644 research outputs found

    Characterization of the Turbulent Magnetic Integral Length in the Solar Wind: From 0.3 to 5 Astronomical Units

    Get PDF
    The solar wind is a structured and complex system, in which the fields vary strongly over a wide range of spatial and temporal scales. As an example, the turbulent activity in the wind affects the evolution in the heliosphere of the integral turbulent scale or correlation length [{\lambda}], usually associated with the breakpoint in the turbulent-energy spectrum that separates the inertial range from the injection range. This large variability of the fields demands a statistical description of the solar wind. In this work, we study the probability distribution function (PDF) of the magnetic autocorrelation lengths observed in the solar wind at different distances from the Sun. We use observations from Helios, ACE, and Ulysses spacecraft. We distinguish between the usual solar wind and one of its transient components (Interplanetary Coronal Mass Ejections, ICMEs), and study also solar wind samples with low and high proton beta [\beta_p ]. We find that in the last 3 regimes the PDF of {\lambda} is a log-normal function, consistent with the multiplicative and non-linear processes that take place in the solar wind, the initial {\lambda} (before the Alfv\'enic point) being larger in ICMEs

    Cosmic ray cutoff prediction using magnetic field from global magnetosphere MHD simulations

    Get PDF
    International audienceRelativistic particles entering the Earth's magnetosphere, i.e. cosmic rays and solar energetic particles, are of prime space weather interest because they can affect satellite operations, communications, and the safety of astronauts and airline crews and passengers. In order to mitigate the hazards that originate from such particles one needs to predict the cutoff latitudes of such particles as a function of their energies and the state of the magnetosphere. We present results from a new particle tracing code that is used to determine the cutoff latitudes of 8-15Men-1 alpha particles during the 23/24 April, 1998 geomagnetic storm and the preceding quiet time. The calculations are based on four different geomagnetic field models and compared with SAMPEX observations of alpha particles in the same energy range. The geomagnetic field models under consideration are: (i) the International Geomagnetic Reference Field (IGRF) model, (ii) the Tsyganenko "89" model (T89c), (iii) the Tsyganenko "96" model (T96), and (iv) a global magnetohydrodynamic (MHD) model of Earth's magnetosphere. Examining 11 SAMPEX cutoff latitude observations we find that the differences between the observed and the predicted cutoff latitudes are 2.3° ± 2.0° (mean) and 7.9° (maximum difference) for the IGRF model; 3.9° ± 2.4° (mean) and 6.9° (maximum difference) for the T89c model; 4.0° ± 1.4° (mean) and 5.5° (maximum difference) for the T96 model; and 2.5° ± 1.7° (mean) and 7.0° (maximum difference) for the MHD model. All models generally predict cutoff latitudes equatorward of the SAMPEX observations. The MHD model results also show steeper cutoff energy gradients with latitude compared to the empirical models and more structure in the cutoff energy versus latitude function, presumably due to the presence of boundary layers in the MHD model

    Data-driven exploration and continuum modeling of dislocation networks

    Get PDF
    The microstructural origin of strain hardening during plastic deformation in stage II deformation of face-centered cubic (fcc) metals can be attributed to the increase in dislocation density resulting in a formation of dislocation networks. Although this is a well known relation, the complexity of dislocation multiplication processes and details about the formation of dislocation networks have recently been revealed by discrete dislocation dynamics (DDD) simulations. It has been observed that dislocations, after being generated by multiplication mechanisms, show a limited expansion within their slip plane before they get trapped in the network by dislocation reactions. This mechanism involves multiple slip systems and results in a heterogeneous dislocation network, which is not reflected in most dislocation-based continuum models. We approach the continuum modeling of dislocation networks by using data science methods to provide a link between discrete dislocations and the continuum level. For this purpose, we identify relevant correlations that feed into a model for dislocation networks in a dislocation-based continuum theory of plasticity. As a key feature, the model combines the dislocation multiplication with the limitation of the travel distance of dislocations by formation of stable dislocation junctions. The effective mobility of the network is determined by a range of dislocation spacings which reproduces the scattering travel distances of generated dislocation as observed in DDD. The model is applied to a high-symmetry fcc loading case and compared to DDD simulations. The results show a physically meaningful microstructural evolution, where the generation of new dislocations by multiplication mechanisms is counteracted by a formation of a stable dislocation network. In conjunction with DDD, we observe a steady state interplay of the different mechanisms

    Quenching of the Deuteron in Flight

    Get PDF
    We investigate the Lorentz contraction of a deuteron in flight. Our starting point is the Blankenbecler-Sugar projection of the Bethe-Salpeter equation to a 3-dimensional quasi potential equation, wqhich we apply for the deuteron bound in an harmonic oscillator potential (for an analytical result) and by the Bonn NN potential for a more realistic estimate. We find substantial quenching with increasing external momenta and a significant modification of the high momentum spectrum of the deuteron.Comment: 11 pages, 4 figure

    Statistical study of the effect of ULF fluctuations in the IMF on the cross polar cap potential drop for northward IMF

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/95210/1/jgra21543.pd

    Utilizing the polar cap index to explore strong driving of polar cap dynamics

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/95343/1/jgra21643.pd

    Taylor Scale and Effective Magnetic Reynolds Number Determination from Plasma Sheet and Solar Wind Magnetic Field Fluctuations

    Get PDF
    [1] Cluster data from many different intervals in the magnetospheric plasmas sheet and the solar wind are employed to determine the magnetic Taylor microscale from simultaneous multiple point measurements. For this study we define the Taylor scale as the square root of the ratio of the mean square magnetic field (or velocity) fluctuations to the mean square spatial derivatives of their fluctuations. The Taylor scale may be used, in the assumption of a classical Ohmic dissipation function, to estimate effective magnetic Reynolds numbers, as well as other properties of the small scale turbulence. Using solar wind magnetic field data, we have determined a Taylor scale value of 2400 ± 100 km, which is used to obtain an effective magnetic Reynolds number of about 260,000 ± 20,000, and in the plasma sheet we calculated a Taylor scale of 1900 ± 100 km, which allowed us to obtain effective magnetic Reynolds numbers in the range of about 7 to 110. The present determination makes use of a novel extrapolation technique to derive a statistically stable estimate from a range of small scale measurements. These results may be useful in magnetohydrodynamic modeling of the solar wind and the magnetosphere and may provide constraints on kinetic theories of dissipation in space plasmas.Fil: Weygand, James M.. University of California; Estados UnidosFil: Matthaeus, W. H.. University of Delaware; Estados UnidosFil: Dasso, Sergio Ricardo. Consejo Nacional de Investigaciónes Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; ArgentinaFil: Kivelson, M. G.. University of California; Estados UnidosFil: Walker, R. J.. University of California; Estados Unido

    Field-aligned currents observed by CHAMP during the intense 2003 geomagnetic storm events

    No full text
    International audienceThis study concentrates on the characteristics of field-aligned currents (FACs) in both hemispheres during the extreme storms in October and November 2003. High-resolution CHAMP magnetic data reflect the dynamics of FACs during these geomagnetic storms, which are different from normal periods. The peak intensity and most equatorward location of FACs in response to the storm phases are examined separately for both hemispheres, as well as for the dayside and nightside. The corresponding large-scale FAC peak densities are, on average, enhanced by about a factor of 5 compared to the quiet-time FACs' strengths. And the FAC densities on the dayside are, on average, 2.5 times larger in the Southern (summer) than in the Northern (winter) Hemisphere, while the observed intensities on the nightside are comparable between the two hemispheres. Solar wind dynamic pressure is correlated with the FACs strength on the dayside. However, the latitudinal variations of the FACs are compared with the variations in Dst and the interplanetary magnetic field component Bz, in order to determine how these parameters control the large-scale FACs' configuration in the polar region. We have determined that (1) the equatorward shift of FACs on the dayside is directly controlled by the southward IMF Bz and there is a saturation of the latitudinal displacement for large value of negative Bz. In the winter hemisphere this saturation occurs at higher latitudes than in the summer hemisphere. (2) The equatorward expansion of the nightside FACs is delayed with respect to the solar wind input. The poleward recovery of FACs on the nightside is slower than on the dayside. The latitudinal variations on the nightside are better described by the variations of the Dst index. (3) The latitudinal width of the FAC region on the nightside spreads over a wide range of about 25° in latitude
    corecore