASSCF and CAS1SD procedures are pre-
sented in Table II. The CASCI energies obtained from our
procedure are very close to the traditional CASSCF ones, the
error being 0.038 eV. Reducing the space to 10% of its full
size only affects the result by 0.014 eV.

The full CAS1SD space~if one does not use symme-
tries! contains around 1.43108 determinants and is therefore
not tractable. Our calculation at the MR1SD level involves
only 133106 determinants and therefore also corresponds to
a reduction of the space to 10% of its full size. In order to
check our method, we have compared the obtained ground-
state energy with the one resulting from a CAS1SD calcu-

FIG. 1. Example of a bonding~on the left! and an antibonding~on the right!
LMO optimized for the ground state of the BOD molecule.

TABLE II. Ground-state energy of the BOD molecule calculated using the
optimized localized orbitals at several level of correlation. The results ob-
tained from delocalized CASSCF and CASSD methods are reported for
comparison.

Dim. of the space
~C2h symmetry!

Dim. without
symmetry Energy~a.u.!

CASSCF~deloc.! 225 2452.884 129
CAS~CI!~loc.! 225 2452.882 729
MR~CI!~loc.! 18 2452.882 229
CASSD~deloc.! 363106 1.43107 2453.342 491
MRSD~loc.! 133106 2453.342 071
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lation in canonical orbitals. This last calculation has been
performed using aC2h symmetry. The localized MR1SD
results is in excellent agreement with the delocalized CAS
1SD one, the error being only 0.011 eV.

The minimal number of references necessary to describe
correctly both excited states is 58. Results of the MRDDCI
calculations are reported in Table III. This result compares
very well with the CASDDCI one showing that such small
energy differences can be calculated with an excellent accu-
racy using this method. One should notice here that the
DDCI procedure eliminates all the double excitations which
do not touch the active orbitals~keeping only the determi-
nants that play a differential role on the energy difference!;
this explains why the reduction of the reference space is not
linearly correlated with the reduction of the MRDDCI one.
Of course, the gain would be more dramatic if traditional
MR1SD schemes were used.

B. Bond breaking

In order to show the problems associated with a delocal-
ized CASSCF description, we consider the case of the disso-
ciation of a C–H bond in ethylene, which has been the sub-
ject of several methodological works.28,33,36 We study a
‘‘radial’’ dissociation, in the sense that all the angles of the
molecules were kept unchanged during the dissociation pro-

cess. We used theMOLCAS package37–39and the atomic natu-
ral orbitals~ANO! 3s2p1d basis set of Widmarket al.24 The
experimental geometry is used for the rest of the molecule
(dC–H51.085 Å,dC–C51.339 Å,HCH5124.8), with ANO
basis sets of type (3s2p1d) for the C and (2s1p) for the H
atoms.24 For distances larger than 2.085 Å the active orbitals
are correctly located on the breaking bond, and a canonical
CAS~2/2! calculation gives a curve that is parallel to the
valence CAS~12/12! result. At shorter distances, the two ac-
tive orbitals becomep and s* in nature, and the energy is
consequently too high. Lower solutions exist that can be
reached by changing the guess orbitals. In particular, there
exists a space (p,p* ) which gives the lowest energy, but
which is not related to the process under consideration. In the
present work, for the sake of simplicity, we consider only
those solutions that can be obtained from the HOMO/LUMO
guess. The usual solution to overcome discontinuities in a
CASSCF calculation is to increase the active space size, so
we tested a CAS~4/4! space. This improves the situation, but
the wave function discontinuity is still present. Moreover, a
larger active space means more determinants, and hence a
higher computational cost. On the contrary, the use of local-
ized orbitals permits a correct correlation of precisely those
orbitals involved in the breaking process. As shown in Fig. 2,
the localized CAS~2/2! energy curve is continuous and par-
allel to the valence CAS~12/12! result.

The discontinuity in the CASSCF results does not disap-
pear at CI level. The CAS1SD calculations show that it is
still present at truncated CI level if delocalized CASSCF
orbitals are used~see Fig. 3!. It is smaller for the
CAS(4/4)1SD than for the CAS(2/2)1SD, but it is not
eliminated. The sizes of the CAS(2/2)1SD and CAS(4/4)
1SD are 637 848 and 496 255 0 determinants, respectively.
One may notice in this particular case that, due to the lack of
control over the nature of the active orbitals, the delocalized
CAS(2/2)1SD converges, at short distances, on a higher

TABLE III. Energy difference between theS1 andS2 excited states of the
BOD molecule calculated using the optimized localized orbitals with the
DDCI algorithm. The CASDDCI result obtained using canonical orbitals is
reported for comparison.

Dim. of the space Energy difference~a.u.!

CAS~DDCI!~deloc.! 13.73106 and 225 ref. 2.3331024

CAS~DDCI!~loc.! 13.73106 and 225 ref. 2.431024

MR~DDCI!~loc.! 9.63106 and 58 ref. 2.3431024

FIG. 2. C–H bond breaking in ethyl-
ene in delocalized and localized de-
scription ~see the text!.
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energy solution, while the CAS(4/4)1SD converges to a
low energy solution~with the p/p* orbitals in the active
space!. The CAS(12/12)1SD is impossible to perform,
since its size is more than 1010. On the other hand, the cal-
culation with local orbitals does not show any discontinuity
even at the CAS(2/2)1s.d. level.

IV. CONCLUSION

The present work proposes a method to obtain a set of
orthogonal localized orbitals within a MRCI calculation. The
orbitals can be, on request, atom-, bond- or fragment-
centered, and this gives a great flexibility to the procedure.
The algorithm does not proceed through an energy minimi-
zation, as CASSCF does. Instead, the orbitals are obtained
through the iterative~partial! diagonalization of the one-
particle density matrix obtained from the CI of the single
excitations acting on the references. In this way, by starting
from a guess of local orbitals, locality is maintained by an-
nihilating, at each iteration, the density matrix off-diagonal
blocks only.

The method provides energies and wave functions that
are extremely close to those obtained from the corresponding
CASSCF calculation having the same active space. More-
over, theexactCASSCF solution is recovered if an internally
contracted CI or perturbative scheme is used. The implemen-
tation of a contracted perturbative algorithm that produces
the exact CASSCF wave function will be presented in a
forthcoming paper.

The present procedure is particularly suitable for the
treatment of quasidegenerate systems. In particular, it works
perfectly well even in those cases where an SCF solution
cannot be found, and where SCF-based localization methods
~e.g., Boys! are therefore of a difficult application. We notice
that the use of localized orbitals in a CASSCF or post-
CASSCF context is important for several reasons.

~i! It gives a fine control on thenatureof the active or-
bitals. In this way, it is possible to include in the ac-
tive space just those orbitals that are strictly required
by the nature of the studied phenomenon. As a conse-
quence, as we have shown in the case of the C–H
bond breaking in ethylene, a dramatic reduction of the
computational effort can be obtained. One should no-
tice that the wave function obtained in such a way for
a given active space is independent~at convergence!
of orbital localization. This means that if a rotation is
performed~within each orbital class! on the localized
orbitals, a set of equivalent orbitals is obtained. These
equivalent orbitals can be delocalized, but they pro-
duce a wave function that is identical to the localized
one ~the two sets of orbitals give the same energy!.

~ii ! It permits a rational reduction of the reference number
with respect to a CAS expansion even in strongly cor-
related systems, such as multiple-bond breaking or
magnetic systems. The benefit of this reduction is es-
pecially important when one treats the dynamical cor-
relation effects through MR1SD calculations, the
size of which is proportional to the number of refer-
ences.

~iii ! It provides orthogonal localized virtual orbitals which
are difficult to obtain in manya posteriorilocalization
procedures.

At the moment, our approach is relatively expensive,
since it implies the transformation of the bielectronic inte-
grals at each iteration. However, we notice that only a subset
of the two-electron integrals needs to be transformed in order
to perform the required single-CI calculation. One could fur-
ther reduce the number of integrals needed by using a
second-order perturbative scheme, involving integrals having
at most one nonactive orbital index. A further efficiency as-
pect is related to the symmetry of the system. The present

FIG. 3. C–H bond breaking in ethyl-
ene in delocalized and localized de-
scription for CAS1SD calculations.
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code does not take advantage of the equivalence between the
local MOs in symmetric systems. One could use the symme-
try properties in the calculation of the integrals as well as in
the CI expansion~by considering only the representative de-
terminant of each class of symmetry!. Work is in progress in
both directions, in order to reduce the cost of the integral-
transformation step, and to take advantage of the symmetry
of the system.

Finally, this work participates in the general renewal of
interest for the localized descriptions, widely motivated by
the production of linear-scaling algorithms. In none of the
presented applications did we use the local character of the
orbitals to neglect small enough integrals. The multireference
approach~with respect to single reference! is more complex,
and it is probably impossible to reach the impressive systems
~thousands of orbitals! the linear scaling calculations deal
with. However, we believe that the production of local orbit-
als in an MR context can represent an important preliminary
step toward the use of linear scaling techniques in MR algo-
rithms, allowing us to study much larger systems.
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