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Parabolic equation numerical simulations of waveguide acoustical beam propagation in an ocean of
Garrett–Munk internal waves are used to examine the range evolution of beam properties such as
beamwidth~both spectral and spatial!, Shannon entropy, and scintillation index, as a function of
beam angle. Simulations are carried out at 250- and 125-Hz acoustic frequencies. The ray
trajectories associated with these beams are predominantly chaotic or exponentially sensitive to
initial conditions and/or medium perturbations. At long range near saturation, the finite-frequency
beams show a constant rate of change of Shannon entropy with range, independent of acoustic
frequency. This full-wave rate of entropy is of the same order of magnitude as the average rate of
entropy for the ray trajectories associated with this beam. Finite-range Lyapunov exponents provide
the estimates of ray entropy rate or Kolmogorov–Siani entropy. The correspondence between
full-wave and ray entropies suggests a full-wave manifestation of ray chaos, but only once statistical
saturation is obtained. In spite of this correspondence, the simulated acoustical beams expand
diffusively not exponentially~or explosively!. © 2005 Acoustical Society of America.
@DOI: 10.1121/1.1854571#
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I. INTRODUCTION

Scattering by small-scale ocean processes like inte
waves imposes the ultimate limitations on large-scale oc
acoustic remote sensing and matched-field processing.
ther, the stochastic properties of the sound field scattere
internal waves are poorly understood in long-range propa
tion as conditions of saturation are established~Colosiet al.,
1999a,b!. Recent progress in utilizing ray methods to und
stand scattering processes in long-range acoustic propag
suggests there is an exponential sensitivity to initial con
tions and a rapid growth of acoustic field complexity with
scale of a few hundred kilometers~Brown et al., 2003;
Beron-Veraet al., 2003!. However, as is well known in othe
fields of wave propagation, finite-frequency effects can sl
suppress, or mask this increasing complexity~Casati, 1996!.
The objective of this paper is to examine the phenomeno
ocean acoustic ray chaos and its potential manifestation
finite-frequency wave fields, by the method of numeric
simulation. This same question has received much atten
in the quantum chaos field~Gianonniet al., 1989; Casati and
Chirikov, 1995! and is often termed wave chaos.

From an ocean acoustic perspective and motivated
the work of Wolfson and Tappert~2000!, this problem was
initially considered by Tappert~2003!, who hypothesized
that the width of a narrow-angle beam propagating throug
strong mesoscale sound-speed field would increase expo
tially ~explosively! with range at a rate that is predicted b
the geometric Lyapunov exponent. Tappert~2003! examined
this problem in detail for the case of no waveguide and
single-scale random medium where he showed theoretic
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the possibility of observing explosive beam growth betwe
the limits of short-range dominance by diffraction and lon
range dominance of uncorrelated multipath~or saturation!.
Indeed, some recent results for an equivalent problem
volving a 2D electron gas have demonstrated this expon
tial growth ~Topinka and Westervelt, 2003!.

Inspired by Tapperts’ work, this problem of ocea
acoustic wave chaos is examined in the presence of a w
guide and realistic ocean sound-speed fluctuations for wh
the problem of finding a full-wave manifestation of ray cha
can be different. Using parabolic equation~PE! and ray
theory numerical simulations in the presence of ocean sou
speed fluctuations obeying the Garrett–Munk~GM! internal
wave model, PE beam simulations are done to mimic
small-angle bundle of rays. To test the frequency depende
of the results, simulations at the two frequencies of 125 a
250 Hz are done. An example of unperturbed and pertur
250-Hz PE beams for an axial angle of about 5 deg is sho
in Fig. 1 ~bottom panels!. Unlike the previous analysis~Tap-
pert, 2003!, more acoustic observables than simply bea
width are considered. Importantly, we consider the Shan
entropy of vertical profiles of the beam complex envelope
a function of range,E(r ), because of the close connectio
between the instability of the ray equations~i.e., Lyapunov
exponent! and the Kolmogorov–Sinai~KS! entropy~actually
a rate!. Recent results have shown that the rate of chang
Shannon entropy,E(t), for some idealized dynamical sys
tems is closely related to the KS entropy over an interme
ate regime of times~Latora and Baranger, 1999!.1 Thus, the
rate of Shannon entropy for our finite-frequency numeri
simulations can be directly compared to ray simulation
sults of average finite-range Lyapunov exponent~a measure
of KS entropy!.

In this study, it is found that acoustical beams in
il:
16113)/1611/13/$22.50 © 2005 Acoustical Society of America
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simulations
FIG. 1. Examples of parabolic equation calculations of four different weakly divergent acoustical beams. In the upper three panels the simulationsere done
without internal wave sound-speed perturbations and the source was placed at depths of 1300 m~axial depth; upper!, 1600 m~second upper!, and 2000 m
~third upper!. In the lowest panel is an example of the 2000-m source depth acoustical beam with internal-wave sound-speed perturbations. These
were carried out at 250 Hz using the Munk canonical profile. Intensity is in dB referenced to the maximum intensity.
1612 J. Acoust. Soc. Am., Vol. 117, No. 3, Pt. 2, March 2005 A. K. Morozov and J. A. Colosi: Stochastic beams
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ocean waveguide with realistic sound-speed perturbat
from internal waves do not expand exponentially~or explo-
sively!, but they expand diffusively~Fig. 1!. Moreover, it is
also found that as the beam fills the waveguide and the w
function behaves like Gaussian random noise~i.e., full satu-
ration!, E(r ) varies linearly with range. The rate of Shann
entropy in this linear regime is computed to be between 0
and 0.11 bit/km independent of frequency, and the sma
values are associated with the higher angle beam.2 These
values are to be compared to at least twice the KS entr
~which lacks phase information! and are computed to be be
tween 0.02 and 0.04 bit/km, with again smaller entropy ra
associated with higher angle rays. Clearly, the wave fi
entropy cannot grow indefinitely as this system is bound
by the ocean surface and bottom. We surmise that the
tropy will grow linearly until acoustic energy fills the entir
water column, at which time the entropy should stabili
The diffusive beam spreading and the linear rate of Shan
entropy are the same in both the 125- and 250-Hz sim
tions. These results suggest a finite-frequency manifesta
of ray chaos, but only after the establishment of saturat
where the scintillation index is close to 1. Thus, Tappe
conjecture that there should be a full-wave manifestation
ray chaos is confirmed but in a different way than anticipa
from the homogeneous background case. That is, in the
of a waveguide, the full-wave manifestation of ray chaos
seen in the entropy, not in the beam spread.

The organization of the paper is as follows. In Sec. II t
acoustic propagation and internal wave models which are
basis of the Monte Carlo numerical simulation method
discussed. The narrow angle beam is described in Sec. II
Secs. IV and V the range evolution of beam intensity sta
tics and beamwidth are described. Section VI presents re
on beam entropy, while Sec. VII presents results on the c
nection between wave and ray entropies. Summary and
clusions are given in Sec. VIII.

II. SOUND PROPAGATION SIMULATION

The sound speed as a function of range~r!, and depth~z!
is defined by the sum

c~r ,z!5cm~z!1dc~r ,z!, ~1!

wherecm(z) is the mean sound-speed profile anddc(r ,z) is
a random perturbation induced by internal waves. For s
plicity, a canonical model is used for the mean profi
~Munk, 1976! and, the internal wave contribution is modele
using the Garrett–Munk spectrum which has been descr
in detail by Colosi and Brown~1998!. For the buoyancy
frequency,N(z), a canonical form is also used such that,N
56 exp(z/1300) cph. For the internal wave simulations
vertical modes and 212 horizontal wave numbers in each o
the horizontal directions are used, with a horizontal step
25 m. The GM spectrum is cut off at a maximum horizon
wave number of 4.0 cpkm, and the internal wave energy
normalized so that at the depth whereN53 cph the rms in-
ternal wave displacement is equal to 7.3 m. The poten
gradient of sound speed is proportional toN2(z) as in Colosi
and Brown~1998!. Two hundred realizations of the rando
J. Acoust. Soc. Am., Vol. 117, No. 3, Pt. 2, March 2005
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sound-speed fields were calculated and used to compute
realizations of the acoustic pressure field for the vario
beam geometries out to 2000-km range. The acoustic
quencies were 125- and 250 Hz. The sound-pressure pr
gation modeling was carried out using a wide-angle pa
bolic equation~PE! approach~Jensenet al., 2000!. The PE
solution provides the complex envelopec(r ,z), which is
assumed to vary slowly in range. The full-wave field can
written as

p~r ,z!5c~r ,z!H0
1~k0r !, ~2!

whereH0
1 is the Hankel function, which satisfies the we

known Bessel equation. The Hankel function can be repla
by its asymptotic form fork0r @1, giving

H0
1~k0r !5S 2

pk0r D
1/2

exp~ i ~k0r 2p/4!!. ~3!

In the subsequent analysis all cylindrical spreading fact
were removed. In this paper a numerical implementation
the PE solution is used which is based on the Greene
proximation as described in Jensenet al. ~2000!. For the
starting field an analytical Gaussian source function w
used of the form

c~0,z!5S 2k0
2

pD2D 1/4

exp~2k0
2~z2zs!

2/D2!, ~4!

where zs is the source depth, and the width factorD was
adjusted to values between 60 and 100 to achieve we
diverging beams, as will be discussed in the next section

Before we leave this subject, it must be noted that a f
simulations were carried out using the standard parab
equation~SPE! for the envelope which has the form

i

k0

]c

]r
52

1

2k0
2

]2c

]z2
2U~r ,z!c50, ~5!

U~r ,z!5
1

2 F S c0

c~r ,z! D
2

21G.2Fcm2c0

c0
1

dc

c0
G , ~6!

wherek05v/c0 is a reference wave number. It was foun
that the statistics of the beams was insensitive to whether
SPE or the larger-angle PE were used in the computatio

III. WEAKLY DIVERGENT BEAMS

The existence of weakly divergent bundles of rays w
discovered and described by Brekhovskihet al. ~1995!, Gon-
charov and Kurtepov~1994!, and Petukhov~1994!. Long-
range propagation experiments often showed strong
creases of sound intensity at different depths far from
axis of the underwater channel. This phenomenon was
plained by focusing of acoustical energy along weakly div
gent bundles of rays. Rays comprising this bundle
grouped around a central ray with the turning point at
source depth, i.e., the beam emerges horizontally from
source. When a sound source is near the sound-channel
1613A. K. Morozov and J. A. Colosi: Stochastic beams
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this bundle corresponds to the usual energy concentra
along the channel axis. The angles of weakly diverg
bundle of rays are close to points of smooth extremum of
angular dependence of a ray cycle length~Brekhovskih
et al., 1990!. It must be noted, however, that for the adopt
canonical profile in this study, the Brekhovskih conditio
does not apply since the ray cycle distance is a monoto
function of ray grazing angle. Nevertheless, in Fig. 2 one
see how energy and ray trajectories are concentrating
the direction of weakly divergent bundle of rays for this c
nonical waveguide~Munk, 1976!. Such concentration can b
found in any horizontally homogeneous ocean profile a
this property remains~in the adiabatic approach! for small
horizontal gradients of sound speed. A further geometr
acoustics interpretation of a narrow weakly divergent bun
of rays is demonstrated in Fig. 3. Suppose that the so
radiation width is confined by crossing trajectories of tw
acoustic rays shifted in the horizontal direction by a sm
distance roughly equal to the horizontal width of bund
then, the sound energy will spread in the narrow p
bounded by those rays. A sound source with such directi
will form a narrow weakly divergent beam radiated at ze

FIG. 2. Concentration of ray trajectories along the weakly divergent bun
of rays. The numerical simulation was performed for a Munk canon
sound-speed profile.

FIG. 3. Ray diagram of two paths slightly displaced in range to demons
generation of a weakly divergent beam.
1614 J. Acoust. Soc. Am., Vol. 117, No. 3, Pt. 2, March 2005
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initial angle. This property can be used to simulate a v
narrow-angle beam emitting from a rather small, finite ve
cal aperture. It can be achieved by variation of the init
Gaussian beamwidth,D, until the condition of a weakly di-
vergent beam is satisfied. Each turning point acts like a lo
focusing lens.

The focusing effect partially compensates the diffract
expansion, thereby forming the weakly divergent beam.
example of a 250-Hz weakly divergent beam is shown
Fig. 1. The vertical dimension of the 2000-m-depth sou
source aperture is roughly 150 m~D560!. The sound from a
source with the same aperture as Fig. 1 was numeric
simulated in a homogeneous medium, whereH is the ocean
depth ~Fig. 4!. A comparison between Figs. 1 and 4 sho
that in a waveguide even a relatively small aperture so
source can concentrate energy in a very narrow beam.
same property can be used in receiving arrays for form
super-resolution directivity by taking into account the soun
speed profilec(z) measured near the receiver~Dzieciuch,
Munk, and Worcester, 2001!.

The question naturally arises: Can these narrow be
be constructed in such a way as to be absolutely nondi
gent? The previous example~Fig. 2! shows that a nondiver
gent beam is possible in the high frequency or ray limit, b
the realization of such a beam at finite frequencies is
interesting problem in underwater acoustics. Neverthel
on a practical note experimentally, it appears that th
beams would be rather easy to generate, as the vertical a
ture required is relatively small. An acoustic source arr
with such an aperture could be constructed for high frequ
cies, while for low frequencies the beam could be genera
using a synthetic vertical aperture in which a source
moved vertically during the signal transmission.

The aforementioned concentrated narrow-angle be
are a simple and interesting subject for numerical simulat
of acoustic energy scattering by internal waves, beca
these beams can mimic the propagation of a narrow bun
of rays, while retaining the computational efficiency of

le
l

te

FIG. 4. Sound emitted by the same aperture as the 2000-m source be
Fig. 1 ~lower!, but here there is a constant background sound speed.
A. K. Morozov and J. A. Colosi: Stochastic beams



FIG. 5. Range evolution of mean intensity for the 250-Hz beam with source depths of 2000 m~upper! and 1300 m~lower!.
on
tin
th n-
single-frequency calculation. Clearly, broadband calculati
can more narrowly define this bundle of rays by separa
multipaths in time, but these calculations are beyond
scope of the present analysis.
J. Acoust. Soc. Am., Vol. 117, No. 3, Pt. 2, March 2005
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IV. INTENSITY FLUCTUATIONS

In this section intensity fluctuations are analyzed to u
cover how the real and imaginary parts ofc approach uncor-
1615A. K. Morozov and J. A. Colosi: Stochastic beams
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related Gaussian random variables or full saturation~Flatté
et al., 1979!. In full saturation, the scintillation index

SI5
^I 2&

^I &2
21, ~7!

approaches the value of 1~Flatté et al., 1976!, and this ap-
proach can be from either above or below~Colosi and Bag-
geroer, 2004!. Furthermore, the Gaussian approximation
lows a simplified calculation of the Shannon entropy, wh
will be discussed in Sec. VI. Figure 5 shows the mean int
sity, ensemble averaged over 200 internal wave realizati
for a narrow 250-Hz beam with source depths of 1300 a
2000 m. For the 2000-m beam acoustical energy is see
scatter and diffuse from the narrow path, in-filling the ax
depth region with energy and slowly spreading the ene
towards the ocean boundaries. The axial beam, of cou
only shows the slower outward spreading towards the bou
aries. Figure 6 shows the spatial distribution of SI for t
same beams. To avoid problems of division by zero, the S
only calculated for regions of space where there is signific
average intensity. At short ranges SI is increasing, while
the longest ranges near saturation values of 1 are obse
more-or-less uniformly over the depth of the beam betw
750 and 2000 m. In the midranges SI has significant spa
variability, and values that are much larger than 1. As
beam is breaking up, strong focuses leading to SI val
significantly above 1 are observed near the caustics or v
cal turning points of the beams, while near the axis the
values are only slightly higher than 1. As the vertical caus
structure of the beam disintegrates around 1500-m range
SI values become more uniform in depth, leading to an
proach to saturation from above 1 for the 2000-m beam,
an on-axis approach from below 1 for the 1300-m beam

A different way of examining the scintillation curves fo
several source depths simultaneously is to plot the SI va
as a function of range, but along a curve defined by
energy centroid of the unperturbed beam. These curves
shown in Fig. 7 for the 250-Hz beams. As previously sho
in Fig. 6, the 2000-m source depth beam approaches sa
tion from above 1, and a similar trajectory is found for
4000-m source depth. However, for near-axial beams the
proach to saturation is quite different. Here, SI approache
from below, and these beams reach saturation at a m
earlier range.

The 125-Hz calculation shows very similar behavior
compared to the 250-Hz calculation, except in the followi
respects. The high-angle beams do not show as large SI
ues above 1, and the initial growth of SI at short range
slower by about one-half as expected from weak fluctua
theory. For the near-axial beams the same approach to
ration from below 1 is seen, and as in the high-angle case
initial growth of SI is slower by about one-half.

V. BEAM SPREAD

Next, the issue of vertical beam spread is addressed,
it proves useful to provide the following definitions for th
quantitative description of the acoustical beam evoluti
First, the wave function is normalized at each ranger so that
1616 J. Acoust. Soc. Am., Vol. 117, No. 3, Pt. 2, March 2005
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c0~r ,z!5c~r ,z!S E
2H

0

uc~r ,z!u2dzD 21/2

, ~8!

whereH is the ocean depth. Thus, the normalized comp
envelope has unit power. The central depthẑ(r ) and rms
width w(r ) of a narrow beam at the ranger are defined as

ẑ~r !5E
2H

0

zuc0~r ,z!u2dz, ~9!

w~r !52S E
2H

0

~z2 ẑ~r !!2uc0~r ,z!u2dzD 1/2

. ~10!

The spatial spectrum of the beam can be defined using
Fourier transformation, so that

S~r ,kz!5E
2H

0

c~r ,z!exp~2 ikzz!dz. ~11!

In complete analogy to the spatial domain analysis, in wa
number space there is the normalized spatial spectrumS0 ,
the center wave numberk̂z , and the rms spectrum widthws ,
all defined as

S0~r ,kz!5S~r ,kz!S E
2~kz!max

~kz!max
uS~r ,kz!u2dkzD 21/2

, ~12!

k̂z~r !5E
2~kz!max

~kz!max
kzuS0~r ,kz!u2dkz , ~13!

ws~r !52S E
2~kz!max

~kz!max
~kz2 k̂z~r !!2uS0~r ,kz!u2dkzD 1/2

.

~14!

In this representation the spatial and spectral widths roug
obey an ‘‘uncertainty’’ relation,w(r )ws(r ).1, so that the
spatial width,w(r ), gives information about the large-sca
beam variability, whilews(r ) gives information about the
high wave number, small-scale beam variability. Figures
and 8 show the average spatial and spectral patterns o
250-Hz beams with source depths at 1300 and 2000
These figures show that the 2000-m beams are spreadin
such a way as to in-fill the axial region, to make the ene
density more-or-less uniform in depth between the unp
turbed beam turning points, and to ‘‘whiten’’ the spatial spe
trum between the maximum/minimum wave numbers of
unperturbed beam. In addition to the in-filling and spect
whitening, there is a slow expansion of the beam towards
ocean boundaries~spatial! and toward high vertical wave
number ~spectral!, which is the dominant mechanism o
change for the 1300-m beam.

Using the spatial and spectra widths of the beams,
fined from Eqs.~10! and~14!, the range evolution of severa
250-Hz beams is shown in Fig. 9. In both cases the sh
ranges show deterministic variability of the beams ove
beam cycle, which gradually damps out to more smooth v
ability with range as saturation becomes established. In
cases the beamwidth defined either spatially or spectrally
creases much more slowly than exponentially. The ra
variations ofw(r ) andws(r ) in Fig. 9 is very close tor 1/2,
A. K. Morozov and J. A. Colosi: Stochastic beams
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FIG. 6. Spatial distribution of scintillation index for the 250-Hz beam with source depths of 1300 m~lower! and 2000 m~upper!. Scintillation index is only
computed where there is significant mean intensity~see Fig. 6!; thus, regions of dark blue represent areas where the scintillation index is not well defi
o
in
e u-

a

implying a diffusive process. The simulations at 125 Hz, n
shown here, have essentially identical beam-spread
curves, which suggests that the scattering is close to g
metrical.
J. Acoust. Soc. Am., Vol. 117, No. 3, Pt. 2, March 2005
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VI. WAVE FIELD COMPLEXITY AND ENTROPY

A useful, though nonunique, representation of the sim
lated wave field complexity is sought. The complexity of
1617A. K. Morozov and J. A. Colosi: Stochastic beams
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random process depends on the number of independent
ponents, and one such representation has already been
sented, namely the spatial spectrum of the beams,S0(r ,kz),
where clearly a white spectrum has more complexity tha
simple line spectrum. However, it proves useful to apply
Karhunen–Loeve~KL ! expansion~Van-Trees, 1968!,3 in-
stead of the Fourier expansion because the KL expan
yields uncorrelated components in this nonstationary e
ronment. The complex envelope of the sound-pressure
at each range step can be represented by a stochastic
with M (r ) significant contributions.M (r ) will be called the
dimension of the random process, with

c~r ,z!5 (
j 51

M ~r !

a j~r !F j~r ,z! ~15!

a j~r !5E
2H

0

c~r ,z!F j~r ,z!dz, ~16!

l j~r !F j~r ,z!5E
2H

0

K~z,z̃,r !F j~r ,z̃!dz̃, ~17!

K~z,z̃,r !5^c~r ,z!c* ~r ,z̃!&, ~18!

where K(z,z̃,r ) is the transverse correlation function
range r, and l j (r ) and F j (r ,z) are the eigenvalues an
eigenfunctions of the KL expansion at ranger, respectively.
The functionsl j (r ) andM (r ) are shown in Figs. 10 and 11
Note that curves for the angle spectrum width and numbe
significant KL expansion components both can be used a
approximate measure of random process.

Precisely, for a stochastic variableG, a logarithmic mea-
sure of the complexity of that variable is the entropyE

E5C2I , ~19!

whereC is a constant andI is the Shannon information~Sh-
annon, 1948! measured in bits

I 52E P~G!log2@P~G!#dG. ~20!

FIG. 7. Scintillation index of 250-Hz beams for four different source dept
and computed only along a line defined by the centroid of the unpertu
narrow beams.
1618 J. Acoust. Soc. Am., Vol. 117, No. 3, Pt. 2, March 2005
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Here,P(G) is the probability density function~PDF!. In this
analysis, the complexity of the complex envelope as a fu
tion of depthz at a given ranger is of interest; therefore, the
Shannon information at a ranger is written

I ~r !52E P~c~r ,z1!,c~r ,z2!,...!

3 log2@P~c~r ,z1!,c~r ,z2!,...!#dc~r ,z1!dc~r ,z2!...

52E log2@P~c~r ,z!#dP~c~r ,z!!, ~21!

whereP(c(r ,z)) is the probability density function for ob
taining the vertical profile ofc at ranger. The calculation of
sound-pressure entropy directly by Monte Carlo stocha
simulation needs a large number of realizations to de
P(c) and is therefore computationally intensive. A simp
fied approach based on the Gaussian approximation of
acoustical fluctuations will be used, that is, the entropy w
be calculated as if a process probability density funct
~PDF! is spatially Gaussian. Figure 7 shows that this is
correct assumption for the ranges where SI is close to 1,
is, r .200 km. Since there is a one-to-one mapping betw
the coefficients of the KL decomposition and the comp
envelopec, the entropy can be calculated as an entropy o
random vector of these coefficients. Generally, the proba
ity density of a vectorX5(x1 ,x2 ,...,xM) of M Gaussian
complex random values with nonsingular correlation mat
KX has the following form:

P5
1

pM det~KX!
exp~2~X2mx!

TKX
21~X2xm!!, ~22!

whereKX5^(X2mx)(X2mx)
T& is the complex correlation

matrix of the complex random vectorX, mx5^X&, and the
superscriptT means complex conjugate and matrix transpo
The entropy,E, of a Gaussian random vector can be calc
lated analytically, yielding~Van-Trees, 1968; Cover and Tho
mas, 1991!

E~r !5C2I ~r !5C1 log2~pM det~KX!!1M log2~e!.
~23!

In the case of a random vector of uncorrelated com
nents of a KL expansion, the entropy is simply the sum of
entropies of the individual KL modes, namely

E~r !5E~l1~r !,l2~r !,...,lM ~r !~r !! ~24!

5C1 (
j 51

M ~r !

log2~epl j~r !! ~25!

5C1M ~r !log2~ep!1 (
j 51

M ~r !

log2 l j~r !. ~26!

For equipartition of energy,l j5l ~eigenvalue spectrum
‘‘white’’ ! the entropy is maximum, but for any other eige
value spectrum the entropy is less than this maximum va
The eigenvalue spectrum from the 250-Hz simulation w
source depth at 2000 m is shown in Fig. 10. The spectr
expands with range, but even at the distance 2000 km
remains nonuniform~‘‘not white’’ !. Note that this simple

,
d
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FIG. 8. Range evolution of the beam wave numberkz spectrum of the 250-Hz beam with source depths of 2000 m~upper! and 1300 m~lower!.
th
o

on
a

nd
nd

al-
The
definition of entropy is based on the assumption that
Gaussian random process is nonsingular; otherwise, a m
rigorous definition must be applied in terms of absolute c
tinuity of probability measures and Radon–Nikodim deriv
tive ~Halmos, 1950!.
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The entropy of the 250-Hz weakly divergent sou
beams is shown in Fig. 12 for beams with different sou
source depths. In all casesC50 andM (r )5100, which is
larger than the maximum number of significant KL eigenv
ues at any range and for any of the acoustical beams.
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entropy was calculated for the ranges where the unpertu
beam crosses the sound-channel axis~i.e., 1300-m depth!.
This approach eliminates the deterministic oscillations of
tropy at the shorter ranges, an effect seen in Fig. 9. At ran

FIG. 9. Acoustical beamwidth,w(r ) ~upper! and spectral beamwidthws(r )
~lower! as a function of propagation range for the 250-Hz beams at so
depths of 1300 m~thick line!, 1600 m ~medium line!, and 2000 m~thin
line!.

FIG. 10. Karhunen–Loeve~KL ! eigenvalue spectrum as a function of ran
for the 250-Hz beam with source depth at 2000 m.
1620 J. Acoust. Soc. Am., Vol. 117, No. 3, Pt. 2, March 2005
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larger than roughly 1000 km, the entropy is increasing mo
tonically and approximately linearly for all beams, and t
entropy rates in the linear regime are 0.11, 0.11, and 0
bit/km for the 1300-, 1600-, and 2000-m source depths,
spectively. The scintillation index curves~Fig. 7! show that
the linear behavior of entropy occurs very close to full sa
ration. Further, the linear rates are about the same for
beams, so that the anisotropy associated with beam ang
not strong, though primarily small-angle beams were cons
ered. It must be noted that the initial rapid nonlinear rise
the entropy is an artifact of the Gaussian approximation
the entropy calculation; in the linear entropy region t
Gaussian approximation is very good~see Fig. 7!. Figure 12
also shows the entropy of a 125-Hz beam with the sou
source at 2000 m, and there is virtually no difference b

ce

FIG. 11. DimensionM (r ) of random beams as a function of range. Bea
at different source depths are 1300 m~thick line:axial!, 1600 m~medium
line!, and 2000 m~thin line!.

FIG. 12. Entropy of 250-Hz acoustical beams for source depths of 130
~thick line circles!, 1600 m~medium line crosses!, and 2000 m~thin line
triangles!. Fits in the linear region of the curves yield entropy rates of 0
~1300 m!, 0.11 ~1600 m!, and 0.06~2000 m! bit/km. The 2000-m source
depth, 125-Hz entropy curve~arbitrarily vertical offset! is shown with a dash
curve and diamond symbols. Also shown in solid is twice the KS entro
2hKS50.04 bit/km ~arbitrary vertical offset! computed from the ray equa
tions for the 1300-m axial ray.
A. K. Morozov and J. A. Colosi: Stochastic beams
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tween the long-range entropy rate at the two frequencies.
linear increase inE(r ) means that the number of equiprob
ble states of the dynamical system~complexity! is increasing
exponentially and independent of acoustic frequency,
complete accordance with ray chaos predictions~Brown
et al., 2003, Beron-Veraet al., 2003!. The frequency inde-
pendence of the entropy rate not only reinforces the geom
ric result but also suggests that these results carry ove
broadband signals. In the next section it is determined if
rate of exponential increase in complexity computed fr
the full-wave simulations is comparable to the rate compu
from ray theory.

VII. RAY ENTROPY

It has been well established that ray trajectories in oc
acoustic propagation through internal waves are chaotic
unstable to perturbations in the medium and in the ini
conditions~Brown et al., 2003; Beron-Veraet al., 2003!. The
chaotic nature of ray propagation in the ocean is quanti
using the Lyapunov exponentnL , which is derived from a
stability analysis of the ray path~Brown et al., 2003!, but it
is often useful to express this instability using informati
theory ~Latora and Baranger, 1999; Casati, 1996! such that
the informationI (s) associated with a segment of ray traje
tory of lengths is equal asymptotically to

lim
usu→`

I ~s!

s
5hKS, ~27!

wherehKS is the Kolmogorov–Sinai~KS! entropy. Note here
that KS entropy is actually an entropy rate. For bound
dynamical systems like underwater soundnL.hKS ~Gaspard,
1990!. A consequence of the chaotic nature of ray paths
that the number of eigenrays connecting a source and a
ceiver will grow exponentially with range, leading to an e
ponential increase in wave field complexity. Thus, the ex
nential increase in wave field complexity is examined us
the Lyapunov exponent~a measure of the KS entropy!,
which is to be compared to the computed rate of Shan
entropy. Another comparison between Shannon entropy
KS entropy for different dynamical systems was done
Latora and Baranger~1999!.

The ray numerics are carried out as follows. Using
SPE Hamiltonian

H~z,p;r !5
p2

2
1U~r ,z!, ~28!

wherep5tanuray, the following well-known ray and stabil
ity equations are solved:

dz

dr
5

]H

]p
,

dp

dr
52

]H

]z
, ~29!

dJ

dr
5KJ, ~30!

where

J5S ]p/]p0uz0
]p/]z0up0

]z/]p0uz0
]z/]z0up0

D , ~31!
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K5S 2]zpH 2]zzH

]ppH 2]zpH
D 5S 0 2]zzU

1 0 D . ~32!

The initial condition forJ at r 50 is the identity matrix. The
Lyapunov exponent is derived from the stability equatio
and is given by

nL5 lim
r→`

loguTr~J!u
r

, ~33!

where Tr(J) is the trace or sum over the diagonal eleme
of the stability matrixJ ~Brown et al., 2003; Wolfson and
Tomsovic, 2001!. In the present calculation the asymptot
range result is not computed, however, and a finite ra
stability exponent defined by

n5
loguTr~J!u

r
, ~34!

is evaluated. This finite range stability exponent has
property that~Wolfson and Tomsovic, 2001!

nL5^n&;hKS, ~35!

where the expectation values imply averaging over real
tions of the ocean internal wave field. Last, the ray init
conditions arez(0)51300 m andp(0)50, an axial ray.

An explicit adaptive Runge–Kutta algorithm was us
to calculate 200 realization of ray trajectories with the abo
initial conditions. The second derivatives ofU(r ,z) were
calculated using cubic spline interpolation, and the bas
logarithm was used in Eq.~35! to get result measured in
bit/km so as to be comparable with the Shannon entr
results.2 The calculation yields an estimate ofhKS of 0.020
bit/km for the axial ray, decreasing linearly to 0.012 bit/k
for the 2000-m source ray. These values are comparabl
other calculations of Lyapunov exponent for ray propagat
through ocean internal waves~Beron-Vera et al., 2003;
Beron-Vera and Brown, 2003!. In comparing this value to the
computed gradients of Shannon entropy for the complex
velope, it must be noted that the complex envelope inclu
information about both phase and amplitude, whilehKS is
only a measure of the sound-field energy characterist
such as intensity and angular power density. So, the infor
tion gradient of the full-field entropy must be at least twi
the KS entropy. Thus, 2hKS50.04 bit/km is placed in Fig. 12
for comparison with the full-wave Shannon entropy, and
der of magnitude agreement with the axial beam is seen
must be emphasized here that the comparison between
entropy and Shannon entropy rate is crude as we have
compared the KS entropy of one ray, while the Shann
entropy involves a bundle of rays with a range~albeit small!
of initial conditions. It is known, for example, that there ca
be significant variability of Lyapunov exponent as a functi
of initial conditions due to the structure of the backgrou
sound-speed profile~Beron-Vera et al., 2003; Beron-Vera
and Brown, 2003!.

The comparison of Shannon or physical entropies cur
E(r ) of the complex envelope of the full-field simulatio
with 2hKS shows that the evolution of narrow-beam entro
has two stages. In the first stage the beamwidth and sp
spectrum are growing rapidly with oscillations due to diffra
1621A. K. Morozov and J. A. Colosi: Stochastic beams
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tive effects. These effects are deemed diffractive beca
they are not described by the geometricalhKS rate. The sec-
ond stage occurs approximately near saturation; the ent
gradient slows down and tends to a level which is appro
mately twice the KS entropy of the corresponding chao
ray trajectories. This second stage can be called chaotic f
both a full-wave and ray perspective, because entrop
monotonically growing with the gradient determined by t
average Lyapunov exponent. Simultaneously, beamwi
spatial spectrum width, and dimension of the random proc
are all approximately linearly increasing. The stabilization
entropy gradient shows that, when fluctuations appro
saturation, ray chaos phenomenon becomes the main fa
determining the properties of scattering processes.

VIII. SUMMARY AND DISCUSSION

Monte Carlo stochastic simulation of acoustic scatter
by internal waves allows analysis of the variability of weak
divergent beam as a function of range and beam angl
realistic Garrett–Munk internal wave model for the induc
sound-speed fluctuation was applied. The analysis was
formed in terms of information theory using the physical
Shannon entropy of the complex acoustical field envelop
a logarithmic measure of wave chaos complexity a
Kolmogorov–Sinai entropy as a logarithmic measure of
chaos complexity. The relative intensity variance or scin
lation index was used to quantify the approach to saturat
and for steep-angle beams SI approaches 1 from ab
while for small-angle beams the approach is from below
At the range near saturation the rate of Shannon entropy
the complex envelope of the finite-frequency acousti
beams decreases and converges to a constant value wh
approximately twice as large as the Kolmogorov–Sinai
tropy or average Lyapunov exponent associated with the
tral ray of that beam. This correspondence suggests a
wave manifestation of ray chaos, but only after saturation
the scintillation index has occurred. In spite of this cor
spondence, the simulated acoustical beams are not se
expand exponentially~or explosively!, but they expand dif-
fusively.

The results obtained in this analysis can be compare
the work of Wolfson and Tappert~2000!, and Tappert~2003!,
who treat the problem of wave and ray chaos for cons
background sound speed~no waveguide! and a ocean
mesoscale-like single-scale random medium~Gaussian cor-
relation function!. Using the theory of Gaussian beams, th
predict that the width of a narrow-angle beam will increa
exponentially with range at a rate that is predicted by
geometric Lyapunov exponent, which they can compute a
lytically. The observation of this explosive growth of th
beam is masked at short range by diffractive beam spread
and at long range by a surmised breakdown of geometr
theory near saturation. The breakdown at long range
proved very difficult to estimate, while the short-range ma
ing by diffraction is relatively straightforward.

In the present analysis, which involves the ocean wa
guide and realistic internal-wave sound speed perturbati
a very different picture emerges. Because of the resto
force of the waveguide, a narrow-angle beam cannot sp
1622 J. Acoust. Soc. Am., Vol. 117, No. 3, Pt. 2, March 2005
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exponentially, and thus the signature of chaos must be fo
in some other observable. It has been shown that suc
signature is found in the wave field entropy. Like the n
waveguide case, at short ranges the signature of ray cha
not manifest in the entropy due to deterministic and diffra
tive effects. However, once the wave field comes very cl
to saturation, the variation of entropy becomes linear w
range roughly as predicted by the KS entropy. Thus, wh
the no-waveguide case suggests an arrest of ray chaos m
festations at saturation, the waveguide case examined
shows that near-saturation is an essential element. Cle
the wave field entropy cannot grow indefinitely as this s
tem is bounded by the ocean surface and bottom. We surm
that the entropy will grow linearly until acoustic energy fil
the entire water column, at which time the entropy sho
stabilize.

It also should be emphasized that our results do not p
clude the use of geometric methods for describing scatte
phenomena at shorter ranges where the Shannon entropy
and KS entropy do not agree. In fact, theAr scaling of the
beamwidth curves and their insensitivity to acoustic f
quency~Fig. 9! suggest strongly that the scattering is ge
metric.

The numerical results of this paper require a theoret
foundation which we hope to formulate in future work.
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1In ocean acoustic propagation the range variables,r, is equivalent to the
time variable,t, in dynamical systems theory.

2The conversion from bits/km to km21 simply involves a change in the bas
of the logarithms. Thus, an entropy rate of 0.02 bits/km would
0.02(log2 e)2150.0139 km21.

3In geophysics the Karhunen–Loeve~KL ! expansion is often referred to a
an empirical orthogonal function~EOF! expansion.
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