11,074 research outputs found

    Single-dish high sensitivity determination of solar limb emission at 22 and 44 GHz

    Get PDF
    A large number of solar maps were obtained with the use of Itapetinga 45 ft antenna at 22 GHz and 44 GHz. A statistical study of these maps, reduced using original techniques, permitted the establishment of the solar radius with great accuracy at the two frequencies. It is found that 22 GHz and 44 BHz radiation originates at 16,00 km and 12,500 km above the photosphere, respectively. Excess emission due to active regions was clearly identified at lower solar latitudes above and below the equator, extending up to 26,000 km and 16,500 km above the photosphere, at 22 GHs and 44 GHz, respectively

    Effects of energy dependence in the quasiparticle density of states on far-infrared absorption in the pseudogap state

    Full text link
    We derive a relationship between the optical conductivity scattering rate 1/\tau(\omega) and the electron-boson spectral function \alpha^2F(\Omega) valid for the case when the electronic density of states, N(\epsilon), cannot be taken as constant in the vicinity of the Fermi level. This relationship turned out to be useful for analyzing the experimental data in the pseudogap state of cuprate superconductors.Comment: 8 pages, RevTeX4, 1 EPS figure; final version published in PR

    A burst with double radio spectrum observed up to 212 GHz

    Get PDF
    We study a solar flare that occurred on September 10, 2002, in active region NOAA 10105 starting around 14:52 UT and lasting approximately 5 minutes in the radio range. The event was classified as M2.9 in X-rays and 1N in H\alpha. Solar Submillimeter Telescope observations, in addition to microwave data give us a good spectral coverage between 1.415 and 212 GHz. We combine these data with ultraviolet images, hard and soft X-rays observations and full-disk magnetograms. Images obtained from Ramaty High Energy Solar Spectroscopic Imaging data are used to identify the locations of X-ray sources at different energies and to determine the X-ray spectrum, while ultra violet images allow us to characterize the coronal flaring region. The magnetic field evolution of the active region is analyzed using Michelson Doppler Imager magnetograms. The burst is detected at all available radio-frequencies. X-ray images (between 12 keV and 300 keV) reveal two compact sources and 212 GHz data, used to estimate the radio source position, show a single compact source displaced by 25" from one of the hard X-ray footpoints. We model the radio spectra using two homogeneous sources, and combine this analysis with that of hard X-rays to understand the dynamics of the particles. Relativistic particles, observed at radio wavelengths above 50 GHz, have an electron index evolving with the typical soft-hard-soft behaviour.Comment: Submitted to Solar Physics, 20 pages, 8 fugure

    Statistically derived contributions of diverse human influences to twentieth-century temperature changes

    Full text link
    The warming of the climate system is unequivocal as evidenced by an increase in global temperatures by 0.8 °C over the past century. However, the attribution of the observed warming to human activities remains less clear, particularly because of the apparent slow-down in warming since the late 1990s. Here we analyse radiative forcing and temperature time series with state-of-the-art statistical methods to address this question without climate model simulations. We show that long-term trends in total radiative forcing and temperatures have largely been determined by atmospheric greenhouse gas concentrations, and modulated by other radiative factors. We identify a pronounced increase in the growth rates of both temperatures and radiative forcing around 1960, which marks the onset of sustained global warming. Our analyses also reveal a contribution of human interventions to two periods when global warming slowed down. Our statistical analysis suggests that the reduction in the emissions of ozone-depleting substances under the Montreal Protocol, as well as a reduction in methane emissions, contributed to the lower rate of warming since the 1990s. Furthermore, we identify a contribution from the two world wars and the Great Depression to the documented cooling in the mid-twentieth century, through lower carbon dioxide emissions. We conclude that reductions in greenhouse gas emissions are effective in slowing the rate of warming in the short term.F.E. acknowledges financial support from the Consejo Nacional de Ciencia y Tecnologia (http://www.conacyt.gob.mx) under grant CONACYT-310026, as well as from PASPA DGAPA of the Universidad Nacional Autonoma de Mexico. (CONACYT-310026 - Consejo Nacional de Ciencia y Tecnologia; PASPA DGAPA of the Universidad Nacional Autonoma de Mexico

    Short-lived solar burst spectral component at f approximately 100 GHz

    Get PDF
    A new kind of burst emission component was discovered, exhibiting fast and distinct pulses (approx. 60 ms durations), with spectral peak emission at f approx. 100 GHz, and onset time coincident to hard X-rays to within approx. 128 ms. These features pose serious constraints for the interpretation using current models. One suggestion assumes the f approx. 100 GHz pulses emission by synchrotron mechanism of electrons accelerated to ultrarelativistic energies. The hard X-rays originate from inverse Compton scattering of the electrons on the synchrotron photons. Several crucial observational tests are needed for the understanding of the phenomenon, requiring high sensitivity and high time resolution (approx. 1 ms) simultaneous to high spatial resolution (0.1 arcsec) at f approx. 110 GHz and hard X-rays

    The possible importance of synchrotron/inverse Compton losses to explain fast mm-wave and hard X-ray emission of a solar event

    Get PDF
    The solar burst of 21 May 1984, presented a number of unique features. The time profile consisted of seven major structures (seconds), with a turnover frequency of greater than or approximately 90 GHz, well correlated in time to hard X-ray emission. Each structure consisted of multiple fast pulses (0.1 seconds), which were analyzed in detail. A proportionality between the repetition rate of the pulses and the burst fluxes at 90 GHz and greater than or approximately 100 keV hard X-rays, and an inverse proportionality between repetition rates and hard X-ray power law indices were found. A synchrotron/inverse Compton model was applied to explain the emission of the fast burst structures, which appear to be possible for the first three or four structures

    Comparison of averages of flows and maps

    Get PDF
    It is shown that in transient chaos there is no direct relation between averages in a continuos time dynamical system (flow) and averages using the analogous discrete system defined by the corresponding Poincare map. In contrast to permanent chaos, results obtained from the Poincare map can even be qualitatively incorrect. The reason is that the return time between intersections on the Poincare surface becomes relevant. However, after introducing a true-time Poincare map, quantities known from the usual Poincare map, such as conditionally invariant measure and natural measure, can be generalized to this case. Escape rates and averages, e.g. Liapunov exponents and drifts can be determined correctly using these novel measures. Significant differences become evident when we compare with results obtained from the usual Poincare map.Comment: 4 pages in Revtex with 2 included postscript figures, submitted to Phys. Rev.

    Optical photometry and spectroscopy of the 1987A-like supernova 2009mw

    Get PDF
    We present optical photometric and spectroscopic observations of the 1987A-like supernova (SN) 2009mw. Our BVRIBVRI and g′r′i′z′g'r'i'z' photometry covers 167 days of evolution, including the rise to the light curve maximum, and ends just after the beginning of the linear tail phase. We compare the observational properties of SN 2009mw with those of other SNe belonging to the same subgroup, and find that it shows similarities to several objects. The physical parameters of the progenitor and the SN are estimated via hydrodynamical modelling, yielding an explosion energy of 11 foe, a pre-SN mass of 19 M⊙19\,{\rm M_{\odot}}, a progenitor radius as 30 R⊙30\,{\rm R_{\odot}} and a 56^{56}Ni mass as 0.062 M⊙0.062\,{\rm M_{\odot}}. These values indicate that the progenitor of SN 2009mw was a blue supergiant star, similar to the progenitor of SN 1987A. We examine the host environment of SN 2009mw and find that it emerged from a population with slightly sub-solar metallicty.Comment: 11 pages, 12 figures, accepted for publication in MNRA

    Multiple energetic injections in a strong spike-like solar burst

    Get PDF
    An intense and fast spike-like solar burst was built up of short time scale structures superimposed on an underlying gradual emission, the time evolution of which shows remarkable proportionality between hard X-ray and microwave fluxes. The finer time structure were best defined at mm-microwaves. At the peak of the event, the finer structures repeat every 30x60ms. The more slowly varying component with a time scale of about 1 second was identified in microwave hard X-rays throughout the burst duration. It is suggested that X-ray fluxes might also be proportional to the repetition rate of basic units of energy injection (quasi-quantized). The relevant parameters of one primary energy release site are estimated both in the case where hard X-rays are produced primarily by thick-target bremsstrahlung, and when they are purely thermal. The relation of this figure to global energy considerations is discussed
    • …
    corecore