198 research outputs found

    Polycystin-2 is required for chondrocyte mechanotransduction and traffics to the primary cilium in response to mechanical stimulation

    Get PDF
    Primary cilia and associated intraflagellar transport are essential for skeletal development, joint homeostasis, and the response to mechanical stimuli, although the mechanisms remain unclear. Polycystin-2 (PC2) is a member of the transient receptor potential polycystic (TRPP) family of cation channels, and together with Polycystin-1 (PC1), it has been implicated in cilia-mediated mechanotransduction in epithelial cells. The current study investigates the effect of mechanical stimulation on the localization of ciliary polycystins in chondrocytes and tests the hypothesis that they are required in chondrocyte mechanosignaling. Isolated chondrocytes were subjected to mechanical stimulation in the form of uniaxial cyclic tensile strain (CTS) in order to examine the effects on PC2 ciliary localization and matrix gene expression. In the absence of strain, PC2 localizes to the chondrocyte ciliary membrane and neither PC1 nor PC2 are required for ciliogenesis. Cartilage matrix gene expression (Acan, Col2a) is increased in response to 10% CTS. This response is inhibited by siRNA-mediated loss of PC1 or PC2 expression. PC2 ciliary localization requires PC1 and is increased in response to CTS. Increased PC2 cilia trafficking is dependent on the activation of transient receptor potential cation channel subfamily V member 4 (TRPV4) activation. Together, these findings demonstrate for the first time that polycystins are required for chondrocyte mechanotransduction and highlight the mechanosensitive cilia trafficking of PC2 as an important component of cilia-mediated mechanotransduction

    Concussion return-to-play behaviour of South African Rugby Union (SA Rugby) Youth Week players: a pilot study

    Get PDF
    Introduction: BokSmart has disseminated Graduated Return-to-Play (GRTP) guidelines for concussions management to all, but specifically coaches, in South Africa. Medical clearance before returning to play (RTP) is poorly adhered to in the GRTP steps. This study explored barriers to compliance with medical clearance prior to RTP.Methods: Players who suffered a concussion during the 2014/2015 South African Rugby Youth Week Tournaments were followed-up telephonically until RTP. Semi-structured interviews were conducted to explore enablers/barriers to seeking/not seeking medical clearance before RTP.Results: Of those who did not seek medical clearance (47%), 80% indicated that the player/parent or coach felt this was unnecessary. Of those who did seek medical clearance, 65% reported they were instructed to do so either by the tournament doctor who diagnosed the injury or by the school coach.Conclusion: Besides coaches, parents and medical doctors have an important influence on players’ RTP behaviour. The findings of this pilot study need to be repeated in a larger cohort.Keywords: injury management, head injury, youth, football, South Afric

    Age-Related Attenuation of Dominant Hand Superiority

    Get PDF
    The decline of motor performance of the human hand-arm system with age is well-documented. While dominant hand performance is superior to that of the non-dominant hand in young individuals, little is known of possible age-related changes in hand dominance. We investigated age-related alterations of hand dominance in 20 to 90 year old subjects. All subjects were unambiguously right-handed according to the Edinburgh Handedness Inventory. In Experiment 1, motor performance for aiming, postural tremor, precision of arm-hand movement, speed of arm-hand movement, and wrist-finger speed tasks were tested. In Experiment 2, accelerometer-sensors were used to obtain objective records of hand use in everyday activities

    Deconstructing the DGAT1 enzyme: membrane interactions at substrate binding sites

    Get PDF
    Diacylglycerol acyltransferase 1 (DGAT1) is a key enzyme in the triacylglyceride synthesis pathway. Bovine DGAT1 is an endoplasmic reticulum membrane-bound protein associated with the regulation of fat content in milk and meat. The aim of this study was to evaluate the interaction of DGAT1 peptides corresponding to putative substrate binding sites with different types of model membranes. Whilst these peptides are predicted to be located in an extramembranous loop of the membrane-bound protein, their hydrophobic substrates are membrane-bound molecules. In this study, peptides corresponding to the binding sites of the two substrates involved in the reaction were examined in the presence of model membranes in order to probe potential interactions between them that might influence the subsequent binding of the substrates. Whilst the conformation of one of the peptides changed upon binding several types of micelles regardless of their surface charge, suggesting binding to hydrophobic domains, the other peptide bound strongly to negatively-charged model membranes. This binding was accompanied by a change in conformation, and produced leakage of the liposome-entrapped dye calcein. The different hydrophobic and electrostatic interactions observed suggest the peptides may be involved in the interactions of the enzyme with membrane surfaces, facilitating access of the catalytic histidine to the triacylglycerol substrates

    Structure-Function Analysis of Diacylglycerol Acyltransferase Sequences from 70 Organisms

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Diacylglycerol acyltransferase families (DGATs) catalyze the final and rate-limiting step of triacylglycerol (TAG) biosynthesis in eukaryotic organisms. Understanding the roles of DGATs will help to create transgenic plants with value-added properties and provide clues for therapeutic intervention for obesity and related diseases. The objective of this analysis was to identify conserved sequence motifs and amino acid residues for better understanding of the structure-function relationship of these important enzymes.</p> <p>Results</p> <p>117 DGAT sequences from 70 organisms including plants, animals, fungi and human are obtained from database search using tung tree DGATs. Phylogenetic analysis separates these proteins into DGAT1 and DGAT2 subfamilies. These DGATs are integral membrane proteins with more than 40% of the total amino acid residues being hydrophobic. They have similar properties and amino acid composition except that DGAT1s are approximately 20 kDa larger than DGAT2s. DGAT1s and DGAT2s have 41 and 16 completely conserved amino acid residues, respectively, although only two of them are shared by all DGATs. These residues are distributed in 7 and 6 sequence blocks for DGAT1s and DGAT2s, respectively, and located at the carboxyl termini, suggesting the location of the catalytic domains. These conserved sequence blocks do not contain the putative neutral lipid-binding domain, mitochondrial targeting signal, or ER retrieval motif. The importance of conserved residues has been demonstrated by site-directed and natural mutants.</p> <p>Conclusions</p> <p>This study has identified conserved sequence motifs and amino acid residues in all 117 DGATs and the two subfamilies. None of the completely conserved residues in DGAT1s and DGAT2s is present in recently reported isoforms in the multiple sequences alignment, raising an important question how proteins with completely different amino acid sequences could perform the same biochemical reaction. The sequence analysis should facilitate studying the structure-function relationship of DGATs with the ultimate goal to identify critical amino acid residues for engineering superb enzymes in metabolic engineering and selecting enzyme inhibitors in therapeutic application for obesity and related diseases.</p

    Responding to GPs' information resource needs: implementation and evaluation of a complementary medicines information resource in Queensland general practice

    Get PDF
    Background: Australian General Practitioners (GPs) are in the forefront of primary health care and in an excellent position to communicate with their patients and educate them about Complementary Medicines (CMs) use. However previous studies have demonstrated that GPs lack the knowledge required about CMs to effectively communicate with patients about their CMs use and they perceive a need for information resources on CMs to use in their clinical practice. This study aimed to develop, implement, and evaluate a CMs information resource in Queensland (Qld) general practice.Methods: The results of the needs assessment survey of Qld general practitioners (GPs) informed the development of a CMs information resource which was then put through an implementation and evaluation cycle in Qld general practice. The CMs information resource was a set of evidence-based herbal medicine fact sheets. This resource was utilised by 100 Qld GPs in their clinical practice for four weeks and was then evaluated. The evaluation assessed GPs' (1) utilisation of the resource (2) perceived quality, usefulness and satisfaction with the resource and (3) perceived impact of the resource on their knowledge, attitudes, and practice of CMs.Results: Ninety two out of the 100 GPs completed the four week evaluation of the fact sheets and returned the post-intervention survey. The herbal medicine fact sheets produced by this study were well accepted and utilised by Qld GPs. The majority of GPs perceived that the fact sheets were a useful resource for their clinical practice. The fact sheets improved GPs' attitudes towards CMs, increased their knowledge of those herbal medicines and improved their communication with their patients about those specific herbs. Eighty-six percent of GPs agreed that if they had adequate resources on CMs, like the herbal medicine fact sheets, then they would communicate more to their patients about their use of CMs.Conclusion: Further educational interventions on CMs need to be provided to GPs to increase their knowledge of CMs and to improve their communication with patients about their CMs use

    A genome scan for milk production traits in dairy goats reveals two new mutations in <i>Dgat1</i> reducing milk fat content

    Get PDF
    The quantity of milk and milk fat and proteins are particularly important traits in dairy livestock. However, little is known about the regions of the genome that influence these traits in goats. We conducted a genome wide association study in French goats and identified 109 regions associated with dairy traits. For a major region on chromosome 14 closely associated with fat content, the Diacylglycerol O-Acyltransferase 1 (DGAT1) gene turned out to be a functional and positional candidate gene. The caprine reference sequence of this gene was completed and 29 polymorphisms were found in the gene sequence, including two novel exonic mutations: R251L and R396W, leading to substitutions in the protein sequence. The R251L mutation was found in the Saanen breed at a frequency of 3.5% and the R396W mutation both in the Saanen and Alpine breeds at a frequencies of 13% and 7% respectively. The R396W mutation explained 46% of the genetic variance of the trait, and the R251L mutation 6%. Both mutations were associated with a notable decrease in milk fat content. Their causality was then demonstrated by a functional test. These results provide new knowledge on the genetic basis of milk synthesis and will help improve the management of the French dairy goat breeding program

    Evolutionary view of acyl-CoA diacylglycerol acyltransferase (DGAT), a key enzyme in neutral lipid biosynthesis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Triacylglycerides (TAGs) are a class of neutral lipids that represent the most important storage form of energy for eukaryotic cells. DGAT (acyl-CoA: diacylglycerol acyltransferase; EC 2.3.1.20) is a transmembrane enzyme that acts in the final and committed step of TAG synthesis, and it has been proposed to be the rate-limiting enzyme in plant storage lipid accumulation. In fact, two different enzymes identified in several eukaryotic species, DGAT1 and DGAT2, are the main enzymes responsible for TAG synthesis. These enzymes do not share high DNA or protein sequence similarities, and it has been suggested that they play non-redundant roles in different tissues and in some species in TAG synthesis. Despite a number of previous studies on the DGAT1 and DGAT2 genes, which have emphasized their importance as potential obesity treatment targets to increase triacylglycerol accumulation, little is known about their evolutionary timeline in eukaryotes. The goal of this study was to examine the evolutionary relationship of the DGAT1 and DGAT2 genes across eukaryotic organisms in order to infer their origin.</p> <p>Results</p> <p>We have conducted a broad survey of fully sequenced genomes, including representatives of Amoebozoa, yeasts, fungi, algae, musses, plants, vertebrate and invertebrate species, for the presence of DGAT1 and DGAT2 gene homologs. We found that the DGAT1 and DGAT2 genes are nearly ubiquitous in eukaryotes and are readily identifiable in all the major eukaryotic groups and genomes examined. Phylogenetic analyses of the DGAT1 and DGAT2 amino acid sequences revealed evolutionary partitioning of the DGAT protein family into two major DGAT1 and DGAT2 clades. Protein secondary structure and hydrophobic-transmembrane analysis also showed differences between these enzymes. The analysis also revealed that the MGAT2 and AWAT genes may have arisen from DGAT2 duplication events.</p> <p>Conclusions</p> <p>In this study, we identified several DGAT1 and DGAT2 homologs in eukaryote taxa. Overall, the data show that DGAT1 and DGAT2 are present in most eukaryotic organisms and belong to two different gene families. The phylogenetic and evolutionary analyses revealed that DGAT1 and DGAT2 evolved separately, with functional convergence, despite their wide molecular and structural divergence.</p

    DAG tales: the multiple faces of diacylglycerol—stereochemistry, metabolism, and signaling

    Get PDF
    corecore