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Parabolic equation numerical simulations of waveguide acoustical beam propagation in an ocean of
Garrett—Munk internal waves are used to examine the range evolution of beam properties such as
beamwidth(both spectral and spatjalShannon entropy, and scintillation index, as a function of
beam angle. Simulations are carried out at 250- and 125-Hz acoustic frequencies. The ray
trajectories associated with these beams are predominantly chaotic or exponentially sensitive to
initial conditions and/or medium perturbations. At long range near saturation, the finite-frequency
beams show a constant rate of change of Shannon entropy with range, independent of acoustic
frequency. This full-wave rate of entropy is of the same order of magnitude as the average rate of
entropy for the ray trajectories associated with this beam. Finite-range Lyapunov exponents provide
the estimates of ray entropy rate or Kolmogorov—Siani entropy. The correspondence between
full-wave and ray entropies suggests a full-wave manifestation of ray chaos, but only once statistical
saturation is obtained. In spite of this correspondence, the simulated acoustical beams expand
diffusively not exponentially(or explosively. © 2005 Acoustical Society of America.

[DOI: 10.1121/1.1854571

PACS numbers: 43.60.Cg, 43.30.Ft, 43.30[@4r ] Pages: 1611-1623

I. INTRODUCTION the possibility of observing explosive beam growth between
the limits of short-range dominance by diffraction and long-
Scattering by small-scale ocean processes like internahnge dominance of uncorrelated multipdt saturation
waves imposes the ultimate limitations on large-scale oceamdeed, some recent results for an equivalent problem in-
acoustic remote sensing and matched-field processing. Fwiolving a 2D electron gas have demonstrated this exponen-
ther, the stochastic properties of the sound field scattered yal growth (Topinka and Westervelt, 2003
internal waves are poorly understood in long-range propaga- Inspired by Tapperts’ work, this problem of ocean
tion as conditions of saturation are establisi@dlosiet al,  acoustic wave chaos is examined in the presence of a wave-
1999a,b. Recent progress in utilizing ray methods to under-guide and realistic ocean sound-speed fluctuations for which
stand scattering processes in long-range acoustic propagatigie problem of finding a full-wave manifestation of ray chaos
suggests there is an exponential sensitivity to initial condican be different. Using parabolic equatidRE) and ray
tions and a rapid growth of acoustic field complexity with atheory numerical simulations in the presence of ocean sound-
scale of a few hundred kilometer@rown et al, 2003; speed fluctuations obeying the Garrett—My@M) internal
Beron-Veraet al, 2003. However, as is well known in other wave model, PE beam simulations are done to mimic a
fields of wave propagation, finite-frequency effects can slowsmall-angle bundle of rays. To test the frequency dependence
suppress, or mask this increasing complex@asati, 1996  of the results, simulations at the two frequencies of 125 and
The objective of this paper is to examine the phenomenon a#50 Hz are done. An example of unperturbed and perturbed
ocean acoustic ray chaos and its potential manifestations ip50-Hz PE beams for an axial angle of about 5 deg is shown
finite-frequency wave fields, by the method of numericalin Fig. 1 (bottom panels Unlike the previous analysidap-
simulation. This same question has received much attentiopert, 2003, more acoustic observables than simply beam-
in the quantum chaos fiel@ianonniet al, 1989; Casati and  width are considered. Importantly, we consider the Shannon
Chirikov, 1995 and is often termed wave chaos. entropy of vertical profiles of the beam complex envelope as
From an ocean acoustic perspective and motivated by function of rangeE(r), because of the close connection
the work of Wolfson and TappefR000, this problem was between the instability of the ray equatiofi., Lyapunov
initially considered by Tappert2003, who hypothesized exponentand the Kolmogorov—SindKS) entropy(actually
that the width of a narrow-angle beam propagating through a ratg. Recent results have shown that the rate of change of
strong mesoscale sound-speed field would increase exponeShannon entropyE(t), for some idealized dynamical sys-
tially (explosively with range at a rate that is predicted by tems is closely related to the KS entropy over an intermedi-
the geometric Lyapunov exponent. Tapp@®03 examined  ate regime of timegLatora and Baranger, 1999 Thus, the
this problem in detail for the case of no waveguide and aate of Shannon entropy for our finite-frequency numerical
single-scale random medium where he showed theoreticallgimulations can be directly compared to ray simulation re-
sults of average finite-range Lyapunov expon@nteasure
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J. Acoust. Soc. Am. 117 (3), Pt. 2, March 2005 0001-4966/2005/117(3)/1611/13/$22.50 © 2005 Acoustical Society of America 1611



Range,km

0 200 400 600 800 1000

0 200 400 600 800 1000
Distance, km

FIG. 1. Examples of parabolic equation calculations of four different weakly divergent acoustical beams. In the upper three panels the simerndatmmes w
without internal wave sound-speed perturbations and the source was placed at depths of (4320 depth; upper 1600 m(second upper and 2000 m
(third uppey. In the lowest panel is an example of the 2000-m source depth acoustical beam with internal-wave sound-speed perturbations. These simulations

were carried out at 250 Hz using the Munk canonical profile. Intensity is in dB referenced to the maximum intensity.
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ocean waveguide with realistic sound-speed perturbationsound-speed fields were calculated and used to compute 200
from internal waves do not expand exponentidlly explo-  realizations of the acoustic pressure field for the various
sively), but they expand diffusivelyFig. 1). Moreover, itis beam geometries out to 2000-km range. The acoustic fre-
also found that as the beam fills the waveguide and the wavguencies were 125- and 250 Hz. The sound-pressure propa-
function behaves like Gaussian random ndise, full satu- gation modeling was carried out using a wide-angle para-
ration), E(r) varies linearly with range. The rate of Shannonbolic equation(PE) approach(Jenseret al, 2000. The PE
entropy in this linear regime is computed to be between 0.08olution provides the complex envelopgr,z), which is

and 0.11 bit/km independent of frequency, and the smalleassumed to vary slowly in range. The full-wave field can be
values are associated with the higher angle béathese written as

values are to be compared to at least twice the KS entropy

(which lacks phase informatigrand are computed to be be- p(r,z)= z/x(r,z)Hé(kor), (2
tween 0.02 and 0.04 bit/km, with again smaller entropy rates

associated with higher angle rays. Clearly, the wave fieIthereHé is the Hankel function, which satisfies the well-
entropy cannot grow indefinitely as this system is boundedknown Bessel equation. The Hankel function can be replaced
by the ocean surface and bottom. We surmise that the ey its asymptotic form fokyr>1, giving

tropy will grow linearly until acoustic energy fills the entire
water column, at which time the entropy should stabilize. 2
The diffusive beam spreading and the linear rate of Shannon W
entropy are the same in both the 125- and 250-Hz simula-

tions. These results suggest a finite-frequency manifestatioft the subsequent analysis all cylindrical spreading factors

of ray chaos, but only after the establishment of saturationVeré removed. In this paper a numerical implementation of

where the scintillation index is close to 1. Thus, Tappertst'® PE solution is used which is based on the Greene ap-
conjecture that there should be a full-wave manifestation oPfoXimation as described in Jensenal. (2000. For the
ray chaos is confirmed but in a different way than anticipatect@'ting field an analytical Gaussian source function was
from the homogeneous background case. That is, in the cadi§ed of the form
of a waveguide, the full-wave manifestation of ray chaos is
seen in the entropy, not in the beam spread.

The organization of the paper is as follows. In Sec. Il the

acoustic propagation and internal wave models which are the i )
basis of the Monte Carlo numerical simulation method aréVherezs is the source depth, and the width factbrwas

discussed. The narrow angle beam is described in Sec. 111 [gdiusted to values between 60 and 100 to achieve weakly
Secs. IV and V the range evolution of beam intensity statisdiverging beams, as will be discussed in the next section.
tics and beamwidth are described. Section VI presents results Before we leave this subject, it must be noted that a few
on beam entropy, while Sec. VIl presents results on the Cons_|mulz?1t|ons were carried out using the standard parabolic
nection between wave and ray entropies. Summary and cof9uation(SPE for the envelope which has the form

clusions are given in Sec. VIII.

1/2

H3(kor) = exp(i (kor — 7/4)). 3)

2k2 1/4
¥(02)= ( —°2> exp( —k3(z—29)2/A?), (4)
TA

i 9y 1 &y
= oz 2 Y(nay=0, (5
Il. SOUND PROPAGATION SIMULATION ko or Zkg 972
The sound speed as a function of rarfigeand depth(z) ,
. f h 1 c c,—C oC
is defined by the sum U(r.z)== 0 1| |Cm o+_, ®)
21\c(r,z) Co Co

c(r,z)=c + oc(r,z), 1 .
(r.2)=Cm(2) (r.2) @) whereky=w/c, is a reference wave number. It was found

that the statistics of the beams was insensitive to whether the

wherec,,(z) is the mean sound-speed profile asa(r,z) is . .
SPE or the larger-angle PE were used in the computation.

a random perturbation induced by internal waves. For sim
plicity, a canonical model is used for the mean profile
(M.unk, 1976 and, the internal wave cqntnbunon is modelt_ad Ill. WEAKLY DIVERGENT BEAMS

using the Garrett—Munk spectrum which has been described

in detail by Colosi and Brown1998. For the buoyancy The existence of weakly divergent bundles of rays was
frequency,N(z), a canonical form is also used such tHdt, discovered and described by Brekhovséttal. (1995, Gon-

=6 exp@/1300) cph. For the internal wave simulations 50 charov and Kurtepo1994, and Petukho\1994. Long-
vertical modes and 2 horizontal wave numbers in each of range propagation experiments often showed strong in-
the horizontal directions are used, with a horizontal step otreases of sound intensity at different depths far from the
25 m. The GM spectrum is cut off at a maximum horizontalaxis of the underwater channel. This phenomenon was ex-
wave number of 4.0 cpkm, and the internal wave energy waplained by focusing of acoustical energy along weakly diver-
normalized so that at the depth wheéde-3 cph the rms in- gent bundles of rays. Rays comprising this bundle are
ternal wave displacement is equal to 7.3 m. The potentiafjrouped around a central ray with the turning point at the
gradient of sound speed is proportionaN®(z) as in Colosi  source depth, i.e., the beam emerges horizontally from the
and Brown(1998. Two hundred realizations of the random source. When a sound source is near the sound-channel axis,
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FIG. 2. Concentration of ray trajectories along the weakly divergent bundlé~IG. 4. Sound emitted by the same aperture as the 2000-m source beam in
of rays. The numerical simulation was performed for a Munk canonicalFig. 1 (lower), but here there is a constant background sound speed.

sound-speed profile.

this bundle corresponds to the usual energy concentratioiitial angle. This property can be used to simulate a very
along the channel axis. The angles of weakly divergennarrow-angle beam emitting from a rather small, finite verti-
bundle of rays are close to points of smooth extremum of theal aperture. It can be achieved by variation of the initial
angular dependence of a ray cycle lend®rekhovskih  Gaussian beamwidth, until the condition of a weakly di-
et al, 1990. It must be noted, however, that for the adoptedvergent beam is satisfied. Each turning point acts like a local
canonical profile in this study, the Brekhovskih condition focusing lens.
does not apply since the ray cycle distance is a monotonic  The focusing effect partially compensates the diffractive
function of ray grazing angle. Nevertheless, in Fig. 2 one carexpansion, thereby forming the weakly divergent beam. An
see how energy and ray trajectories are concentrating neaxample of a 250-Hz weakly divergent beam is shown in
the direction of weakly divergent bundle of rays for this ca-Fig. 1. The vertical dimension of the 2000-m-depth sound
nonical waveguidéMunk, 1976. Such concentration can be source aperture is roughly 150 @=60). The sound from a
found in any horizontally homogeneous ocean profile andource with the same aperture as Fig. 1 was numerically
this property remaingin the adiabatic approagtor small  simulated in a homogeneous medium, whierés the ocean
horizontal gradients of sound speed. A further geometricatlepth (Fig. 4). A comparison between Figs. 1 and 4 shows
acoustics interpretation of a narrow weakly divergent bundlehat in a waveguide even a relatively small aperture sound
of rays is demonstrated in Fig. 3. Suppose that the sourceource can concentrate energy in a very narrow beam. The
radiation width is confined by crossing trajectories of twosame property can be used in receiving arrays for forming
acoustic rays shifted in the horizontal direction by a smallsuper-resolution directivity by taking into account the sound-
distance roughly equal to the horizontal width of bundle;speed profilec(z) measured near the receivézieciuch,
then, the sound energy will spread in the narrow pathMunk, and Worcester, 2001
bounded by those rays. A sound source with such directivity ~ The question naturally arises: Can these narrow beams
will form a narrow weakly divergent beam radiated at zerobe constructed in such a way as to be absolutely nondiver-
gent? The previous examplEig. 2) shows that a nondiver-
0 —— gent beam is possible in the high frequency or ray limit, but
the realization of such a beam at finite frequencies is an
interesting problem in underwater acoustics. Nevertheless,
on a practical note experimentally, it appears that these
] beams would be rather easy to generate, as the vertical aper-
ture required is relatively small. An acoustic source array
Beam with such an aperture could be constructed for high frequen-
cies, while for low frequencies the beam could be generated
/ | using a synthetic vertical aperture in which a source is
/ moved vertically during the signal transmission.

The aforementioned concentrated narrow-angle beams
e are a simple and interesting subject for numerical simulation
0 10 20 30 40 50 60 70 80 90km of acoustic energy scattering by internal waves, because
FIG. 3. Ray diagram of two paths slightly displaced in range to demonstratfN€se beams can mimic the propagation of a narrow bundle
generation of a weakly divergent beam. of rays, while retaining the computational efficiency of a

—_
f
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FIG. 5. Range evolution of mean intensity for the 250-Hz beam with source depths of 20Q@pey and 1300 m(lower).

single-frequency calculation. Clearly, broadband calculation$V. INTENSITY FLUCTUATIONS

can more narrowly define this bundle of rays by separating

multipaths in time, but these calculations are beyond the In this section intensity fluctuations are analyzed to un-
scope of the present analysis. cover how the real and imaginary partsygpapproach uncor-
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related Gaussian random variables or full saturatieiatte 0 5 —12
et al, 1979. In full saturation, the scintillation index lﬂo(fl):lﬂ(r,z)( f_H|¢(f,Z)| dZ) ; (8)
2
Sl= ﬁ_l, (7)  WhereH is the ocean depth. Thus, the normalized complex
(12 envelope has unit power. The central degfn) and rms

approaches the value of (Elatte et al, 1976, and this ap- width w(r) of a narrow beam at the rangeare defined as

proach can be from either above or bel@@olosi and Bag-
geroer, 2004 Furthermore, the Gaussian approximation al- 3(r) = JO 2| 4o(r,2)|2dz (9)
lows a simplified calculation of the Shannon entropy, which g '
will be discussed in Sec. VI. Figure 5 shows the mean inten-
sity, ensemble averaged over 200 internal wave realizations, 0 R 12
for a narrow 250-Hz beam with source depths of 1300 and W(f)=2< J H(Z— 2(r)?|go(r,2)|?dz| . (10)
2000 m. For the 2000-m beam acoustical energy is seen to -
scatter and diffuse from the narrow path, in-filling the axial The spatial spectrum of the beam can be defined using the
depth region with energy and slowly spreading the energyourier transformation, so that
towards the ocean boundaries. The axial beam, of course,
only shows the slower outward spreading towards the bound- 0 )
aries. Figure 6 shows the spatial distribution of SI for the ~ S( k2= fﬁH:,Zf(r,z)exp(—lkZz)dz. (11)
same beams. To avoid problems of division by zero, the Sl is
only calculated for regions of space where there is significantn complete analogy to the spatial domain analysis, in wave
average intensity. At short ranges Sl is increasing, while anumber space there is the normalized spatial specym
the longest ranges near saturation values of 1 are observéite center wave numbég, and the rms spectrum widthg,
more-or-less uniformly over the depth of the beam betweerll defined as
750 and 2000 m. In the midranges Sl has significant spatial
variability, and values that are much larger than 1. As the So(f,kz)zs(r,kz)(f
beam is breaking up, strong focuses leading to Sl values
significantly above 1 are observed near the caustics or verti- Kpmax
cal turning points of the beams, while near the axis the SI kz(r)=J K,|So(r,k,)|2dk,, (13
values are only slightly higher than 1. As the vertical caustic ~ (kz)max
structure of the beam disintegrates around 1500-m range, the (Kp)ma R 1/2
Sl values become more uniform in depth, leading to an ap- Ws(r)zz(j (k,— Ky(1)) 2 So(r k)| 2dk, | .
proach to saturation from above 1 for the 2000-m beam, but -
an on-axis approach from below 1 for the 1300-m beam. (14)
A different way of examining the scintillation curves for In this representation the spatial and spectral widths roughly
several source depths simultaneously is to plot the Sl valuesbey an “uncertainty” relationw(r)wg(r)=1, so that the
as a function of range, but along a curve defined by thepatial width,w(r), gives information about the large-scale
energy centroid of the unperturbed beam. These curves atgam variability, whilew(r) gives information about the
shown in Fig. 7 for the 250-Hz beams. As previously shownhigh wave number, small-scale beam variability. Figures 5
in Fig. 6, the 2000-m source depth beam approaches saturand 8 show the average spatial and spectral patterns of the
tion from above 1, and a similar trajectory is found for a 250-Hz beams with source depths at 1300 and 2000 m.
4000-m source depth. However, for near-axial beams the agrhese figures show that the 2000-m beams are spreading in
proach to saturation is quite different. Here, Sl approaches duch a way as to in-fill the axial region, to make the energy
from below, and these beams reach saturation at a muafiensity more-or-less uniform in depth between the unper-
earlier range. turbed beam turning points, and to “whiten” the spatial spec-
The 125-Hz calculation shows very similar behavior astrum between the maximum/minimum wave numbers of the
compared to the 250-Hz calculation, except in the followingunperturbed beam. In addition to the in-filling and spectral
respects. The high-angle beams do not show as large SI vakhitening, there is a slow expansion of the beam towards the
ues above 1, and the initial growth of Sl at short range isocean boundariegspatia) and toward high vertical wave
slower by about one-half as expected from weak fluctuatiomumber (spectral, which is the dominant mechanism of
theory. For the near-axial beams the same approach to satghange for the 1300-m beam.
ration from below 1 is seen, and as in the high-angle case the Using the spatial and spectra widths of the beams, de-
initial growth of Sl is slower by about one-half. fined from Eqs(10) and(14), the range evolution of several
250-Hz beams is shown in Fig. 9. In both cases the short
ranges show deterministic variability of the beams over a
beam cycle, which gradually damps out to more smooth vari-
Next, the issue of vertical beam spread is addressed, arability with range as saturation becomes established. In all
it proves useful to provide the following definitions for the cases the beamwidth defined either spatially or spectrally in-
guantitative description of the acoustical beam evolutioncreases much more slowly than exponentially. The range
First, the wave function is normalized at each range that  variations ofw(r) andwg(r) in Fig. 9 is very close ta ',

(Kz)max

—-1/2
|S<r,kz)|2dkz> . (12

Z/max

Z/max

V. BEAM SPREAD
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FIG. 6. Spatial distribution of scintillation index for the 250-Hz beam with source depths of 130®w@r) and 2000 m(uppe). Scintillation index is only
computed where there is significant mean inten@ge Fig. &; thus, regions of dark blue represent areas where the scintillation index is not well defined.

implying a diffusive process. The simulations at 125 Hz, notVl. WAVE FIELD COMPLEXITY AND ENTROPY

shown here, have essentially identical beam-spreading

curves, which suggests that the scattering is close to geo- A useful, though nonunique, representation of the simu-
metrical. lated wave field complexity is sought. The complexity of a
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Here,P(I") is the probability density functiotPDF). In this

--- source depth 4000 m . .
1.8H e source depth 2000 m [ e_lnaIyS|s, the complt_axny of the_complex envelope as a func-
— source depth 1600 m tion of depthz at a given range is of interest; therefore, the
1.6/ — source depth 1300 m Shannon information at a rangds written

|(r)=—J P((r,z1),4(r.25),...)
X|ng[P(l[l(r,Zl),l/I(r,22),...)]dl//(r,zl)dl//(r,zz)...

Scintillation index

=—f log,[ P(#(r,2)1dP(4(r,2)), (21)

£ whereP(i(r,z)) is the probability density function for ob-
N P PP ta|n|ng the Vertlcal pr‘of”e Ow at ranga_. The Ca|cu|at|0n Of
sound-pressure entropy directly by Monte Carlo stochastic
simulation needs a large number of realizations to define
P(¢) and is therefore computationally intensive. A simpli-
FIG. 7. Scintillation index of 250-Hz beams for four different source depths,fied approach based on the Gaussian approximation of the
and computed only along a line defined by the centroid of the unperturbedycoustical fluctuations will be used, that is, the entropy will
narrow beams. be calculated as if a process probability density function
(PDF is spatially Gaussian. Figure 7 shows that this is a

random process depends on the number of independent cogPrrect assumption for the ranges where Sl is close to 1, that
ponents, and one such representation has already been pi®-r>200km. Since there is a one-to-one mapping between
sented, namely the spatial spectrum of the be@@. k), the coefficients of the KL decomposition and the complex
where clearly a white spectrum has more complexity than £nvelopey, the entropy can be calculated as an entropy of a
simple line spectrum. However, it proves useful to apply therandom vector of these coefficients. Generally, the probabil-
Karhunen—Loeve(KL) expansion(Van-Trees, 1968° in- ity density of a vectorX=(xy,Xz,....Xy) of M Gaussian
stead of the Fourier expansion because the KL expansiogomplex random values with nonsingular correlation matrix
yields uncorrelated components in this nonstationary enviKx has the following form:

ronment. The complex envelope of the sound-pressure field

Range (km)

at each range step can be represented by a stochastic series p— ;exrx—(x—mx)TKgl(X—xm)), (22)
with M (r) significant contributionsM (r) will be called the ™ detKy)
dimension of the random process, with whereKy=((X—my)(X—m,)") is the complex correlation
M(r) matrix of the complex random vectot, m=(X), and the
(r,2)= _21 a;(r)®;(r,z) (15 superscripf means complex conjugate and matrix transpose.
J:

The entropy,E, of a Gaussian random vector can be calcu-
0 lated analytically, yieldingVan-Trees, 1968; Cover and Tho-
a,-(r)=fﬁHw(r,z)fbj(r,z)dz, (16)  mas, 1991
o E(r)=C—I(r)=C+log,(7™ de(Ky))+ M log,(e).
xj(r><bj(r,z>=f K(zzr)®(r,2)dz 17 (23
H In the case of a random vector of uncorrelated compo-
K(z.Z,r)=(y(r,2)y* (r,2)), (18)  nents of a KL expansion, the entropy is simply the sum of the
entropies of the individual KL modes, namely

where K(z,z,r) is the transverse correlation function at

ranger, and \;(r) and ®(r,z) are the eigenvalues and E(r)=EMN1(r),A2(r),... Apry(r)) (24)
eigenfunctions of the KL expansion at rangeaespectively. M(r)
The functions\j(r) andM(r) are shown in_Figs. 10 and 11. —C+ E logz(emh(r)) (25)
Note that curves for the angle spectrum width and number of =1
significant KL expansion components both can be used as an M)
approximate measure of random process. _ '

Precisely, for a stochastic varialdle a logarithmic mea- =C+M(r)logy(em) + ,Zl logz A(r)- (26)

sure of the complexity of that variable is the entrdpy o )
For equipartition of energyh;=\ (eigenvalue spectrum

E=C—I, (19 “white” ) the entropy is maximum, but for any other eigen-
value spectrum the entropy is less than this maximum value.

whereC is a constant antlis the Shannon informatio(Sh- ; . : 3
The eigenvalue spectrum from the 250-Hz simulation with

annon, 1948 measured in bits ) e
source depth at 2000 m is shown in Fig. 10. The spectrum
. expands with range, but even at the distance 2000 km it

= j P(I')log [ P(I")Jdl". (20 remains nonuniform“not white”). Note that this simple
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FIG. 8. Range evolution of the beam wave numbkgspectrum of the 250-Hz beam with source depths of 200@ppey and 1300 m(lower).

definition of entropy is based on the assumption that the The entropy of the 250-Hz weakly divergent sound
Gaussian random process is nonsingular; otherwise, a moleams is shown in Fig. 12 for beams with different sound
rigorous definition must be applied in terms of absolute consource depths. In all cas€s=0 andM(r)=100, which is
tinuity of probability measures and Radon—Nikodim deriva-larger than the maximum number of significant KL eigenval-
tive (Halmos, 1950 ues at any range and for any of the acoustical beams. The
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fg larger than roughly 1000 km, the entropy is increasing mono-
5 008 “ l tonically and approximately linearly for all beams, and the
IS “‘ ‘l,l«}' entropy rates in the linear regime are 0.11, 0.11, and 0.06
§ 0.06 ( ‘ fli Ll ] bit/km for the 1300-, 1600-, and 2000-m source depths, re-
3 ’ M{ | spectively. The scintillation index curvéEig. 7) show that
S 004 “M' | the linear behavior of entropy occurs very close to full satu-
p ] ration. Further, the linear rates are about the same for all
00 beams, so that the anisotropy associated with beam angle is
0 ) ) ) not strong, though primarily small-angle beams were consid-
0 500 1000 1500 2000 ered. It must be noted that the initial rapid nonlinear rise of

Range (km) the entropy is an artifact of the Gaussian approximation in

FIG. 9. Acoustical beamwidthw(r) (upped and spectral beamwidtig(r) the entropy calculation; in the linear entropy region the

(lowen) as a function of propagation range for the 250-Hz beams at sourc&>@ussian approximation is very go¢ee Fig. 7. Figure 12
depths of 1300 nfthick line), 1600 m(medium ling, and 2000 m(thin ~ also shows the entropy of a 125-Hz beam with the sound

line). source at 2000 m, and there is virtually no difference be-
entropy was calculated for the ranges where the unperturbe 500 T eond
beam crosses the sound-channel dkis., 1300-m depth 450} s 00 %04s J
This approach eliminates the deterministic oscillations of en- 400 s ~ grad = 2hxs
tropy at the shorter ranges, an effect seen in Fig. 9. At range: ;,
350
> 300f
£ osof
L R W00l
0.8+ ' e 150}
06 i 100}
0.44. - 50-.
. (s |/ A/ v ) L ) ) ) L )
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‘ 2000 FIG. 12. Entropy of 250-Hz acoustical beams for source depths of 1300 m

1500 (thick line circleg, 1600 m(medium line crossg@sand 2000 m(thin line

Sr Of .. 20 1000 triangles. Fits in the linear region of the curves yield entropy rates of 0.11
Sige, e (kr") (1300 m, 0.11 (1600 m), and 0.06(2000 ) bit/km. The 2000-m source
q 00 Rand ).0612000 1 . ;
'u@ depth, 125-Hz entropy curdarbitrarily vertical offsetis shown with a dash

curve and diamond symbols. Also shown in solid is twice the KS entropy,
FIG. 10. Karhunen-LoevéKL ) eigenvalue spectrum as a function of range 2hygs=0.04 bit/km (arbitrary vertical offsetcomputed from the ray equa-
for the 250-Hz beam with source depth at 2000 m. tions for the 1300-m axial ray.
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tween the long-range entropy rate at the two frequencies. The
linear increase iE(r) means that the number of equiproba- K=
ble states of the dynamical systéoomplexity is increasing
exponentially and independent of acoustic frequency, inlrhe initial condition forJ atr =0 is the identity matrix. The
complete accordance with ray chaos predictidBsown  Lyapunov exponent is derived from the stability equations,
et al, 2003, Beron-Verat al, 2003. The frequency inde- and is given by

—d,H  —a,H
dppH = 3,pH

_(0 —azzu)
=\ o | (32

pendence of the entropy rate not only reinforces the geomet- log|Tr(J)|
ric result but also suggests that these results carry over to  p = lim——, (33
broadband signals. In the next section it is determined if the r—o r

rate of exponential increase in complexity computed fromypare TrQ) is the trace or sum over the diagonal elements
the full-wave simulations is comparable to the rate computedys e stability matrixJ (Brown et al, 2003; Wolfson and

from ray theory. Tomsovic, 2001 In the present calculation the asymptotic
range result is not computed, however, and a finite range
VII. RAY ENTROPY stability exponent defined by

It has been well established that ray trajectories in ocean log| Tr(J)]
acoustic propagation through internal waves are chaotic or v= — (34
unstable to perturbations in the medium and in the initial
conditions(Brown et al,, 2003; Beron-Vera&t al, 2003. The is evaluated. This finite range stability exponent has the
chaotic nature of ray propagation in the ocean is quantifiegproperty thatWolfson and Tomsovic, 2001
using the Lyapunov exponen4 , which is derived from a w=(r)~h (35)
stability analysis of the ray patfBrown et al, 2003, but it L kS
is often useful to express this instability using informationwhere the expectation values imply averaging over realiza-
theory (Latora and Baranger, 1999; Casati, 1986¢ch that tions of the ocean internal wave field. Last, the ray initial
the informationl (s) associated with a segment of ray trajec- conditions arez(0)=1300m andp(0)=0, an axial ray.

tory of lengths is equal asymptotically to An explicit adaptive Runge—Kautta algorithm was used
to calculate 200 realization of ray trajectories with the above
) |(s) - . . .
lim — =hys (27)  initial conditions. The second derivatives bk(r,z) were
= S calculated using cubic spline interpolation, and the base 2

logarithm was used in Eq.35) to get result measured in

wherehyes is the Kolmogorov—Sinaiks) entropy. Note here dbit/km so as to be comparable with the Shannon entropy

gh?aﬁiscjr;trzfgmf "akgttiléyerwaé?tsrgpy drj:e' Fg;sb(;l:gde results®> The calculation yields an estimate bfs of 0.020
y y unGE=Nys Pard, — hitkm for the axial ray, decreasing linearly to 0.012 bit/km

1990. A consequence of the chaotic nature of ray paths Sor the 2000-m source ray. These values are comparable to

th"’.lt the 'number of elgenrays cgnnectmg a source and a "Bther calculations of Lyapunov exponent for ray propagation
ceiver will grow exponentially with range, leading to an ex- through ocean internal waveéBeron-Vera et al, 2003;

pone_n'u_al Increase in wave field compl_exn_y. Thus,_ the EXPORe on-Vera and Brown, 2003In comparing this value to the
nential increase in wave field complexity is examined usin

the Lyapunov exponenfa measure of the KS entropy gcomputed gradients of Shannon entropy for the complex en-

.7 I i hat th I I incl
which is to be compared to the computed rate of Shanno?wle ope, it must be noted that the complex envelope includes

entropy. Another comparison between Shannon entropy anl(gformatlon about both phase and amplitude, witilgs is

; . only a measure of the sound-field energy characteristics,
KS entropy for different dynamical systems was done bysuch as intensity and angular power density. So, the informa-
Latora and Barangg(1999. C

The ray numerics are carried out as follows. Using thetion gradient of the full-field entro_py m_ust be at_leagt twice
SPE Hamiltonian ' the KS entropy. Thus, 2= 0.04 bit/km is placed in Fig. 12
for comparison with the full-wave Shannon entropy, and or-
2 der of magnitude agreement with the axial beam is seen. It
H(z,pir)= 25 +U(r.2), (28) " must be emphasized here that the comparison between KS
entropy and Shannon entropy rate is crude as we have only

wherep=tanf, the following well-known ray and stabil- compared the KS entropy of one ray, while the Shannon

ity equations are solved: entropy involves a bundle of rays with a ran@ébeit smal)
dz oH dp IH of initial conditions. It is known, for example, that there can
o ap ar (290 pe significant variability of Lyapunov exponent as a function
of initial conditions due to the structure of the background
dJ sound-speed profiléBeron-Veraet al, 2003; Beron-Vera
ar K (30" and Brown, 2008

The comparison of Shannon or physical entropies curves
E(r) of the complex envelope of the full-field simulation
((9p/apo|ZO aplazo| with 2hys shows that the evolution of narrow-beam entropy

where

(31 has two stages. In the first stage the beamwidth and spatial

219 p0|Zo 921 92| Po spectrum are growing rapidly with oscillations due to diffrac-
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tive effects. These effects are deemed diffractive becausexponentially, and thus the signature of chaos must be found
they are not described by the geometricgf rate. The sec- in some other observable. It has been shown that such a
ond stage occurs approximately near saturation; the entroggignature is found in the wave field entropy. Like the no-
gradient slows down and tends to a level which is approxiwaveguide case, at short ranges the signature of ray chaos is
mately twice the KS entropy of the corresponding chaoticnot manifest in the entropy due to deterministic and diffrac-
ray trajectories. This second stage can be called chaotic frotive effects. However, once the wave field comes very close
both a full-wave and ray perspective, because entropy it saturation, the variation of entropy becomes linear with
monotonically growing with the gradient determined by therange roughly as predicted by the KS entropy. Thus, while
average Lyapunov exponent. Simultaneously, beamwidtithe no-waveguide case suggests an arrest of ray chaos mani-
spatial spectrum width, and dimension of the random procesfgstations at saturation, the waveguide case examined here
are all approximately linearly increasing. The stabilization ofshows that near-saturation is an essential element. Clearly,
entropy gradient shows that, when fluctuations approackhe wave field entropy cannot grow indefinitely as this sys-
saturation, ray chaos phenomenon becomes the main facttm is bounded by the ocean surface and bottom. We surmise

determining the properties of scattering processes. that the entropy will grow linearly until acoustic energy fills
the entire water column, at which time the entropy should
Vill. SUMMARY AND DISCUSSION stabilize.

Monte Carlo stochastic simulation of acoustic scattering It also should be emphasized that our results do not pre-

by internal waves allows analysis of the variability of weakly Clrl:de the usetofhge;)metrlc methhods f[(r)lr dSer? cribing sctattermgt
divergent beam as a function of range and beam angle. enomena at shorter ranges where the shannon entropy rate

realistic Garrett—Munk internal wave model for the inducedand KS_ entropy do not agree. _In fac'[.’.ﬂ?{é scaling of _the
sound-speed fluctuation was applied. The analysis was pe _eamW|dt_h curves and their insensitivity to acoustic fre-
formed in terms of information theory using the physical orquency(Hg. 9 suggest strongly that the scattering is geo-

Shannon entropy of the complex acoustical field envelope qyetric. . . . .

a logarithmic measure of wave chaos complexity and Thg nume_rlcal results of this paper require a theoretical
Kolmogorov—-Sinai entropy as a logarithmic measure of raJoundaﬂon which we hope to formulate in future work.
chaos complexity. The relative intensity variance or scintil-

lation index was used to quantify the approach to saturatiorACKNOWLEDGMENTS

and for steep-angle beams Sl approaches 1 from above, ) L

while for small-angle beams the approach is from below 1, 1S work was inspired by Fred Tappert, and we have

At the range near saturation the rate of Shannon entropy fdicnefited from many useful discussions with Mike Wolfson.
the complex envelope of the finite-frequency acousticaITh'S is Woods Hole Oceanographic Institution contribution

beams decreases and converges to a constant value whichmPer 11208.
approximately twice as large as the Kolmogorov—Sinai en-

1

tropy or average Lyapunov exponent associated with the cenll! °¢€an acoustic propagation the range variabiess equivalent to the
time variable t, in dynamical systems theory.

tral ray Of_that b_eam- This correspondence suggests a fulbrhe conversion from bits/km to kit simply involves a change in the base
wave manifestation of ray chaos, but only after saturation ofof the logarithms. Thus, an entropy rate of 0.02 bits’kkm would be
the scintillation index has occurred. In spite of this corre—30-02('09e)_’1=0-0139 km *. o
spondence, the simulated acoustical beams are not seen {p9eophysics the Karhunen—LoedéL) expansion is often referred to as
. . . an empirical orthogonal functiofEOF) expansion.
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