1,042 research outputs found

    First principles modelling of magnesium titanium hydrides

    Get PDF
    Mixing Mg with Ti leads to a hydride Mg(x)Ti(1-x)H2 with markedly improved (de)hydrogenation properties for x < 0.8, as compared to MgH2. Optically, thin films of Mg(x)Ti(1-x)H2 have a black appearance, which is remarkable for a hydride material. In this paper we study the structure and stability of Mg(x)Ti(1-x)H2, x= 0-1 by first-principles calculations at the level of density functional theory. We give evidence for a fluorite to rutile phase transition at a critical composition x(c)= 0.8-0.9, which correlates with the experimentally observed sharp decrease in (de)hydrogenation rates at this composition. The densities of states of Mg(x)Ti(1-x)H2 have a peak at the Fermi level, composed of Ti d states. Disorder in the positions of the Ti atoms easily destroys the metallic plasma, however, which suppresses the optical reflection. Interband transitions result in a featureless optical absorption over a large energy range, causing the black appearance of Mg(x)Ti(1-x)H2.Comment: 22 pages, 9 figures, 4 table

    Microscopic Coexistence of Ferromagnetism and Superconductivity in Single-Crystal UCoGe

    Full text link
    Unambiguous evidence for the microscopic coexistence of ferromagnetism and superconductivity in UCoGe (TCurie2.5T_{\rm Curie} \sim 2.5 K and TSCT_{\rm SC} \sim 0.6 K) is reported from 59^{59}Co nuclear quadrupole resonance (NQR). The 59^{59}Co-NQR signal below 1 K indicates ferromagnetism throughout the sample volume, while nuclear spin-lattice relaxation rate 1/T11/T_1 in the ferromagnetic (FM) phase decreases below TSCT_{\rm SC} due to the opening of the superconducting(SC) gap. The SC state was found to be inhomogeneous, suggestive of a self-induced vortex state, potentially realizable in a FM superconductor. In addition, the 59^{59}Co-NQR spectrum around TCurieT_{\rm Curie} show that the FM transition in UCoGe possesses a first-order character, which is consistent with the theoretical prediction that the low-temperature FM transition in itinerant magnets is generically of first-order.Comment: 5 pages, 5 figure

    Superconductivity in novel BiS2-based layered superconductor LaO1-xFxBiS2

    Full text link
    Layered superconductors have provided some interesting fields in condensed matter physics owing to the low dimensionality of their electronic states. For example, the high-Tc (high transition temperature) cuprates and the Fe-based superconductors possess a layered crystal structure composed of a stacking of spacer (blocking) layers and conduction (superconducting) layers, CuO2 planes or Fe-Anion layers. The spacer layers provide carriers to the conduction layers and induce exotic superconductivity. Recently, we have reported superconductivity in the novel BiS2-based layered compound Bi4O4S3. It was found that superconductivity of Bi4O4S3 originates from the BiS2 layers. The crystal structure is composed of a stacking of BiS2 superconducting layers and the spacer layers, which resembles those of high-Tc cuprate and the Fe-based superconductors. Here we report a discovery of a new type of BiS2-based layered superconductor LaO1-xFxBiS2, with a Tc as high as 10.6 K.Comment: 23 pages, 5 figures, 1 table (table caption has been revised), to appear in J. Phys. Soc. Jp

    Achirality in the low temperature structure and lattice modes of tris(acetylacetonate)iron(iii)

    Get PDF
    Tris(acetylacteonate) iron(III) is a relatively ubiquitous mononuclear inorganic coordination complex. The bidentate nature of the three acetylacteonate ligands coordinating around a single centre inevitably leads to structural isomeric forms, however whether or not this relates to chirality in the solid state has been questioned in the literature. Variable temperature neutron diffraction data down to T = 3 K, highlights the dynamic nature of the ligand environment, including the motions of the hydrogen atoms. The Fourier transform of the molecular dynamics simulation based on the experimentally determined structure was shown to closely reproduce the low temperature vibrational density of states obtained using inelastic neutron scattering

    Quasi-molecular and atomic phases of dense solid hydrogen

    Full text link
    The high-pressure phases of solid hydrogen are of fundamental interest and relevant to the interior of giant planets; however, knowledge of these phases is far from complete. Particle swarm optimization (PSO) techniques were applied to a structural search, yielding hitherto unexpected high-pressure phases of solid hydrogen at pressures up to 5 TPa. An exotic quasi-molecular mC24 structure (space group C2/c, stable at 0.47-0.59 TPa) with two types of intramolecular bonds was predicted, providing a deeper understanding of molecular dissociation in solid hydrogen, which has been a mystery for decades. We further predicted the existence of two atomic phases: (i) the oC12 structure (space group Cmcm, stable at > 2.1 TPa), consisting of planar H3 clusters, and (ii) the cI16 structure, previously observed in lithium and sodium, stable above 3.5 TPa upon consideration of the zero-point energy. This work clearly revised the known zero-temperature and high-pressure (>0.47 TPa) phase diagram for solid hydrogen and has implications for the constituent structures of giant planets.Comment: accepted in The Journal of Physical Chemistr

    3,12-Diaza-6,9-diazo­nia-2,13-dioxotetra­decane bis­(perchlorate)

    Get PDF
    The crystal structure of the title diprotonated diacetyl­triethyl­ene­tetra­mine (DAT) perchorate salt, C10H24N4O2 2+·2ClO4 −, can be described as a three-dimensional assembly of alternating layers consisting of diprotonated diacetyl­triethyl­ene­tetra­mine (H2DAT)2+ strands along [100] and the anionic species ClO4 −. The (H2DAT)2+ cations in the strands are connected via N—H⋯O hydrogen bonding between the acetyl groups and the amine groups of neighbouring (H2DAT)2+ cations. Layers of (H2DAT)2+ strands and perchlorate anions are connected by a network of hydrogen bonds between the NH and NH2 groups and the O atoms of the perchlorate anion. The asymmetric unit consits of one perchlorate anion in a general position, as well as of one cation that is located on a center of inversion

    Heavy-Mass Behavior of Ordered Perovskites ACu3Ru4O12 (A = Na, Ca, La)

    Full text link
    We synthesized ACu3Ru4O12 (A = Na, Na0.5Ca0.5, Ca, Ca0.5La0.5, La) and measured their DC magnetization, AC susceptibility, specific heat, and resistivity, in order to investigate the effects of the hetero-valent substitution. A broad peak in the DC magnetization around 200 K was observed only in CaCu3Ru4O12, suggesting the Kondo effect due to localized Cu2+ ions. However, the electronic specific heat coefficients exhibit large values not only for CaCu3Ru4O12 but also for all the other samples. Moreover, the Wilson ratio and the Kadowaki-Woods ratio of our samples are all similar to the values of other heavy-fermion compounds. These results question the Kondo effect as the dominant origin of the mass enhancement, and rather indicate the importance of correlations among itinerant Ru electrons.Comment: 6 pages, 6 figures, to be published in J. Phys. Soc. Jp

    Effects of antenatal betamethasone on preterm human and mouse ductus arteriosus: comparison with baboon data.

    Get PDF
    BackgroundAlthough studies involving preterm infants ≤34 weeks gestation report a decreased incidence of patent ductus arteriosus after antenatal betamethasone, studies involving younger gestation infants report conflicting results.MethodsWe used preterm baboons, mice, and humans (≤276/7 weeks gestation) to examine betamethasone's effects on ductus gene expression and constriction both in vitro and in vivo.ResultsIn mice, betamethasone increased the sensitivity of the premature ductus to the contractile effects of oxygen without altering the effects of other contractile or vasodilatory stimuli. Betamethasone's effects on oxygen sensitivity could be eliminated by inhibiting endogenous prostaglandin/nitric oxide signaling. In mice and baboons, betamethasone increased the expression of several developmentally regulated genes that mediate oxygen-induced constriction (K+ channels) and inhibit vasodilator signaling (phosphodiesterases). In human infants, betamethasone increased the rate of ductus constriction at all gestational ages. However, in infants born ≤256/7 weeks gestation, betamethasone's contractile effects were only apparent when prostaglandin signaling was inhibited, whereas at 26-27 weeks gestation, betamethasone's contractile effects were apparent even in the absence of prostaglandin inhibitors.ConclusionsWe speculate that betamethasone's contractile effects may be mediated through genes that are developmentally regulated. This could explain why betamethasone's effects vary according to the infant's developmental age at birth

    On Quantum Markov Chains on Cayley tree II: Phase transitions for the associated chain with XY-model on the Cayley tree of order three

    Full text link
    In the present paper we study forward Quantum Markov Chains (QMC) defined on a Cayley tree. Using the tree structure of graphs, we give a construction of quantum Markov chains on a Cayley tree. By means of such constructions we prove the existence of a phase transition for the XY-model on a Cayley tree of order three in QMC scheme. By the phase transition we mean the existence of two now quasi equivalent QMC for the given family of interaction operators {K}\{K_{}\}.Comment: 34 pages, 1 figur

    Rietveld refinement of Sr5(AsO4)3Cl from high-resolution synchrotron data

    Get PDF
    The apatite-type compound, penta­strontium tris­[arsenate(V)] chloride, Sr5(AsO4)3Cl, has been synthesized by ion exchange at high temperature from a synthetic sample of mimetite [Pb5(AsO4)3Cl] with SrCO3 as a by-product. The results of the Rietveld refinement, based on high resolution synchrotron X-ray powder diffraction data, show that the title compound crystallizes in the same structure as other halogenoapatites with general formula A 5(YO4)3 X (A = divalent cation, Y = penta­valent cation, and X = F, Cl or Br) in the space group P63/m. The structure consists of isolated tetra­hedral AsO4 3− anions (the As atom and two O atoms have m symmetry), separated by two crystallographically independent Sr2+ cations that are located on mirror planes and threefold rotation axes, respectively. One Sr atom is coordinated by nine O atoms and the other by six. The chloride anions (site symmetry ) are at the 2a sites and are located in the channels of the structure
    corecore