9,440 research outputs found

    The Dyer-Roeder relation in a universe with particle production

    Full text link
    We have obtained analytical exact solutions of the Dyer-Roeder equation in a cosmological model where creation of particles occurs at the expenses of the gravitational field. We discussed the influences of inhomogeneities in the path of a light beam on the apparent diameter of astrophysical objects and consider both redshift independent as redshift dependent distributions of the inhomogeneities.Comment: 7 pages, 4 figures. Accepted to be published in the Astronomy and Astrophysics Journa

    Constraining Elko Dark Matter at the LHC with Monophoton Events

    Full text link
    A mass dimension one fermion, also known as Elko, constitutes a dark matter candidate which might interact with photons at the tree level in a specific fashion. In this work, we investigate the constraints imposed by unitarity and LHC data on this type of interactions using the search for new physics in monophoton events. We found that Elkos which can explain the dark matter relic abundance mainly through electromagnetic interactions are excluded at the 95\%CL by the 8 TeV LHC data for masses up to 1 TeV.Comment: 6 pages, 4 figure

    Finding the Higgs Boson through Supersymmetry

    Get PDF
    The study of displaced vertices containing two b--jets may provide a double discovery at the Large Hadron Collider (LHC): we show how it may not only reveal evidence for supersymmetry, but also provide a way to uncover the Higgs boson necessary in the formulation of the electroweak theory in a large region of the parameter space. We quantify this explicitly using the simplest minimal supergravity model with bilinear breaking of R-parity, which accounts for the observed pattern of neutrino masses and mixings seen in neutrino oscillation experiments.Comment: 7 pages, 7 figures. Final version to appear at PRD. Discussion and results were enlarge

    Probing Neutrino Oscillations in Supersymmetric Models at the Large Hadron Collider

    Get PDF
    The lightest supersymmetric particle may decay with branching ratios that correlate with neutrino oscillation parameters. In this case the CERN Large Hadron Collider (LHC) has the potential to probe the atmospheric neutrino mixing angle with sensitivity competitive to its low-energy determination by underground experiments. Under realistic detection assumptions, we identify the necessary conditions for the experiments at CERN's LHC to probe the simplest scenario for neutrino masses induced by minimal supergravity with bilinear R parity violation.Comment: 11 pages, 6 figures. To appear in Physical Review

    Topological insulator particles as optically induced oscillators: towards dynamical force measurements and optical rheology

    Full text link
    We report the first experimental study upon the optical trapping and manipulation of topological insulator (TI) particles. By virtue of the unique TI properties, which have a conducting surface and an insulating bulk, the particles present a peculiar behaviour in the presence of a single laser beam optical tweezers: they oscillate in a plane perpendicular to the direction of the laser propagation, as a result of the competition between radiation pressure and gradient forces. In other words, TI particles behave as optically induced oscillators, allowing dynamical measurements with unprecedented simplicity and purely optical control. Actually, optical rheology of soft matter interfaces and biological membranes, as well as dynamical force measurements in macromolecules and biopolymers, may be quoted as feasible possibilities for the near future.Comment: 6 pages, 5 figures. Correspondence and requests for Supplementary Material should be addressed to [email protected]

    Determining R-parity violating parameters from neutrino and LHC data

    Full text link
    In supersymmetric models neutrino data can be explained by R-parity violating operators which violate lepton number by one unit. The so called bilinear model can account for the observed neutrino data and predicts at the same time several decay properties of the lightest supersymmetric particle. In this paper we discuss the expected precision to determine these parameters by combining neutrino and LHC data and discuss the most important observables. We show that one can expect a rather accurate determination of the underlying R-parity parameters assuming mSUGRA relations between the R-parity conserving ones and discuss briefly also the general MSSM as well as the expected accuracies in case of a prospective e+ e- linear collider. An important observation is that several parameters can only be determined up to relative signs or more generally relative phases.Comment: 13 pages, 13 figure
    corecore