515 research outputs found
Proton Spin Relaxation Induced by Quantum Tunneling in Fe8 Molecular Nanomagnet
The spin-lattice relaxation rate and NMR spectra of H in
single crystal molecular magnets of Fe8 have been measured down to 15 mK. The
relaxation rate shows a strong temperature dependence down to 400
mK. The relaxation is well explained in terms of the thermal transition of the
iron state between the discreet energy levels of the total spin S=10. The
relaxation time becomes temperature independent below 300 mK and is
longer than 100 s. In this temperature region stepwise recovery of the
H-NMR signal after saturation was observed depending on the return field of
the sweep field. This phenomenon is attributed to resonant quantum tunneling at
the fields where levels cross and is discussed in terms of the Landau-Zener
transition.Comment: 13 pages, 5 figure
Magnetic dipolar ordering and quantum phase transition in Fe8 molecular magnet
We show that a crystal of mesoscopic Fe8 single molecule magnets is an
experimental realization of the Quantum Ising Phase Transition (QIPT) model in
a transverse field, with dipolar interactions. Quantum annealing has enabled us
to explore the QIPT at thermodynamical equilibrium. The phase diagram and
critical exponents we obtain are compared to expectations for the mean-field
QIPT Universality class.Comment: 5 pages 4 figure
Presence of Cartilage Stem/Progenitor Cells in Adult Mice Auricular Perichondrium
BACKGROUND: Based on evidence from several other tissues, cartilage stem/progenitor cells in the auricular cartilage presumably contribute to tissue development or homeostasis of the auricle. However, no definitive studies have identified or characterized a stem/progenitor population in mice auricle. METHODOLOGY/PRINCIPAL FINDINGS: The 5-bromo-2'-deoxyuridine (BrdU) label-retaining technique was used to label dividing cells in fetal mice. Observations one year following the labeling revealed that label-retaining cells (LRCs) were present specifically in auricular perichondrium at a rate of 0.08±0.06%, but LRCs were not present in chondrium. Furthermore, LRCs were successfully isolated and cultivated from auricular cartilage. Immunocytochemical analyses showed that LRCs express CD44 and integrin-α(5). These LRCs, putative stem/progenitor cells, possess clonogenicity and chondrogenic capability in vitro. CONCLUSIONS/SIGNIFICANCE: We have identified a population of putative cartilage stem/progenitor cells in the auricular perichondrium of mice. Further characterization and utilization of the cell population should improve our understanding of basic cartilage biology and lead to advances in cartilage tissue engineering and novel therapeutic strategies for patients with craniofacial defects, including long-term tissue restoration
On the Propagation of Slip Fronts at Frictional Interfaces
The dynamic initiation of sliding at planar interfaces between deformable and
rigid solids is studied with particular focus on the speed of the slip front.
Recent experimental results showed a close relation between this speed and the
local ratio of shear to normal stress measured before slip occurs (static
stress ratio). Using a two-dimensional finite element model, we demonstrate,
however, that fronts propagating in different directions do not have the same
dynamics under similar stress conditions. A lack of correlation is also
observed between accelerating and decelerating slip fronts. These effects
cannot be entirely associated with static local stresses but call for a dynamic
description. Considering a dynamic stress ratio (measured in front of the slip
tip) instead of a static one reduces the above-mentioned inconsistencies.
However, the effects of the direction and acceleration are still present. To
overcome this we propose an energetic criterion that uniquely associates,
independently on the direction of propagation and its acceleration, the slip
front velocity with the relative rise of the energy density at the slip tip.Comment: 15 pages, 6 figure
Spin dynamics in molecular ring nanomagnets: Significant effect of acoustic phonons and magnetic anisotropies
The nuclear spin-lattice relaxation rate 1/T_1_ is calculated for magnetic
ring clusters by fully diagonalizing their microscopic spin Hamiltonians.
Whether the nearest-neighbor exchange interaction J is ferromagnetic or
antiferromagnetic, 1/T_1_ versus temperature T in ring nanomagnets may be
peaked at around k_B_T=|J| provided the lifetime broadening of discrete energy
levels is in proportion to T^3^. Experimental findings for ferromagnetic and
antiferromagnetic Cu^II^ rings are reproduced with crucial contributions of
magnetic anisotropies as well as acoustic phonons.Comment: 5 pages with 5 figures embedded, to be published in J. Phys. Soc.
Jpn. 75, No. 10 (2006
Neuromuscular synaptic transmission in aged ganglioside-deficient mice
Gangliosides are sialylated glycosphingolipids that are present in high density on neuronal membranes, especially at synapses, where they are assumed to play functional or modulating roles. Mice lacking GM2/GD2-synthase express only the simple gangliosides GD3 and GM3 and develop progressive motor behaviour deficits upon ageing, apparently due to failing complex ganglioside-dependent maintenance and/or repair processes or, alternatively, toxic GM3/GD3 accumulation. We investigated the function of neuromuscular junctions (NMJs) of aged (>9 month-old) GM2/GD2-synthase null-mutant mice, because synaptic dysfunction might develop with age and could potentially contribute to the late-onset motor phenotype. In addition, we studied NMJs of old mice lacking GD3-synthase (expressing only O- and a-series gangliosides), which do not show an overt neurological phenotype but may develop subclinical synaptic deficits. Detailed electrophysiological analyses showed subtle changes in presynaptic neurotransmitter release. Acetylcholine release at 40 Hz nerve stimulation at aged GM2/GD2-synthase null-mutant NMJs ran down slightly more pronounced than at wild-type NMJs, and spontaneous acetylcholine release rate at GD3-synthase null-mutant NMJs was somewhat higher than at wild-type, selectively at 25 degrees C bath temperature. Interestingly, we observed faster kinetics of postsynaptic electrophysiological responses at aged GD3-synthase null-mutant NMJs, not previously seen by us at NMJs of young GD3-synthase null-mutants or other types of (aged or young) ganglioside-deficient mice. These kinetic changes might reflect a change in postsynaptic acetylcholine receptor behaviour. Our data indicate that it is highly unlikely that transmission failure at NMJs contributes to the progressive motor defects of aged GM2/GD2-synthase null-mutants and that, despite some kinetic changes of synaptic signals, neuromuscular transmission remains successful in aged GD3-synthase null-mutant mice. Apparently, mutual redundancy of the different gangliosides in supporting presynaptic function, as observed previously by us in young mice, remains adequate upon ageing or, alternatively, gangliosides have only relatively little direct impact on neuromuscular synaptic function, even in aged mice. (C) 2009 Elsevier Inc. All rights reserve
Slow Relaxation of Spin Structure in Exotic Ferromagnetic Phase of Ising-like Heisenberg Kagome Antiferromagnets
In the corner-sharing lattice, magnetic frustration causes macroscopic
degeneracy in the ground state, which prevents systems from ordering. However,
if the ensemble of the degenerate configuration has some global structure, the
system can have a symmetry breaking phenomenon and thus posses a finite
temperature phase transition. As a typical example of such cases, the magnetic
phase transition of the Ising-like Heisenberg antiferromagnetic model on the
kagome lattice has been studied. There, a phase transition of the
two-dimensional ferromagnetic Ising universality class occurs accompanying with
the uniform spontaneous magnetization. Because of the macroscopic degeneracy in
the ordered phase, the system is found to show an entropy-driven ordering
process, which is quantitatively characterized by the number of ``weathervane
loop''. We investigate this novel type of slow relaxation in regularly
frustrated system.Comment: 4 pages, 6 figure
Novel Patient Cell-Based HTS Assay for Identification of Small Molecules for a Lysosomal Storage Disease
Small molecules have been identified as potential therapeutic agents for lysosomal storage diseases (LSDs), inherited metabolic disorders caused by defects in proteins that result in lysosome dysfunctional. Some small molecules function assisting the folding of mutant misfolded lysosomal enzymes that are otherwise degraded in ER-associated degradation. The ultimate result is the enhancement of the residual enzymatic activity of the deficient enzyme. Most of the high throughput screening (HTS) assays developed to identify these molecules are single-target biochemical assays. Here we describe a cell-based assay using patient cell lines to identify small molecules that enhance the residual arylsulfatase A (ASA) activity found in patients with metachromatic leukodystrophy (MLD), a progressive neurodegenerative LSD. In order to generate sufficient cell lines for a large scale HTS, primary cultured fibroblasts from MLD patients were transformed using SV40 large T antigen. These SV40 transformed (SV40t) cells showed to conserve biochemical characteristics of the primary cells. Using a specific colorimetric substrate para-nitrocatechol sulfate (pNCS), detectable ASA residual activity were observed in primary and SV40t fibroblasts from a MLD patient (ASA-I179S) cultured in multi-well plates. A robust fluorescence ASA assay was developed in high-density 1,536-well plates using the traditional colorimetric pNCS substrate, whose product (pNC) acts as “plate fluorescence quencher” in white solid-bottom plates. The quantitative cell-based HTS assay for ASA generated strong statistical parameters when tested against a diverse small molecule collection. This cell-based assay approach can be used for several other LSDs and genetic disorders, especially those that rely on colorimetric substrates which traditionally present low sensitivity for assay-miniaturization. In addition, the quantitative cell-based HTS assay here developed using patient cells creates an opportunity to identify therapeutic small molecules in a disease-cellular environment where potentially disrupted pathways are exposed and available as targets
- …