59 research outputs found
CD133-targeted paclitaxel delivery inhibits local tumor recurrence in a mouse model of breast cancer
Passport, a native Tc1 transposon from flatfish, is functionally active in vertebrate cells
The Tc1/mariner family of DNA transposons is widespread across fungal, plant and animal kingdoms, and thought to contribute to the evolution of their host genomes. To date, an active Tc1 transposon has not been identified within the native genome of a vertebrate. We demonstrate that Passport, a native transposon isolated from a fish (Pleuronectes platessa), is active in a variety of vertebrate cells. In transposition assays, we found that the Passport transposon system improved stable cellular transgenesis by 40-fold, has an apparent preference for insertion into genes, and is subject to overproduction inhibition like other Tc1 elements. Passport represents the first vertebrate Tc1 element described as both natively intact and functionally active, and given its restricted phylogenetic distribution, may be contemporaneously active. The Passport transposon system thus complements the available genetic tools for the manipulation of vertebrate genomes, and may provide a unique system for studying the infiltration of vertebrate genomes by Tc1 elements
Harnessing a High Cargo-Capacity Transposon for Genetic Applications in Vertebrates
Viruses and transposons are efficient tools for permanently delivering foreign DNA into vertebrate genomes but exhibit diminished activity when cargo exceeds 8 kilobases (kb). This size restriction limits their molecular genetic and biotechnological utility, such as numerous therapeutically relevant genes that exceed 8 kb in size. Furthermore, a greater payload capacity vector would accommodate more sophisticated cis cargo designs to modulate the expression and mutagenic risk of these molecular therapeutics. We show that the Tol2 transposon can efficiently integrate DNA sequences larger than 10 kb into human cells. We characterize minimal sequences necessary for transposition (miniTol2) in vivo in zebrafish and in vitro in human cells. Both the 8.5-kb Tol2 transposon and 5.8-kb miniTol2 engineered elements readily function to revert the deficiency of fumarylacetoacetate hydrolase in an animal model of hereditary tyrosinemia type 1. Together, Tol2 provides a novel nonviral vector for the delivery of large genetic payloads for gene therapy and other transgenic applications
Macrophages Homing to Metastatic Lymph Nodes Can Be Monitored with Ultrasensitive Ferromagnetic Iron-Oxide Nanocubes and a 1.5T Clinical MR Scanner
Background: Due to the ability of macrophages to specifically home to tumors, their potential use as a delivery vehicle for cancer therapeutics has been suggested. Tracking the delivery and engraftment of macrophages into human tumors with a 1.5T clinical MR scanner requires the development of sensitive contrast agents for cell labeling. Therefore, this study aimed to determine whether intravenously injected macrophages could target a primary tumor as well as metastatic LNs, and whether these cells could be detected in vivo by MRI. Methodology: Peritoneal macrophages were obtained from BALB/c nude mice. The viability, phagocytotic capacity and migratory activity of the macrophages were assessed. MR imaging was performed using a clinical 1.5 T MR scanner and we estimated the T2 * of the labeled macrophages. Metastatic lymph nodes were produced in BALB/c nude mice. We administrated 2610 6 macrophages labeled with 50 mg Fe/mL FIONs intravenously into the mice. In the 3D T2 * GRE MR images obtained one day after the injection of the labeled macrophages or FION solution, the percentages of pixels in the tumors or LNs below the minimum normalized SI (signal intensity) threshold were summated and reported as the black pixel count (%) for the FION hypointensity. Tumors in the main tumor model as well as the brachial, axillary and inguinal lymph nodes in the metastatic LN models were removed and stained. For all statistical analyses, single-group data were assessed using t test or the Mann-Whitney test. Repeated measurements analysis of variance (ANOVA) with Tukey–Krame
Human Flt3L Generates Dendritic Cells from Canine Peripheral Blood Precursors: Implications for a Dog Glioma Clinical Trial
Glioblastoma multiforme (GBM) is the most common primary brain tumor in adults and carries a dismal prognosis. We have developed a conditional cytotoxic/immunotherapeutic approach using adenoviral vectors (Ads) encoding the immunostimulatory cytokine, human soluble fms-like tyrosine kinase 3 ligand (hsFlt3L) and the conditional cytotoxic molecule, i.e., Herpes Simplex Type 1- thymide kinase (TK). This therapy triggers an anti-tumor immune response that leads to tumor regression and anti-tumor immunological memory in intracranial rodent cancer models. We aim to test the efficacy of this immunotherapy in dogs bearing spontaneous GBM. In view of the controversy regarding the effect of human cytokines on dog immune cells, and considering that the efficacy of this treatment depends on hsFlt3L-stimulated dendritic cells (DCs), in the present work we tested the ability of Ad-encoded hsFlt3L to generate DCs from dog peripheral blood and compared its effects with canine IL-4 and GM-CSF.Our results demonstrate that hsFlT3L expressed form an Ad vector, generated DCs from peripheral blood cultures with very similar morphological and phenotypic characteristics to canine IL-4 and GM-CSF-cultured DCs. These include phagocytic activity and expression of CD11c, MHCII, CD80 and CD14. Maturation of DCs cultured under both conditions resulted in increased secretion of IL-6, TNF-alpha and IFN-gamma. Importantly, hsFlt3L-derived antigen presenting cells showed allostimulatory potential highlighting their ability to present antigen to T cells and elicit their proliferation.These results demonstrate that hsFlt3L induces the proliferation of canine DCs and support its use in upcoming clinical trials for canine GBM. Our data further support the translation of hsFlt3L to be used for dendritic cells' vaccination and gene therapeutic approaches from rodent models to canine patients and its future implementation in human clinical trials
Systemic inhibition of tumour angiogenesis by endothelial cell-based gene therapy
Angiogenesis and post-natal vasculogenesis are two processes involved in the formation of new vessels, and both are essential for tumour growth and metastases. We isolated endothelial cells from human blood mononuclear cells by selective culture. These blood outgrowth cells expressed endothelial cell markers and responded correctly to functional assays. To evaluate the potential of blood outgrowth endothelial cells (BOECs) to construct functional vessels in vivo, NOD-SCID mice were implanted with Lewis lung carcinoma cells subcutaneously (s.c.). Blood outgrowth endothelial cells were then injected through the tail vein. Initial distribution of these cells occurred throughout the lung, liver, spleen, and tumour vessels, but they were only found in the spleen, liver, and tumour tissue 48 h after injection. By day 24, they were mainly found in the tumour vasculature. Tumour vessel counts were also increased in mice receiving BOEC injections as compared to saline injections. We engineered BOECs to deliver an angiogenic inhibitor directly to tumour endothelium by transducing them with the gene for human endostatin. These cells maintained an endothelial phenotype and decreased tumour vascularisation and tumour volume in mice. We conclude that BOECs have the potential for tumour-specific delivery of cancer gene therapy
Transposable elements as plasmid-based vectors for long-term gene transfer into tumors
A primary limitation to using nonviral vectors for cancer gene therapy is transient expression of the therapeutic gene. Even when the ultimate goal is tumor cell death, a minimum threshold of gene expression is required to kill tumor cells by direct or indirect mechanisms. It has been shown that transposable elements can significantly enhance the duration of gene expression when plasmid DNA vectors are used to transfect tumor or tumor-associated stroma. Much like a retrovirus, transposon-based plasmid vectors achieve integration into the genome, and thereby sustain transgene expression, which is especially important in actively mitotic cells such as tumor cells. Herein we briefly discuss the different transposons available for gene therapy applications, and provide a detailed protocol for nonviral transposon-based gene delivery to solid experimental tumors in mice
- …