5,353 research outputs found
Relation of lineaments to sulfide deposits: Bald Eagle Mountain, Centre County, Pennsylvania
The author has identified the following significant results. Discrete areas of finely-fractured and brecciated sandstone float are present along the crest of Bald Mountain and are commonly sites of sulfide mineralization, as evidenced by the presence of barite and limonite gossans. The frequency distributions of the brecciated float as the negative binomial distribution supports the interpretation of a separate population of intensely fractured material. Such zones of concentrated breccia float have an average width of one kilometer with a range from 0.4 to 1.6 kilometers and were observed in a quarry face to have subvertical dips. Direct spatial correlation of the Landsat-derived lineaments to the fractured areas on the ridge is low; however, the mineralized and fracture zones are commonly assymetrical to the lineament positions. Such a systematic dislocation might result from an inherent bias in the float population or could be the product of the relative erosional resistance of the silicified material in the mineralized areas in relation to the erosionally weak material at the stream gaps
Algorithmic Verification of Asynchronous Programs
Asynchronous programming is a ubiquitous systems programming idiom to manage
concurrent interactions with the environment. In this style, instead of waiting
for time-consuming operations to complete, the programmer makes a non-blocking
call to the operation and posts a callback task to a task buffer that is
executed later when the time-consuming operation completes. A co-operative
scheduler mediates the interaction by picking and executing callback tasks from
the task buffer to completion (and these callbacks can post further callbacks
to be executed later). Writing correct asynchronous programs is hard because
the use of callbacks, while efficient, obscures program control flow.
We provide a formal model underlying asynchronous programs and study
verification problems for this model. We show that the safety verification
problem for finite-data asynchronous programs is expspace-complete. We show
that liveness verification for finite-data asynchronous programs is decidable
and polynomial-time equivalent to Petri Net reachability. Decidability is not
obvious, since even if the data is finite-state, asynchronous programs
constitute infinite-state transition systems: both the program stack and the
task buffer of pending asynchronous calls can be potentially unbounded.
Our main technical construction is a polynomial-time semantics-preserving
reduction from asynchronous programs to Petri Nets and conversely. The
reduction allows the use of algorithmic techniques on Petri Nets to the
verification of asynchronous programs.
We also study several extensions to the basic models of asynchronous programs
that are inspired by additional capabilities provided by implementations of
asynchronous libraries, and classify the decidability and undecidability of
verification questions on these extensions.Comment: 46 pages, 9 figure
Design Features to Accelerate the Higher-Order Assembly of DNA Origami on Membranes
Nanotechnology often exploits DNA origami nanostructures assembled into even larger superstructures up to micrometer sizes with nanometer shape precision. However, large-scale assembly of such structures is very time-consuming. Here, we investigated the efficiency of superstructure assembly on surfaces using indirect cross-linking through low-complexity connector strands binding staple strand extensions, instead of connector strands binding to scaffold loops. Using single-molecule imaging techniques, including fluorescence microscopy and atomic force microscopy, we show that low sequence complexity connector strands allow formation of DNA origami superstructures on lipid membranes, with an order-of-magnitude enhancement in the assembly speed of superstructures. A number of effects, including suppression of DNA hairpin formation, high local effective binding site concentration, and multivalency are proposed to contribute to the acceleration. Thus, the use of low-complexity sequences for DNA origami higher-order assembly offers a very simple but efficient way of improving throughput in DNA origami design.Published as part of The Journal of Physical Chemistry virtual special issue “W. E. Moerner Festschrift”
The Word Problem for Omega-Terms over the Trotter-Weil Hierarchy
For two given -terms and , the word problem for
-terms over a variety asks whether
in all monoids in . We show that the
word problem for -terms over each level of the Trotter-Weil Hierarchy
is decidable. More precisely, for every fixed variety in the Trotter-Weil
Hierarchy, our approach yields an algorithm in nondeterministic logarithmic
space (NL). In addition, we provide deterministic polynomial time algorithms
which are more efficient than straightforward translations of the
NL-algorithms. As an application of our results, we show that separability by
the so-called corners of the Trotter-Weil Hierarchy is witnessed by
-terms (this property is also known as -reducibility). In
particular, the separation problem for the corners of the Trotter-Weil
Hierarchy is decidable
Recommended from our members
Rhythm in the speech of a person with right hemisphere damage: Applying the pairwise variability index
Although several aspects of prosody have been studied in speakers with right hemisphere damage (RHD), rhythm remains largely uninvestigated. This study compares the rhythm of an Australian English speaker with right hemisphere damage (due to a stroke, but with no concomitant dysarthria) to that of a neurologically unimpaired individual. The speakers' rhythm is compared using the pairwise variability index (PVI) which allows for an acoustic characterization of rhythm by comparing the duration of successive vocalic and intervocalic intervals. A sample of speech from a structured interview between a speech and language therapist and each participant was analysed. Previous research has shown that speakers with RHD may have difficulties with intonation production, and therefore it was hypothesized that there may also be rhythmic disturbance. Results show that the neurologically normal control uses a similar rhythm to that reported for British English (there are no previous studies available for Australian English), whilst the speaker with RHD produces speech with a less strongly stress-timed rhythm. This finding was statistically significant for the intervocalic intervals measured (t(8) = 4.7, p < .01), and suggests that some aspects of prosody may be right lateralized for this speaker. The findings are discussed in relation to previous findings of dysprosody in RHD populations, and in relation to syllable-timed speech of people with other neurological conditions
Feasibility study for a numerical aerodynamic simulation facility. Volume 1
A Numerical Aerodynamic Simulation Facility (NASF) was designed for the simulation of fluid flow around three-dimensional bodies, both in wind tunnel environments and in free space. The application of numerical simulation to this field of endeavor promised to yield economies in aerodynamic and aircraft body designs. A model for a NASF/FMP (Flow Model Processor) ensemble using a possible approach to meeting NASF goals is presented. The computer hardware and software are presented, along with the entire design and performance analysis and evaluation
Non-relativistic effective theory of dark matter direct detection
Dark matter direct detection searches for signals coming from dark matter
scattering against nuclei at a very low recoil energy scale ~ 10 keV. In this
paper, a simple non-relativistic effective theory is constructed to describe
interactions between dark matter and nuclei without referring to any underlying
high energy models. It contains the minimal set of operators that will be
tested by direct detection. The effective theory approach highlights the set of
distinguishable recoil spectra that could arise from different theoretical
models. If dark matter is discovered in the near future in direct detection
experiments, a measurement of the shape of the recoil spectrum will provide
valuable information on the underlying dynamics. We bound the coefficients of
the operators in our non-relativistic effective theory by the null results of
current dark matter direct detection experiments. We also discuss the mapping
between the non-relativistic effective theory and field theory models or
operators, including aspects of the matching of quark and gluon operators to
nuclear form factors.Comment: 35 pages, 3 figures, Appendix C.3 revised, acknowledgments and
references adde
- …