27 research outputs found

    Kinetics of stabilised Criegee intermediates derived from alkene ozonolysis: reactions with SO2, H2O and decomposition under boundary layer conditions

    Get PDF
    The removal of SO2in the presence ofcis-but-2-ene and ozone exhibits a strong dependence on the water vapour concentration.</p

    Rapid growth of HFC-227ea (1,1,1,2,3,3,3-Heptafluoropropane) in the atmosphere

    Get PDF
    We report the first measurements of 1,1,1,2,3,3,3-heptafluoropropane (HFC-227ea), a substitute for ozone depleting compounds, in remote regions of the atmosphere and present evidence for its rapid growth. Observed mixing ratios ranged from below 0.01 ppt in deep firn air to 0.59 ppt in the northern mid-latitudinal upper troposphere. Firn air samples collected in Greenland were used to reconstruct a history of atmospheric abundance. Year-on-year increases were deduced, with acceleration in the growth rate from 0.026 ppt per year in 2000 to 0.057 ppt per year in 2007. Upper tropospheric air samples provide evidence for a continuing growth until late 2009. Fur- thermore we calculated a stratospheric lifetime of 370 years from measurements of air samples collected on board high altitude aircraft and balloons. Emission estimates were determined from the reconstructed atmospheric trend and suggest that current "bottom-up" estimates of global emissions for 2005 are too high by more than a factor of three

    Estimation of rate coefficients for the reactions of O3 with unsaturated organic compounds for use in automated mechanism construction

    Get PDF
    Reaction with ozone (O3) is an important removal process for unsaturated volatile organic compounds (VOCs) in the atmosphere. Rate coefficients for reactions of 3with VOCs are therefore essential parameters for chemical mechanisms used in chemistry transport models. Updated and extended structure-activity relationship (SAR) methods are presented for the reactions of O3 with mono- and polyunsaturated organic compounds. The methods are optimized using a preferred set of data including reactions of O3 with 221 unsaturated compounds. For conjugated dialkene structures, site-specific rates are defined, and for isolated polyalkenes rates are defined for each double bond to determine the branching ratios for primary ozonide formation. The information can therefore guide the representation of the O3 reactions in the next generation of explicit detailed chemical mechanisms

    AtChem (version 1), an open-source box model for the Master Chemical Mechanism

    Get PDF
    AtChem is an open-source zero-dimensional box model for atmospheric chemistry. Any general set of chemical reactions can be used with AtChem, but the model was designed specifically for use with the Master Chemical Mechanism (MCM, http://mcm.york.ac.uk/, last access: 16 January 2020). AtChem was initially developed within the EUROCHAMP project as a web application (AtChem-online, https://atchem.leeds.ac.uk/webapp/, last access: 16 January 2020) for modelling environmental chamber experiments; it was recently upgraded and further developed into a stand-alone offline version (AtChem2), which allows the user to run complex and long simulations, such as those needed for modelling of intensive field campaigns, as well as to perform batch model runs for sensitivity studies. AtChem is installed, set up and configured using semi-automated scripts and simple text configuration files, making it easy to use even for inexperienced users. A key feature of AtChem is that it can easily be constrained to observational data which may have different timescales, thus retaining all the information contained in the observations. Implementation of a continuous integration workflow, coupled with a comprehensive suite of tests and version control software, makes the AtChem code base robust, reliable and traceable. The AtChem2 code and documentation are available at https://github.com/AtChem/ (last access: 16 January 2020) under the open-source MIT License

    Newly detected ozone-depleting substances in the atmosphere

    Get PDF
    Ozone-depleting substances emitted through human activitiescause large-scale damage to the stratospheric ozone layer, and influence global climate. Consequently, the production of many of these substances has been phased out; prominent examples are the chlorofluorocarbons (CFCs), and their intermediate replacements, the hydrochlorofluorocarbons (HCFCs). So far, seven types of CFC and six types of HCFC have been shown to contribute to stratospheric ozone destruction 1,2. Here, we report the detection and quantification of a further three CFCs and one HCFC. We analysed the composition of unpolluted air samples collected in Tasmania between 1978 and 2012, and extracted from deep firn snow in Greenland in 2008, using gas chromatography with mass spectrometric detection. Using the firn data, we show that all four compounds started to emerge in the atmosphere in the 1960s. Two of the compounds continue to accumulate in the atmosphere. We estimate that, before 2012, emissions of all four compounds combined amounted to more than 74,000 tonnes. This is small compared with peak emissions of other CFCs in the 1980s of more than one million tonnes each year 2. However, the reported emissions are clearly contrary to the intentions behind the Montreal Protocol, and raise questions about the sources of these gases

    Improving together: better science writing through peer learning

    Get PDF
    Science, in our case the climate and geosciences, is increasingly interdisciplinary. Scientists must therefore communicate across disciplinary boundaries. For this communication to be successful, scientists must write clearly and concisely, yet the historically poor standard of scientific writing does not seem to be improving. Scientific writing must improve, and the key to long-term improvement lies with the early-career scientist (ECS). Many interventions exist for an ECS to improve their writing, like style guides and courses. However, momentum is often difficult to maintain after these interventions are completed. Continuity is key to improving writing. This paper introduces the ClimateSnack project, which aims to motivate ECSs to develop and continue to improve their writing and communication skills. The project adopts a peer-learning framework where ECSs voluntarily form writing groups at different institutes around the world. The group members learn, discuss, and improve their writing skills together. Several ClimateSnack writing groups have formed. This paper examines why some of the groups have flourished and others have dissolved. We identify the challenges involved in making a writing group successful and effective, notably the leadership of self-organized groups, and both individual and institutional time management. Within some of the groups, peer learning clearly offers a powerful tool to improve writing as well as bringing other benefits, including improved general communication skills and increased confidence

    Low-NO atmospheric oxidation pathways in a polluted megacity

    Get PDF
    The impact of emissions of volatile organic compounds (VOCs) to the atmosphere on the production of secondary pollutants, such as ozone and secondary organic aerosol (SOA), is mediated by the concentration of nitric oxide (NO). Polluted urban atmospheres are typically considered to be “high-NO” environments, while remote regions such as rainforests, with minimal anthropogenic influences, are considered to be “low NO”. However, our observations from central Beijing show that this simplistic separation of regimes is flawed. Despite being in one of the largest megacities in the world, we observe formation of gas- and aerosol-phase oxidation products usually associated with low-NO “rainforest-like” atmospheric oxidation pathways during the afternoon, caused by extreme suppression of NO concentrations at this time. Box model calculations suggest that during the morning high-NO chemistry predominates (95 %) but in the afternoon low-NO chemistry plays a greater role (30 %). Current emissions inventories are applied in the GEOS-Chem model which shows that such models, when run at the regional scale, fail to accurately predict such an extreme diurnal cycle in the NO concentration. With increasing global emphasis on reducing air pollution, it is crucial for the modelling tools used to develop urban air quality policy to be able to accurately represent such extreme diurnal variations in NO to accurately predict the formation of pollutants such as SOA and ozone

    Efficiency and safety of varying the frequency of whole blood donation (INTERVAL): a randomised trial of 45 000 donors

    Get PDF
    Background: Limits on the frequency of whole blood donation exist primarily to safeguard donor health. However, there is substantial variation across blood services in the maximum frequency of donations allowed. We compared standard practice in the UK with shorter inter-donation intervals used in other countries. Methods: In this parallel group, pragmatic, randomised trial, we recruited whole blood donors aged 18 years or older from 25 centres across England, UK. By use of a computer-based algorithm, men were randomly assigned (1:1:1) to 12-week (standard) versus 10-week versus 8-week inter-donation intervals, and women were randomly assigned (1:1:1) to 16-week (standard) versus 14-week versus 12-week intervals. Participants were not masked to their allocated intervention group. The primary outcome was the number of donations over 2 years. Secondary outcomes related to safety were quality of life, symptoms potentially related to donation, physical activity, cognitive function, haemoglobin and ferritin concentrations, and deferrals because of low haemoglobin. This trial is registered with ISRCTN, number ISRCTN24760606, and is ongoing but no longer recruiting participants. Findings: 45 263 whole blood donors (22 466 men, 22 797 women) were recruited between June 11, 2012, and June 15, 2014. Data were analysed for 45 042 (99·5%) participants. Men were randomly assigned to the 12-week (n=7452) versus 10-week (n=7449) versus 8-week (n=7456) groups; and women to the 16-week (n=7550) versus 14-week (n=7567) versus 12-week (n=7568) groups. In men, compared with the 12-week group, the mean amount of blood collected per donor over 2 years increased by 1·69 units (95% CI 1·59–1·80; approximately 795 mL) in the 8-week group and by 0·79 units (0·69–0·88; approximately 370 mL) in the 10-week group (p&lt;0·0001 for both). In women, compared with the 16-week group, it increased by 0·84 units (95% CI 0·76–0·91; approximately 395 mL) in the 12-week group and by 0·46 units (0·39–0·53; approximately 215 mL) in the 14-week group (p&lt;0·0001 for both). No significant differences were observed in quality of life, physical activity, or cognitive function across randomised groups. However, more frequent donation resulted in more donation-related symptoms (eg, tiredness, breathlessness, feeling faint, dizziness, and restless legs, especially among men [for all listed symptoms]), lower mean haemoglobin and ferritin concentrations, and more deferrals for low haemoglobin (p&lt;0·0001 for each) than those observed in the standard frequency groups. Interpretation: Over 2 years, more frequent donation than is standard practice in the UK collected substantially more blood without having a major effect on donors' quality of life, physical activity, or cognitive function, but resulted in more donation-related symptoms, deferrals, and iron deficiency. Funding: NHS Blood and Transplant, National Institute for Health Research, UK Medical Research Council, and British Heart Foundation

    Longer-term efficiency and safety of increasing the frequency of whole blood donation (INTERVAL): extension study of a randomised trial of 20 757 blood donors

    Get PDF
    Background: The INTERVAL trial showed that, over a 2-year period, inter-donation intervals for whole blood donation can be safely reduced to meet blood shortages. We extended the INTERVAL trial for a further 2 years to evaluate the longer-term risks and benefits of varying inter-donation intervals, and to compare routine versus more intensive reminders to help donors keep appointments. Methods: The INTERVAL trial was a parallel group, pragmatic, randomised trial that recruited blood donors aged 18 years or older from 25 static donor centres of NHS Blood and Transplant across England, UK. Here we report on the prespecified analyses after 4 years of follow-up. Participants were whole blood donors who agreed to continue trial participation on their originally allocated inter-donation intervals (men: 12, 10, and 8 weeks; women: 16, 14, and 12 weeks). They were further block-randomised (1:1) to routine versus more intensive reminders using computer-generated random sequences. The prespecified primary outcome was units of blood collected per year analysed in the intention-to-treat population. Secondary outcomes related to safety were quality of life, self-reported symptoms potentially related to donation, haemoglobin and ferritin concentrations, and deferrals because of low haemoglobin and other factors. This trial is registered with ISRCTN, number ISRCTN24760606, and has completed. Findings: Between Oct 19, 2014, and May 3, 2016, 20 757 of the 38 035 invited blood donors (10 843 [58%] men, 9914 [51%] women) participated in the extension study. 10 378 (50%) were randomly assigned to routine reminders and 10 379 (50%) were randomly assigned to more intensive reminders. Median follow-up was 1·1 years (IQR 0·7–1·3). Compared with routine reminders, more intensive reminders increased blood collection by a mean of 0·11 units per year (95% CI 0·04–0·17; p=0·0003) in men and 0·06 units per year (0·01–0·11; p=0·0094) in women. During the extension study, each week shorter inter-donation interval increased blood collection by a mean of 0·23 units per year (0·21–0·25) in men and 0·14 units per year (0·12–0·15) in women (both p&lt;0·0001). More frequent donation resulted in more deferrals for low haemoglobin (odds ratio per week shorter inter-donation interval 1·19 [95% CI 1·15–1·22] in men and 1·10 [1·06–1·14] in women), and lower mean haemoglobin (difference per week shorter inter-donation interval −0·84 g/L [95% CI −0·99 to −0·70] in men and −0·45 g/L [–0·59 to −0·31] in women) and ferritin concentrations (percentage difference per week shorter inter-donation interval −6·5% [95% CI −7·6 to −5·5] in men and −5·3% [–6·5 to −4·2] in women; all p&lt;0·0001). No differences were observed in quality of life, serious adverse events, or self-reported symptoms (p&gt;0.0001 for tests of linear trend by inter-donation intervals) other than a higher reported frequency of doctor-diagnosed low iron concentrations and prescription of iron supplements in men (p&lt;0·0001). Interpretation: During a period of up to 4 years, shorter inter-donation intervals and more intensive reminders resulted in more blood being collected without a detectable effect on donors' mental and physical wellbeing. However, donors had decreased haemoglobin concentrations and more self-reported symptoms compared with the initial 2 years of the trial. Our findings suggest that blood collection services could safely use shorter donation intervals and more intensive reminders to meet shortages, for donors who maintain adequate haemoglobin concentrations and iron stores. Funding: NHS Blood and Transplant, UK National Institute for Health Research, UK Medical Research Council, and British Heart Foundation
    corecore