362 research outputs found
The Puzzling Mutual Orbit of the Binary Trojan Asteroid (624) Hektor
Asteroids with satellites are natural laboratories to constrain the formation
and evolution of our solar system. The binary Trojan asteroid (624) Hektor is
the only known Trojan asteroid to possess a small satellite. Based on W.M. Keck
adaptive optics observations, we found a unique and stable orbital solution,
which is uncommon in comparison to the orbits of other large multiple asteroid
systems studied so far. From lightcurve observations recorded since 1957, we
showed that because the large Req=125-km primary may be made of two joint
lobes, the moon could be ejecta of the low-velocity encounter, which formed the
system. The inferred density of Hektor's system is comparable to the L5 Trojan
doublet (617) Patroclus but due to their difference in physical properties and
in reflectance spectra, both captured Trojan asteroids could have a different
composition and origin.Comment: 13 pages, 3 figures, 2 table
Study of molecular spin-crossover complex Fe(phen)2(NCS)2 thin films
We report on the growth by evaporation under high vacuum of high-quality thin
films of Fe(phen)2(NCS)2 (phen=1,10-phenanthroline) that maintain the expected
electronic structure down to a thickness of 10 nm and that exhibit a
temperature-driven spin transition. We have investigated the current-voltage
characteristics of a device based on such films. From the space charge-limited
current regime, we deduce a mobility of 6.5x10-6 cm2/V?s that is similar to the
low-range mobility measured on the widely studied
tris(8-hydroxyquinoline)aluminium organic semiconductor. This work paves the
way for multifunctional molecular devices based on spin-crossover complexes
Spintronic magnetic anisotropy
An attractive feature of magnetic adatoms and molecules for nanoscale
applications is their superparamagnetism, the preferred alignment of their spin
along an easy axis preventing undesired spin reversal. The underlying magnetic
anisotropy barrier --a quadrupolar energy splitting-- is internally generated
by spin-orbit interaction and can nowadays be probed by electronic transport.
Here we predict that in a much broader class of quantum-dot systems with spin
larger than one-half, superparamagnetism may arise without spin-orbit
interaction: by attaching ferromagnets a spintronic exchange field of
quadrupolar nature is generated locally. It can be observed in conductance
measurements and surprisingly leads to enhanced spin filtering even in a state
with zero average spin. Analogously to the spintronic dipolar exchange field,
responsible for a local spin torque, the effect is susceptible to electric
control and increases with tunnel coupling as well as with spin polarization.Comment: 6 pages with 4 figures + 26 pages of Supplementary Informatio
NASA Planetary Mission Concept Study: Assessing: Dwarf Planet Ceres' past and Present Habitability Potential
The Dawn mission revolutionized our understanding of Ceres during the same decade that has also witnessed the rise of ocean worlds as a research and exploration focus. We will report progress on the Planetary Mission Concept Study (PMCS) on the future exploration of Ceres under the New Frontiers or Flagship program that was selected for NASA funding in October 2019. At the time this writing, the study was just kicked off, hence this abstract reports the study plan as presented in the proposal
A Hot Gap Around Jupiter's Orbit in the Solar Nebula
The Sun was an order of magnitude more luminous during the first few hundred
thousand years of its existence, due in part to the gravitational energy
released by material accreting from the Solar nebula. If Jupiter was already
near its present mass, the planet's tides opened an optically-thin gap in the
nebula. We show using Monte Carlo radiative transfer calculations that sunlight
absorbed by the nebula and re-radiated into the gap raised temperatures well
above the sublimation threshold for water ice, with potentially drastic
consequences for the icy bodies in Jupiter's feeding zone. Bodies up to a meter
in size were vaporized within a single orbit if the planet was near its present
location during this early epoch. Dust particles lost their ice mantles, and
planetesimals were partially to fully devolatilized, depending on their size.
Scenarios in which Jupiter formed promptly, such as those involving a
gravitational instability of the massive early nebula, must cope with the high
temperatures. Enriching Jupiter in the noble gases through delivery trapped in
clathrate hydrates will be more difficult, but might be achieved by either
forming the planet much further from the star, or capturing planetesimals at
later epochs. The hot gap resulting from an early origin for Jupiter also would
affect the surface compositions of any primordial Trojan asteroids.Comment: 25 pages, 10 figures. ApJ in press. Discussion of Jupiter's volatile
enrichment revised in sec. 4.
Dawn arrives at Ceres: Exploration of a small, volatile-rich world
On 6 March 2015, Dawn arrived at Ceres to find a dark, desiccated surface punctuated by small, bright areas. Parts of Ceres’ surface are heavily cratered, but the largest expected craters are absent. Ceres appears gravitationally relaxed at only the longest wavelengths, implying a mechanically strong lithosphere with a weaker deep interior. Ceres’ dry exterior displays hydroxylated silicates, including ammoniated clays of endogenous origin. The possibility of abundant volatiles at depth is supported by geomorphologic features such as flat crater floors with pits, lobate flows of materials, and a singular mountain that appears to be an extrusive cryovolcanic dome. On one occasion, Ceres temporarily interacted with the solar wind, producing a bow shock accelerating electrons to energies of tens of kilovolts
(16) Psyche: A mesosiderite-like asteroid?
Asteroid (16) Psyche is the target of the NASA Psyche mission. It is
considered one of the few main-belt bodies that could be an exposed
proto-planetary metallic core and that would thus be related to iron
meteorites. Such an association is however challenged by both its near- and
mid-infrared spectral properties and the reported estimates of its density.
Here, we aim to refine the density of (16) Psyche to set further constraints on
its bulk composition and determine its potential meteoritic analog.
We observed (16) Psyche with ESO VLT/SPHERE/ZIMPOL as part of our large
program (ID 199.C-0074). We used the high angular resolution of these
observations to refine Psyche's three-dimensional (3D) shape model and
subsequently its density when combined with the most recent mass estimates. In
addition, we searched for potential companions around the asteroid. We derived
a bulk density of 3.99\,\,0.26\,gcm for Psyche. While such
density is incompatible at the 3-sigma level with any iron meteorites
(7.8\,gcm), it appears fully consistent with that of
stony-iron meteorites such as mesosiderites (density
4.25\,cm). In addition, we found no satellite in our images
and set an upper limit on the diameter of any non-detected satellite of
1460\,\,200}\,m at 150\,km from Psyche (0.2\%\,\,R, the
Hill radius) and 800\,\,200\,m at 2,000\,km (3\%\,\,).
Considering that the visible and near-infrared spectral properties of
mesosiderites are similar to those of Psyche, there is merit to a
long-published initial hypothesis that Psyche could be a plausible candidate
parent body for mesosiderites.Comment: 16 page
The varied sources of faculae-forming brines in Ceres’ Occator crater emplaced via hydrothermal brine effusion
Before acquiring highest-resolution data of Ceres, questions remained about the emplacement mechanism and source of Occator crater's bright faculae. Here we report that brine effusion emplaced the faculae in a brine-limited, impact-induced hydrothermal system. Impact-derived fracturing enabled brines to reach the surface. The central faculae, Cerealia and Pasola Facula, postdate the central pit, and were primarily sourced from an impact-induced melt chamber, with some contribution from a deeper, pre-existing brine reservoir. Vinalia Faculae, in the crater floor, were sourced from the laterally extensive deep reservoir only. Vinalia Faculae are comparatively thinner and display greater ballistic emplacement than the central faculae because the deep reservoir brines took a longer path to the surface and contained more gas than the shallower impact-induced melt chamber brines. Impact-derived fractures providing conduits, and mixing of impact-induced melt with deeper endogenic brines, could also allow oceanic material to reach the surfaces of other large icy bodies. The second extended phase of the Dawn mission provided high resolution observations of Occator crater of the dwarf planet Ceres. Here, the authors show that the central faculae were sourced in an impact-induced melt chamber, with a contribution from the deep brine reservoir, while the Vinalia Faculae were sourced by the deep brine reservoir alone
- …