1,040 research outputs found

    Magnetic dipole moments in single and coupled split-ring resonators

    Full text link
    We examine the role of magnetic dipoles in single and coupled pairs of metallic split-ring resonators by numerically computing their magnitude and examining their relative contributions to the scattering cross section. We demonstrate that magnetic dipoles can strongly influence the scattering cross section along particular directions. It is also found that the magnetic dipole parallel to the incident magnetic field and/or high-order multipoles may play a significant role in the linear response of coupled split-ring resonators.Comment: 7 pages, 3 figures, 1 tabl

    The generalized non-conservative model of a 1-planet system - revisited

    Get PDF
    We study the long-term dynamics of a planetary system composed of a star and a planet. Both bodies are considered as extended, non-spherical, rotating objects. There are no assumptions made on the relative angles between the orbital angular momentum and the spin vectors of the bodies. Thus, we analyze full, spatial model of the planetary system. Both objects are assumed to be deformed due to their own rotations, as well as due to the mutual tidal interactions. The general relativity corrections are considered in terms of the post-Newtonian approximation. Besides the conservative contributions to the perturbing forces, there are also taken into account non-conservative effects, i.e., the dissipation of the mechanical energy. This dissipation is a result of the tidal perturbation on the velocity field in the internal zones with non-zero turbulent viscosity (convective zones). Our main goal is to derive the equations of the orbital motion as well as the equations governing time-evolution of the spin vectors (angular velocities). We derive the Lagrangian equations of the second kind for systems which do not conserve the mechanical energy. Next, the equations of motion are averaged out over all fast angles with respect to time-scales characteristic for conservative perturbations. The final equations of motion are then used to study the dynamics of the non-conservative model over time scales of the order of the age of the star. We analyze the final state of the system as a function of the initial conditions. Equilibria states of the averaged system are finally discussed.Comment: 37 pages, 13 figures, accepted to Celestial Mechanics and Dynamical Astronom

    Quantitative phosphoproteomics to unravel the cellular response to chemical stressors with different modes of action

    Get PDF
    Damage to cellular macromolecules and organelles by chemical exposure evokes activation of various stress response pathways. To what extent different chemical stressors activate common and stressor-specific pathways is largely unknown. Here, we used quantitative phosphoproteomics to compare the signaling events induced by four stressors with different modes of action: the DNA damaging agent: cisplatin (CDDP), the topoisomerase II inhibitor: etoposide (ETO), the pro-oxidant: diethyl maleate (DEM) and the immunosuppressant: cyclosporine A (CsA) administered at an equitoxic dose to mouse embryonic stem cells. We observed major differences between the stressors in the number and identity of responsive phosphosites and the amplitude of phosphorylation. Kinase motif and pathway analyses indicated that the DNA damage response (DDR) activation by CDDP occurs predominantly through the replication-stress-related Atr kinase, whereas ETO triggers the DDR through Atr as well as the DNA double-strand-break-associated Atm kinase. CsA shares with ETO activation of CK2 kinase. Congruent with their known modes of action, CsA-mediated signaling is related to down-regulation of pathways that control hematopoietic differentiation and immunity, whereas oxidative stress is the most prominent initiator of DEM-modulated stress signaling. This study shows that even at equitoxic doses, different stressors induce distinctive and complex phosphorylation signaling cascades.Toxicolog

    Entropy and scintillation analysis of acoustical beam propagation through ocean internal waves

    Get PDF
    Author Posting. © Acoustical Society of America, 2005. This article is posted here by permission of Acoustical Society of America for personal use, not for redistribution. The definitive version was published in Journal of the Acoustical Society of America 117 (2005): 1611-1623, doi:10.1121/1.1854571.Parabolic equation numerical simulations of waveguide acoustical beam propagation in an ocean of Garrett–Munk internal waves are used to examine the range evolution of beam properties such as beamwidth (both spectral and spatial), Shannon entropy, and scintillation index, as a function of beam angle. Simulations are carried out at 250- and 125-Hz acoustic frequencies. The ray trajectories associated with these beams are predominantly chaotic or exponentially sensitive to initial conditions and/or medium perturbations. At long range near saturation, the finite-frequency beams show a constant rate of change of Shannon entropy with range, independent of acoustic frequency. This full-wave rate of entropy is of the same order of magnitude as the average rate of entropy for the ray trajectories associated with this beam. Finite-range Lyapunov exponents provide the estimates of ray entropy rate or Kolmogorov–Siani entropy. The correspondence between full-wave and ray entropies suggests a full-wave manifestation of ray chaos, but only once statistical saturation is obtained. In spite of this correspondence, the simulated acoustical beams expand diffusively not exponentially (or explosively)

    High-Quality draft genome sequence of the Lotus spp. microsymbiont Mesorhizobium loti strain CJ3Sym

    Get PDF
    Mesorhizobium loti strain CJ3Sym was isolated in 1998 following transfer of the integrative and conjugative element ICEMlSymR7A, also known as the R7A symbiosis island, in a laboratory mating from the donor M. loti strain R7A to a nonsymbiotic recipient Mesorhizobium strain CJ3. Strain CJ3 was originally isolated from a field site in the Rocklands range in New Zealand in 1994. CJ3Sym is an aerobic, Gram-negative, non-spore-forming rod. This report reveals the genome of M. loti strain CJ3Sym currently comprises 70 scaffolds totaling 7,563,725 bp. The high-quality draft genome is arranged in 70 scaffolds of 71 contigs, contains 7,331 protein-coding genes and 70 RNA-only encoding genes, and is part of the GEBA-RNB project proposal

    Integrated cross-domain object storage in working memory: Evidence from a verbal-spatial memory task

    Get PDF
    Working-memory theories often include domain-specific verbal and visual stores (e.g., the phonological and visuospatial buffers of Baddeley, 1986), and some also posit more general stores thought to be capable of holding verbal or visuospatial materials (Baddeley, 2000; Cowan, 2005). However, it is currently unclear which type of store is primarily responsible for maintaining objects that include components from multiple domains. In these studies, a spatial array of letters was followed by a single probe identical to an item in the array or differing systematically in spatial location, letter identity, or their combination. Concurrent verbal rehearsal suppression impaired memory in each of these trial types in a task that required participants to remember verbal-spatial binding, but did not impair memory for spatial locations if the task did not require verbal-spatial binding for a correct response. Thus, spatial information might be stored differently when it must be bound to verbal information. This suggests that a cross-domain store such as the episodic buffer of Baddeley (2000) or the focus of attention of Cowan (2001) might be used for integrated object storage, rather than the maintenance of associations between features stored in separate domain-specific buffers

    The Localization Transition of the Two-Dimensional Lorentz Model

    Full text link
    We investigate the dynamics of a single tracer particle performing Brownian motion in a two-dimensional course of randomly distributed hard obstacles. At a certain critical obstacle density, the motion of the tracer becomes anomalous over many decades in time, which is rationalized in terms of an underlying percolation transition of the void space. In the vicinity of this critical density the dynamics follows the anomalous one up to a crossover time scale where the motion becomes either diffusive or localized. We analyze the scaling behavior of the time-dependent diffusion coefficient D(t) including corrections to scaling. Away from the critical density, D(t) exhibits universal hydrodynamic long-time tails both in the diffusive as well as in the localized phase.Comment: 13 pages, 7 figures

    LOFAR tied-array imaging and spectroscopy of solar S bursts

    Get PDF
    Context. The Sun is an active source of radio emission that is often associated with energetic phenomena ranging from nanoflares to coronal mass ejections (CMEs). At low radio frequencies (<100 MHz), numerous millisecond duration radio bursts have been reported, such as radio spikes or solar S bursts (where S stands for short). To date, these have neither been studied extensively nor imaged because of the instrumental limitations of previous radio telescopes. Aims. Here, LOw Frequency ARray (LOFAR) observations were used to study the spectral and spatial characteristics of a multitude of S bursts, as well as their origin and possible emission mechanisms. Methods. We used 170 simultaneous tied-array beams for spectroscopy and imaging of S bursts. Since S bursts have short timescales and fine frequency structures, high cadence (~50 ms) tied-array images were used instead of standard interferometric imaging, that is currently limited to one image per second. Results. On 9 July 2013, over 3000 S bursts were observed over a time period of ~8 h. S bursts were found to appear as groups of short-lived (<1 s) and narrow-bandwidth (~2.5 MHz) features, the majority drifting at ~3.5 MHz s-1 and a wide range of circular polarisation degrees (2−8 times more polarised than the accompanying Type III bursts). Extrapolation of the photospheric magnetic field using the potential field source surface (PFSS) model suggests that S bursts are associated with a trans-equatorial loop system that connects an active region in the southern hemisphere to a bipolar region of plage in the northern hemisphere. Conclusions. We have identified polarised, short-lived solar radio bursts that have never been imaged before. They are observed at a height and frequency range where plasma emission is the dominant emission mechanism, however, they possess some of the characteristics of electron-cyclotron maser emission
    corecore